Skip to main content

Gamete Binding and Fusion

  • Chapter
  • First Online:
Cell Fusions

Abstract

Successful mammalian fertilization results in the union of two gametes, a spermatozoon and a mature oocyte. Membrane fusion events are essential for at least two distinct steps of the fertilization process: (i) the vesiculation of the acrosomal surface membranes during sperm acrosomal exocytosis (AE), induced by sperm binding to the egg-coat, and (ii) fusion of the oocyte plasma membrane, the oolemma, with the sperm plasma membrane that occurs after AE and sperm-egg coat penetration. The rearrangement of sperm plasma membrane domains/membrane lipid raft formation during sperm capacitation in the female reproductive tract is a priming step that enables the fusion and vesiculation of outer acrosomal membranes during AE. The membrane fusion/vesiculation events of AE seem to share similarities with synaptic vesicle fusion, assisted by the membrane proteins of the SNARE hypothesis. The AE exposes the transmembrane receptors on the sperm head equatorial segment in preparation for sperm-oolemma adhesion and fusion. Gene ablation studies indicate that the tetraspanin family proteins CD9 and CD81 on the oolemma interact with the superglobulin family protein IZUMO on the sperm plasmalemma to mediate sperm-oolemma adhesion in mammals. The fusogenicity of IZUMO has not been established, so the involvement of this system in the actual membrane fusion part of sperm–oolemma interaction remains open. Interactions of ADAM family proteins on sperm plasma membrane with oolemma integrins appear non-essential during sperm-oolemma fusion, but integrins may play a supporting role via sustenance of the tetraspanin web in the oocyte cortex. Sperm-oolemma binding may be reinforced by a cast of other receptors found on the surface of the sperm head (e.g. CRISP and MN9). The present chapter reviews recent progress in the study of these fundamental factors of gamete membrane fusion during mammalian fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and a metalloprotease

AE:

Acrosomal exocytosis

AFAF:

Acrosome formation associated factor

CD:

Cluster of differentiation

CEA:

Carcinoembryonic antigen

CRISP:

Cysteine-rich secretory protein

IAM:

Inner acrosomal membrane

ICSI:

Intracytoplasmic sperm injection

IgSF:

Immunoglobulin superfamily (protein)

KO:

Knock-out

LEL:

Large extracellular loop

NSF:

N-ethylmaleimide-sensitive factor

OAM:

Outer acrosomal membrane

PVS:

Perivitelline space

PSG:

Pregnancy-specific glycoprotein

PM:

Plasma membrane

PTGFRN:

Prostaglandin F2 receptor negative regulator

PTP:

Protein tyrosine phosphatase

SEL:

Small extracellular loop

SNAP:

Soluble NSF attachment protein

SNARE:

SNAP receptors

t-SNARE:

Target-SNARE

VAMP:

Vesicle associated membrane protein

v-SNARE:

Vesicle-SNARE

ZP:

Zona pellucida

References

  • Almeida EA, Huovila AP, Sutherland AE et al (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Andria ML, Barsh GS, Levy S (1992) Expression of TAPA-1 in preimplantation mouse embryos. Biochem Biophys Res Commun 186:1201–1206

    Article  PubMed  CAS  Google Scholar 

  • Aricescu AR, Jones EY (2007) Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr Opin Cell Biol 19:543–550

    Article  PubMed  CAS  Google Scholar 

  • Baessler KA, Lee Y, Sampson NS (2009) Beta1 integrin is an adhesion protein for sperm binding to eggs. ACS Chem Biol 4:357–366

    Article  PubMed  CAS  Google Scholar 

  • Barclay AN (2003) Membrane proteins with immunoglobulin-like domains–a master superfamily of interaction molecules. Semin Immunol 15:215–223

    Article  PubMed  CAS  Google Scholar 

  • Barraud-Lange V, Naud-Barriant N, Bomsel M et al (2007) Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J 21:3446–3449

    Article  PubMed  CAS  Google Scholar 

  • Bedford JM, Cooper GW (1978) Membrane fusion events in the fertilization of vertebrate eggs. In: Poste G, Nicolson GL (eds) Membrane fusion, vol 5. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  PubMed  CAS  Google Scholar 

  • Bigler D, Takahashi Y, Chen MS et al (2000) Sequence-specific interaction between the disintegrin domain of mouse ADAM 2 (fertilin beta) and murine eggs. Role of the alpha(6) integrin subunit. J Biol Chem 275:11576–11584

    Article  PubMed  CAS  Google Scholar 

  • Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205

    Article  PubMed  CAS  Google Scholar 

  • Breitbart H (2002) Role and regulation of intracellular calcium in acrosomal exocytosis. J Reprod Immunol 53:151–159

    Article  PubMed  CAS  Google Scholar 

  • Buffone MG, Foster JA, Gerton GL (2008) The role of the acrosomal matrix in fertilization. Int J Dev Biol 52:511–522

    Article  PubMed  Google Scholar 

  • Busso D, Goldweic NM, Hayashi M et al (2007) Evidence for the involvement of testicular protein CRISP2 in mouse sperm-egg fusion. Biol Reprod 76:701–708

    Article  PubMed  CAS  Google Scholar 

  • Cal S, Freije JM, Lopez JM et al (2000) ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol Biol Cell 11:1457–1469

    PubMed  CAS  Google Scholar 

  • Campbell KD, Reed WA, White KL (2000) Ability of integrins to mediate fertilization, intracellular calcium release, and parthenogenetic development in bovine oocytes. Biol Reprod 62:1702–1709

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Le Naour F, Labas V et al (2003) EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373: 409–421

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, le Naour F, Silvie O et al (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Sampson NS (1999) Mediation of sperm-egg fusion: evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilinbeta. Chem Biol 6:1–10

    Article  PubMed  Google Scholar 

  • Chen MS, Almeida EA, Huovila AP et al (1999a) Evidence that distinct states of the integrin alpha6beta1 interact with laminin and an ADAM. J Cell Biol 144:549–561

    Article  PubMed  CAS  Google Scholar 

  • Chen MS, Tung KS, Coonrod SA et al (1999b). Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci USA 96:11830–11835

    Article  PubMed  CAS  Google Scholar 

  • Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106

    Article  PubMed  CAS  Google Scholar 

  • Cho C, Bunch DO, Faure JE et al (1998) Fertilization defects in sperm from mice lacking fertilin beta. Science 281:1857–1859

    Article  PubMed  CAS  Google Scholar 

  • Da Ros VG, Maldera JA, Willis WD et al (2008) Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1). Dev Biol 320:12–18

    Article  PubMed  CAS  Google Scholar 

  • De Blas GA, Roggero CM, Tomes CN et al (2005) Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 3:e323

    Article  PubMed  CAS  Google Scholar 

  • Delaguillaumie A, Lagaudriere-Gesbert C, Popoff MR et al (2002) Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes. J Cell Sci 115:433–443

    PubMed  CAS  Google Scholar 

  • Ellerman DA, Ha C, Primakoff P et al (2003) Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol Biol Cell 14:5098–5103

    Article  PubMed  CAS  Google Scholar 

  • Ellerman DA, Pei J, Gupta S et al (2009) Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol Reprod Dev 76:1188–1199

    Article  PubMed  CAS  Google Scholar 

  • Eto K, Puzon-McLaughlin W, Sheppard D et al (2000) RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin domains mediates cell–cell interaction. J Biol Chem 275:34922–34930

    Article  PubMed  CAS  Google Scholar 

  • Evans JP (2001) Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 23:628–639

    Article  PubMed  CAS  Google Scholar 

  • Evans JP, Kopf GS, Schultz RM (1997) Characterization of the binding of recombinant mouse sperm fertilin beta subunit to mouse eggs: evidence for adhesive activity via an egg beta1 integrin-mediated interaction. Dev Biol 187:79–93

    Article  PubMed  CAS  Google Scholar 

  • Evans JP, Schultz RM, Kopf GS (1995) Identification and localization of integrin subunits in oocytes and eggs of the mouse. Mol Reprod Dev 40:211–220

    Article  PubMed  CAS  Google Scholar 

  • Evans JP, Schultz RM, Kopf GS (1998) Roles of the disintegrin domains of mouse fertilins alpha and beta in fertilization. Biol Reprod 59:145–152

    Article  PubMed  CAS  Google Scholar 

  • Feigelson SW, Grabovsky V, Shamri R et al (2003) The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow. J Biol Chem 278:51203–51212

    Article  PubMed  CAS  Google Scholar 

  • Foster JA, Friday BB, Maulit MT (1997) AM67, a secretory component of the guinea pig sperm acrosomal matrix, is related to mouse sperm protein sp56 and the complement component 4-binding proteins. J Biol Chem 272:12714–12722

    Article  PubMed  CAS  Google Scholar 

  • Gadella BM, Visconti PE (2006). Regulation of capacitation. In: De Jonge C, Barratt CL (eds) The sperm cell. Cambridge University Press, Cambridge, UK, pp 134–169

    Chapter  Google Scholar 

  • Gerst JE (1999) SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci 55:707–734

    Article  PubMed  CAS  Google Scholar 

  • Glazar AI, Evans JP (2009) Immunoglobulin superfamily member IgSF8 (EWI-2) and CD9 in fertilisation: evidence of distinct functions for CD9 and a CD9-associated protein in mammalian sperm-egg interaction. Reprod Fertil Dev 21:293–303

    Article  PubMed  CAS  Google Scholar 

  • Gould RJ, Polokoff MA, Friedman PA et al (1990) Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 195:168–171

    PubMed  CAS  Google Scholar 

  • He ZY, Brakebusch C, Fassler R et al (2003) None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev Biol 254:226–237

    Article  PubMed  CAS  Google Scholar 

  • He ZY, Gupta S, Myles D et al (2009) Loss of surface EWI-2 on CD9 null oocytes. Mol Reprod Dev 76:629–636

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    Article  PubMed  CAS  Google Scholar 

  • Higginbottom A, Takahashi Y, Bolling L et al (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311:208–214

    Article  PubMed  CAS  Google Scholar 

  • Hohne-Zell B, Gratzl M (1996) Adrenal chromaffin cells contain functionally different SNAP-25 monomers and SNAP-25/syntaxin heterodimers. FEBS Lett 394:109–116

    Article  PubMed  CAS  Google Scholar 

  • Hu XQ, Ji SY, Li YC et al (2009) Acrosome formation-associated factor is involved in fertilization. Fertil Steril 93:1482–1492

    Article  PubMed  CAS  Google Scholar 

  • Inoue N, Ikawa M, Isotani A et al (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    Article  PubMed  CAS  Google Scholar 

  • Iwao Y, Fujimura T (1996) Activation of Xenopus eggs by RGD-containing peptides accompanied by intracellular Ca2+ release. Dev Biol 177:558–567

    Article  PubMed  CAS  Google Scholar 

  • Kaji K, Oda S, Miyazaki S et al (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol 247:327–334

    Article  PubMed  CAS  Google Scholar 

  • Kaji K, Oda S, Shikano T et al (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Cha MC, Gerton GL (2001a) Mouse sperm protein sp56 is a component of the acrosomal matrix. Biol Reprod 64:36–43

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Foster JA, Gerton GL (2001b) Differential release of guinea pig sperm acrosomal components during exocytosis. Biol Reprod 64:148–156

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Gerton GL (2003) Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev Biol 264:141–152

    Article  PubMed  CAS  Google Scholar 

  • Kolesnikova TV, Stipp CS, Rao RM et al (2004) EWI-2 modulates lymphocyte integrin alpha4beta1 functions. Blood 103:3013–3019

    Article  PubMed  CAS  Google Scholar 

  • Lammerding J, Kazarov AR, Huang H et al (2003) Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc Natl Acad Sci USA 100:7616–7621

    Article  PubMed  CAS  Google Scholar 

  • Le Naour F, Rubinstein E, Jasmin C et al (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    Article  PubMed  Google Scholar 

  • Lefevre B, Wolf JP, Ziyyat A (2010) Sperm-egg interaction: is there a link between tetraspanin(s) and GPI-anchored protein(s)? Bioessays 32:143–152

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Hu XQ, Zhang KY et al (2006) Afaf, a novel vesicle membrane protein, is related to acrosome formation in murine testis. FEBS Lett 580:4266–4273

    Article  PubMed  CAS  Google Scholar 

  • Linder B, Heinlein UA (1997) Decreased in vitro fertilization efficiencies in the presence of specific cyritestin peptides. Dev Growth Differ 39:243–247

    Article  PubMed  CAS  Google Scholar 

  • Linfor J, Berger T (2000) Potential role of alphav and beta1 integrins as oocyte adhesion molecules during fertilization in pigs. J Reprod Fertil 120:65–72

    Article  PubMed  CAS  Google Scholar 

  • Maleszewski M, Kimura Y, Yanagimachi R (1996) Sperm membrane incorporation into oolemma contributes to the oolemma block to sperm penetration: evidence based on intracytoplasmic sperm injection experiments in the mouse. Mol Reprod Dev 44:256–259

    Article  PubMed  CAS  Google Scholar 

  • Manandhar G, Toshimori K (2001) Exposure of sperm head equatorin after acrosome reaction and its fate after fertilization in mice. Biol Reprod 65:1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Miller BJ, Georges-Labouesse E, Primakoff P et al (2000) Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J Cell Biol 149:1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Miyado K, Yamada G, Yamada S et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    Article  PubMed  CAS  Google Scholar 

  • Miyado K, Yoshida K, Yamagata K et al (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 105:12921–12926

    Article  PubMed  Google Scholar 

  • Nath D, Slocombe PM, Stephens PE et al (1999) Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci 112:579–587

    PubMed  CAS  Google Scholar 

  • Nath D, Slocombe PM, Webster A et al (2000) Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(1 )integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci 113:2319–2328

    PubMed  CAS  Google Scholar 

  • Neilson L, Andalibi A, Kang D et al (2000) Molecular phenotype of the human oocyte by PCR-SAGE. Genomics 63:13–24

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi R, Sanzen N, Nada S et al (2005) Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci USA 102:1939–1944

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Zerial M (1997) The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 9:496–504

    Article  PubMed  CAS  Google Scholar 

  • Okabe M, Adachi T, Takada K et al (1987) Capacitation-related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro. J Reprod Immunol 11:91–100

    Article  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP (1994) Structure of acrosomal matrix domains of rabbit sperm. J Struct Biol 112:41–48

    Article  PubMed  CAS  Google Scholar 

  • Oura C, Toshimori K (1990) Ultrastructural studies on the fertilization of mammalian gametes. Int Rev Cytol 122:105–151

    Article  PubMed  CAS  Google Scholar 

  • Oyler GA, Higgins GA, Hart RA et al (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos J, Moreno RD, Sutovsky P et al (2000) SNAREs in mammalian sperm: possible implications for fertilization. Dev Biol 223:54–69

    Article  PubMed  CAS  Google Scholar 

  • Rochwerger L, Cohen DJ, Cuasnicu PS (1992) Mammalian sperm-egg fusion: the rat egg has complementary sites for a sperm protein that mediates gamete fusion. Dev Biol 153:83–90

    Article  PubMed  CAS  Google Scholar 

  • Rochwerger L, Cuasnicu PS (1992) Redistribution of a rat sperm epididymal glycoprotein after in vitro and in vivo capacitation. Mol Reprod Dev 31:34–41

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein E, Le Naour., Lagaudriere-Gesbert C et al (1996) CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26:2657–2665

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein E, Ziyyat A, Prenant M et al (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358

    Article  PubMed  CAS  Google Scholar 

  • Runge KE, Evans JE, He ZY et al (2007) Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304:317–325

    Article  PubMed  CAS  Google Scholar 

  • Sala-Valdes M, Ursa A, Charrin S et al (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281:19665–19675

    Article  PubMed  CAS  Google Scholar 

  • Schulz JR, Wessel GM, Vacquier VD (1997) The exocytosis regulatory proteins syntaxin and VAMP are shed from sea urchin sperm during the acrosome reaction. Dev Biol 191:80–87

    Article  PubMed  CAS  Google Scholar 

  • Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W (1999) Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 61:1445–1451.

    Article  PubMed  CAS  Google Scholar 

  • Shilling FM, Magie CR, Nuccitelli R (1998) Voltage-dependent activation of frog eggs by a sperm surface disintegrin peptide. Dev Biol 202:113–124

    Article  PubMed  CAS  Google Scholar 

  • Stein KK, Primakoff P, Myles D (2004) Sperm-egg fusion: events at the plasma membrane. J Cell Sci 117:6269–6274

    Article  PubMed  CAS  Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2001) EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem 276:40545–40554

    Article  PubMed  CAS  Google Scholar 

  • Suarez S (2002) Gamete transport. In: Hardy D (ed) Fertilization. Academic Press, San Diego, pp 3–28

    Chapter  Google Scholar 

  • Sutton-Smith M, Wong NK, Khoo KH et al (2007) Analysis of protein-linked glycosylation in a sperm-somatic cell adhesion system. Glycobiology 17:553–567

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Bigler D, Ito Y et al (2001) Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12:809–820

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Yamakawa N, Matsumoto K et al (2000) Analysis of the role of egg integrins in sperm-egg binding and fusion. Mol Reprod Dev 56:412–423

    Article  PubMed  CAS  Google Scholar 

  • Tarone G, Russo MA, Hirsch E et al (1993) Expression of beta 1 integrin complexes on the surface of unfertilized mouse oocyte. Development 117:1369–1375

    PubMed  CAS  Google Scholar 

  • Terrian DM, White MK (1997) Phylogenetic analysis of membrane trafficking proteins: a family reunion and secondary structure predictions. Eur J Cell Biol 73:198–204

    PubMed  CAS  Google Scholar 

  • Tomes CN, Michaut M, De Blas G et al (2002) SNARE complex assembly is required for human sperm acrosome reaction. Dev Biol 243:326–338

    Article  PubMed  CAS  Google Scholar 

  • Toshimori K, Saxena DK, Tanii I et al (1998) An MN9 antigenic molecule, equatorin, is required for successful sperm-oocyte fusion in mice. Biol Reprod 59:22–29

    Article  PubMed  CAS  Google Scholar 

  • Toshimori K, Tanii I, Araki S et al (1992) Characterization of the antigen recognized by a monoclonal antibody MN9: unique transport pathway to the equatorial segment of sperm head during spermiogenesis. Cell Tissue Res 270:459–468

    Article  PubMed  CAS  Google Scholar 

  • van Goor H, Melenhorst WB, Turner AJ et al (2009) Adamalysins in biology and disease. J Pathol 219:277–286

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Lv Z, Shi J et al (2009) Immunocontraceptive potential of the Ig-like domain of Izumo. Mol Reprod Dev 76:794–801

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse R, Ha C, Dveksler GS (2002) Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J Exp Med 195:277–282

    Article  PubMed  CAS  Google Scholar 

  • Weimbs T, Low SH, Chapin SJ et al (1997) A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc Natl Acad Sci USA 94:3046–3051

    Article  PubMed  CAS  Google Scholar 

  • Weimbs T, Mostov K, Low SH et al (1998) A model for structural similarity between different SNARE complexes based on sequence relationships. Trends Cell Biol 8:260–262

    Article  PubMed  CAS  Google Scholar 

  • Westbrook-Case VA, Winfrey VP, Olson GE (1995) Sorting of the domain-specific acrosomal matrix protein AM50 during spermiogenesis in the guinea pig. Dev Biol 167:338–349

    Article  PubMed  CAS  Google Scholar 

  • Yamatoya K, Yoshida K, Ito C et al (2009) Equatorin: identification and characterization of the epitope of the MN9 antibody in the mouse. Biol Reprod 81:889–897

    Article  PubMed  CAS  Google Scholar 

  • Yanagimachi R (1994) Mammalian fertilization. Raven Press, New York, NY

    Google Scholar 

  • Yoshida K, Ito C, Yamatoya K et al (2009) A model of the acrosome reaction progression via the acrosomal membrane-anchored protein equatorin. Reproduction 139:533–544

    Article  PubMed  CAS  Google Scholar 

  • Yuan R, Primakoff P, Myles DG (1997) A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J Cell Biol 137:105–112

    Article  PubMed  CAS  Google Scholar 

  • Yunes R, Michaut M, Tomes C et al (2000) Rab3A triggers the acrosome reaction in permeabilized human spermatozoa. Biol Reprod 62:1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Zarelli VE, Ruete MC, Roggero CM et al (2009) PTP1B dephosphorylates N-ethylmaleimide-sensitive factor and elicits SNARE complex disassembly during human sperm exocytosis. J Biol Chem 284:10491–10503

    Article  PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  • Zhang XP, Kamata T, Yokoyama K et al (1998) Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem 273:7345–7350

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Graham R, Russell G et al (2001) MDC-9 (ADAM-9/Meltrin gamma) functions as an adhesion molecule by binding the alpha(v)beta(5) integrin. Biochem Biophys Res Commun 280:574–580

    CAS  Google Scholar 

  • Ziyyat A, Rubinstein E, Monier-Gavelle F et al (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci 119:416–424

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sutovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yi, YJ., Zimmerman, S.W., Sutovsky, P. (2011). Gamete Binding and Fusion. In: Larsson, LI. (eds) Cell Fusions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9772-9_8

Download citation

Publish with us

Policies and ethics