Skip to main content

Retroviruses and Cell Fusions: Overview

  • Chapter
  • First Online:
Cell Fusions

Abstract

Retroviruses are a large and diverse group of enveloped animal viruses. A metastable envelope protein (ENV) on the surface of virus particles harbors a machinery for receptor-dependent fusion of biological membranes as needed for viral entry. The basic mechanism that drives fusion is widely conserved among different groups of retroviruses, whereas the precise signals that trigger the activation of this machinery vary. The exact same processes that drive viral entry may also mediate cell–cell fusion in a receptor-dependent manner. Such fusion events that may lead to the formation of giant multinucleated cells have been widely observed in cultured cells exposed to retroviruses. However, their possible contribution to the spread and pathogenesis of retroviral infections in man and animals is unclear. By way of their mode of replication via a DNA-intermediate that is stably integrated in the chromosomal DNA of the host cell, retroviruses may also establish germ-line infections that can be vertically transmitted from parents to offspring. Such remnants of retroviral infections of our ancestors constitute 8% of the human genome. Some of these human endogenous retroviruses of more than 25 million years of age have selectively maintained the coding capacity for functional envelope proteins, which provides strong evidence that these envelope genes have been co-opted to serve a beneficial function for their host. Currently, three of these old envelope genes have been found to encode proteins that can mediate cell–cell fusions and at least two of the envelope proteins have been implicated in the generation of a multi-nucleated layer of cells in the placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDS:

Acquired immune deficiency syndrome

ALV:

Avian leukosis virus

ASCT:

Alanine, serine and cysteine selective transporters

DC-SIGN:

Dendritic cell-specific ICAM-3-grabbing nonintegrin

enJSRV:

Endogenous JSRV

ENV:

Envelope protein

ERV:

Endogenous retrovirus

FeLV:

Feline leukemia virus

GLUT1:

Glucose transporter 1

HA:

Hemagglutinin

HERV:

Human endogenous retrovirus

HIV-1:

Human immunodeficiency virus type 1

HTLV-1:

Human T-cell lymphotropic virus type 1

HYAL2:

Hyaluronidase 2

ISU:

Immunosuppressive domain

JSRV:

Jaagsiekte sheep retrovirus

LTR:

Long terminal repeat

mCAT-1:

Mouse cationic amino acid transporter

MFSD2:

Major facilitator superfamily domain containing 2

MMTV:

Mouse mammary tumor virus

MLV:

Murine leukemia viruse

MPMV:

Mason-Pfizer monkey virus

Mya:

Million years ago

NHR CHR:

Coiled-coil – N- and C-terminal heptad repeat

ORF:

Open reading frame

Pit:

Sodium-dependent phosphate symporter

PRR:

Proline-rich region

RBD:

Receptor-binding domain

RSV:

Rous sarcoma virus

SFV:

Simian foamy virus

SIV:

Simian immunodeficiency virus

Smit-1:

Sodium-dependent myo-inositol transporter 1

SNP:

Single nucleotide polymorphism

SP:

Signal peptide

SU:

Surface subunit

TM:

Transmembrane subunit

WDSV:

Walleye dermal sarcoma virus

References

  • Aagaard L, Villesen P, Kjeldbjerg AL et al (2005) The approximately 30-million-year-old ERVPb1 envelope gene is evolutionarily conserved among hominoids and Old World monkeys. Genomics 86:685–691

    Article  PubMed  CAS  Google Scholar 

  • Albritton LM, Kim JW, Tseng L et al (1993) Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses. J Virol 67:2091–2096

    PubMed  CAS  Google Scholar 

  • Albritton LM, Tseng L, Scadden D et al (1989) A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57:659–666

    Article  PubMed  CAS  Google Scholar 

  • Alkhatib G, Combadiere C, Broder CC et al (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958

    Article  PubMed  CAS  Google Scholar 

  • Andersen KB (1994) A domain of murine retrovirus surface protein gp70 mediates cell fusion, as shown in a novel SC-1 cell fusion system. J Virol 68:3175–3182

    PubMed  CAS  Google Scholar 

  • Bahrami S, Duch M, Pedersen FS (2004) Change of tropism of SL3-2 murine leukemia virus, using random mutational libraries. J Virol 78:9343–9351

    Article  PubMed  CAS  Google Scholar 

  • Barbulescu M, Turner G, Seaman MI et al (1999) Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Curr Biol 9:861–868

    Article  PubMed  CAS  Google Scholar 

  • Barnard RJO, Elleder D, Young JAT (2006) Avian sarcoma and leukosis virus-receptor interactions: from classical genetics to novel insights into virus-cell membrane fusion. Virology 344:25–29

    Article  PubMed  CAS  Google Scholar 

  • Battini JL, Rasko JE, Miller AD (1999) A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci USA 96:1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Belshaw R, Dawson ALA, Woolven-Allen J et al (2005) Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 79:12507–12514

    Article  PubMed  CAS  Google Scholar 

  • Belshaw R, Pereira V, Katzourakis A J et al (2004) Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci USA 101:4894–4899

    Article  PubMed  CAS  Google Scholar 

  • Bentz J, Mittal A (2000) Deployment of membrane fusion protein domains during fusion. Cell Biol Int 24:819–838

    Article  PubMed  CAS  Google Scholar 

  • Best S, Le Tissier PR, Stoye JP (1997) Endogenous retroviruses and the evolution of resistance to retroviral infection. Trends Microbiol 5:313–318

    Article  PubMed  CAS  Google Scholar 

  • Bieda K, Hoffmann A, Boller K (2001) Phenotypic heterogeneity of human endogenous retrovirus particles produced by teratocarcinoma cell lines. J Gen Virol 82:591–596

    PubMed  CAS  Google Scholar 

  • Blaise S, de Parseval N, Bénit L et al (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA 100:13013–13018

    Article  PubMed  CAS  Google Scholar 

  • Blaise S, de Parseval N, Heidmann T (2005) Functional characterization of two newly identified Human Endogenous Retrovirus coding envelope genes. Retrovirology 2:19

    Article  PubMed  CAS  Google Scholar 

  • Blond JL, Lavillette D, Cheynet V et al (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329

    Article  PubMed  CAS  Google Scholar 

  • Boeke J, Stoye J (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin J, Hughes S, Varmus H (eds) Retroviruses. Cold Spring Harbor Laboratory, Plainview, NY, pp 343–435

    Google Scholar 

  • Boller K, Frank H, Löwer J et al (1983) Structural organization of unique retrovirus-like particles budding from human teratocarcinoma cell lines. J Gen Virol 64(Pt 12):2549–2559

    Article  PubMed  Google Scholar 

  • Boller K, Schönfeld K, Lischer S et al (2008) Human endogenous retrovirus HERV-K113 is capable of producing intact viral particles. J Gen Virol 89:567–572

    Article  PubMed  CAS  Google Scholar 

  • Bonnaud B, Beliaeff J, Bouton O et al (2005) Natural history of the ERVWE1 endogenous retroviral locus. Retrovirology 2:57

    Article  PubMed  CAS  Google Scholar 

  • Bonnaud B, Bouton O, Oriol G et al (2004) Evidence of selection on the domesticated ERVWE1 env retroviral element involved in placentation. Mol Biol Evol 21:1895–1901

    Article  PubMed  CAS  Google Scholar 

  • Bullough PA, Hughson FM, Treharne AC et al (1994) Crystals of a fragment of influenza haemagglutinin in the low pH induced conformation. J Mol Biol 236:1262–1265

    Article  PubMed  CAS  Google Scholar 

  • Bénit L, Calteau A, Heidmann T (2003) Characterization of the low-copy HERV-Fc family: evidence for recent integrations in primates of elements with coding envelope genes. Virology 312:159–168

    Article  PubMed  CAS  Google Scholar 

  • Ceccaldi P, Delebecque F, Prevost M et al (2006) DC-SIGN facilitates fusion of dendritic cells with human T-cell leukemia virus type 1-infected cells. J Virol 80:4771–4780

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Chen P, Chang G et al (2004) Functional characterization of the placental fusogenic membrane protein syncytin. Biol Reprod 71:1956–1962

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen L, Yang S et al (2008) Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod 79:815–823

    Article  PubMed  CAS  Google Scholar 

  • Chesebro B, Buller R, Portis J et al (1990) Failure of human immunodeficiency virus entry and infection in CD4-positive human brain and skin cells. J Virol 64:215–221

    PubMed  CAS  Google Scholar 

  • Choe H, Farzan M, Sun Y et al (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1996) Proteins: structures and molecular properties. W.H. Freeman and Company, New York, NY

    Google Scholar 

  • Crise B, Rose JK (1992) Human immunodeficiency virus type 1 glycoprotein precursor retains a CD4-p56lck complex in the endoplasmic reticulum. J Virol 66:2296–2301

    PubMed  CAS  Google Scholar 

  • Cáceres M, Thomas JW (2006) The gene of retroviral origin Syncytin 1 is specific to hominoids and is inactive in Old World monkeys. J Hered 97:100–106

    Article  PubMed  Google Scholar 

  • Côté M, Zheng Y, Liu S (2009) Receptor binding and low pH coactivate oncogenic retrovirus envelope-mediated fusion. J Virol 83:11447–11455

    Article  PubMed  CAS  Google Scholar 

  • Dalgleish AG, Beverley PC, Clapham PR et al (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767

    Article  PubMed  CAS  Google Scholar 

  • de Parseval N, Casella J, Gressin L et al (2001) Characterization of the three HERV-H proviruses with an open envelope reading frame encompassing the immunosuppressive domain and evolutionary history in primates. Virology 279:558–569

    Article  PubMed  CAS  Google Scholar 

  • de Parseval N, Diop G, Blaise S et al (2005) Comprehensive search for intra- and inter-specific sequence polymorphisms among coding envelope genes of retroviral origin found in the human genome: genes and pseudogenes. BMC Genomics 6:117

    Article  PubMed  CAS  Google Scholar 

  • de Parseval N, Heidmann T (1998) Physiological knockout of the envelope gene of the single-copy ERV-3 human endogenous retrovirus in a fraction of the Caucasianpopulation. J Virol 72:3442–3445

    PubMed  Google Scholar 

  • de Parseval N, Lazar V, Casella J et al (2003) Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 77:10414–10422

    Article  PubMed  CAS  Google Scholar 

  • Dewannieux M, Blaise S, Heidmann T (2005) Identification of a functional envelope protein from the HERV-K family of human endogenous retroviruses. J Virol 79:15573–15577

    Article  PubMed  CAS  Google Scholar 

  • Dewannieux M, Harper F, Richaud A et al (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16:1548–1556

    Article  PubMed  CAS  Google Scholar 

  • Dong B, Kim S, Hong S et al (2007) An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors. Proc Natl Acad Sci USA 104:1655–1660

    Article  PubMed  CAS  Google Scholar 

  • Duda A, Lüftenegger D, Pietschmann T et al (2006) Characterization of the prototype foamy virus envelope glycoprotein receptor-binding domain. J Virol 80:8158–8167

    Article  PubMed  CAS  Google Scholar 

  • Duelli DM, Hearn S, Myers MP et al (2005) A primate virus generates transformed human cells by fusion. J Cell Biol 171:493–503

    Article  PubMed  Google Scholar 

  • Dunlap KA, Palmarini M, Adelson DL et al (2005) Sheep endogenous betaretroviruses (enJSRVs) and the hyaluronidase 2 (HYAL2) receptor in the ovine uterus and conceptus. Biol Reprod 73:271–279

    Article  PubMed  CAS  Google Scholar 

  • Dunlap KA, Palmarini M, Varela M et al (2006) Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci USA 103:14390–14395

    Article  PubMed  CAS  Google Scholar 

  • Dupressoir A, Marceau G, Vernochet C et al (2005) Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA 102:725–730

    Article  PubMed  CAS  Google Scholar 

  • Dupressoir A, Vernochet C, Bawa O et al (2009) Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci USA 106:12127–12132

    Article  PubMed  CAS  Google Scholar 

  • Endres MJ, Clapham PR, Marsh M et al (1996) CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87:745–756

    Article  PubMed  CAS  Google Scholar 

  • Esnault C, Heidmann O, Delebecque F et al (2005) APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433:430–433

    Article  PubMed  CAS  Google Scholar 

  • Esnault C, Millet J, Schwartz O et al (2006) Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res 34:1522–1531

    Article  PubMed  CAS  Google Scholar 

  • Esnault C, Priet S, Ribet D et al (2008) A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci USA 105:17532–17537

    Article  PubMed  CAS  Google Scholar 

  • Fackler OT, Baur AS (2002) Live and let die: Nef functions beyond HIV replication. Immunity 16:493–497

    Article  PubMed  CAS  Google Scholar 

  • Fass D, Kim PS (1995) Dissection of a retrovirus envelope protein reveals structural similarity to influenza hemagglutinin. Curr Biol 5:1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Frendo J, Olivier D, Cheynet V et al (2003) Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol 23:3566–3574

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C, Maxfield DG, Goodman SM et al (2009) Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genet 5:e1000425

    Article  PubMed  CAS  Google Scholar 

  • Goff S (2007) Retroviridae: the retroviruses and their replication. In: Knipe DM, Howley PM (eds) Field's virology. Lippincott Williams and Wilkins, Philadelphia, PA, pp 1999–2051

    Google Scholar 

  • Greenberg M, Cammack N, Salgo M et al (2004) HIV fusion and its inhibition in antiretroviral therapy. Rev Med Virol 14:321–337

    Article  PubMed  CAS  Google Scholar 

  • Hayward MD, Pötgens AJG, Drewlo S et al (2007) Distribution of human endogenous retrovirus type W receptor in normal human villous placenta. Pathology 39:406–412

    Article  PubMed  CAS  Google Scholar 

  • Heidmann O, Vernochet C, Dupressoir A et al (2009) Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new “syncytin” in a third order of mammals. Retrovirology 6:107

    Article  PubMed  CAS  Google Scholar 

  • Hein S, Prassolov V, Zhang Y et al (2003) Sodium-dependent myo-inositol transporter 1 is a cellular receptor for Mus cervicolor M813 murine leukemia virus. J Virol 77:5926–5932

    Article  PubMed  CAS  Google Scholar 

  • Herniou E, Martin J, Miller K et al (1998) Retroviral diversity and distribution in vertebrates. J Virol 72:5955–5966

    PubMed  CAS  Google Scholar 

  • Hervé CA, Forrest G, Löwer R et al (2004) Conservation and loss of the ERV3 open reading frame in primates. Genomics 83:940–943

    Article  PubMed  CAS  Google Scholar 

  • Hughes JF, Coffin JM (2004) Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc Natl Acad Sci USA 101:1668–1672

    Article  PubMed  CAS  Google Scholar 

  • Hunter E (1997) Viral entry and receptors. In: Coffin J, Hughes S, Varmus H (eds) Retroviruses. Cold Spring Harbor Laboratory, Plainview, NY, pp 71–121

    Google Scholar 

  • Igakura T, Stinchcombe JC, Goon PKC et al (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299:1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Ji C, Kopetzki E, Jekle A et al (2009) CD4-anchoring HIV-1 fusion inhibitor with enhanced potency and in vivo stability. J Biol Chem 284:5175–5185

    Article  PubMed  CAS  Google Scholar 

  • Ji C, Zhang J, Cammack N et al (2006) Development of a novel dual CCR5-dependent and CXCR4-dependent cell–cell fusion assay system with inducible gp160 expression. J Biomol Screen 11:65–74

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Sherer NM, Heidecker G et al (2009) Assembly of the murine leukemia virus is directed towards sites of cell–cell contact. PLoS Biol 7:e1000163

    Article  PubMed  CAS  Google Scholar 

  • Katen LJ, Januszeski MM, Anderson WF et al (2001) Infectious entry by amphotropic as well as ecotropic murine leukemia viruses occurs through an endocytic pathway. J Virol 75:5018–5026

    Article  PubMed  CAS  Google Scholar 

  • Kato N, Pfeifer-Ohlsson S, Kato M et al (1987) Tissue-specific expression of human provirus ERV3 mRNA in human placenta: two of the three ERV3 mRNAs contain human cellular sequences. J Virol 61:2182–2191

    PubMed  CAS  Google Scholar 

  • Katzourakis A, Tristem M (2005) Phylogeny of human/primate endogenous and exogenous retroviruses. In: Sverdlov ED (ed) Retrovirus and primate genome evolution. Landes bioscience, Georgetown, TX, pp 186–203

    Google Scholar 

  • Kavanaugh MP, Miller DG, Zhang W et al (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 91:7071–7075

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    PubMed  CAS  Google Scholar 

  • Kjeldbjerg AL, Villesen P, Aagaard L et al (2008) Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution. BMC Evol Biol 8:266

    Article  PubMed  CAS  Google Scholar 

  • Klatzmann D, Champagne E, Chamaret S et al (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768

    Article  PubMed  CAS  Google Scholar 

  • Klement V, Rowe WP, Hartley JW et al (1969) Mixed culture cytopathogenicity: a new test for growth of murine leukemia viruses in tissue culture. Proc Natl Acad Sci USA 63:753–758

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Ishimoto A, Amanuma H (2003) N-Linked glycosylation is required for XC cell-specific syncytium formation by the R peptide-containing envelope protein of ecotropic murine leukemia viruses. J Virol 77:7510–7516

    Article  PubMed  CAS  Google Scholar 

  • Kurth R, Löwer J, Löwer R et al (1983) Retroviruses in human tumors. Arch Geschwulstforsch 53:289–299

    PubMed  CAS  Google Scholar 

  • Lairmore FD, Franchini G (2007) Human t-cell leukemia virus types 1 and 2. In: Knipe DM, Howley PM (eds) Fields’ virology. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  • Lamb D, Schüttelkopf AW, van Aalten DMF et al (2008) Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope. Retrovirology 5:70

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lavie L, Kitova M, Maldener E et al (2005) CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 79:876–883

    Article  PubMed  CAS  Google Scholar 

  • Lavillette D, Marin M, Ruggieri A et al (2002) The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol 76:6442–6452

    Article  PubMed  CAS  Google Scholar 

  • Lee YN, Bieniasz PD (2007) Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 3:e10

    Article  PubMed  CAS  Google Scholar 

  • Levesque K, Zhao Y, Cohen EA (2003) Vpu exerts a positive effect on HIV-1 infectivity by down-modulating CD4 receptor molecules at the surface of HIV-1-producing cells. J Biol Chem 278:28346–28353

    Article  PubMed  CAS  Google Scholar 

  • Li K, Zhang S, Kronqvist M et al (2007) The conserved His8 of the Moloney murine leukemia virus Env SU subunit directs the activity of the SU-TM disulphide bond isomerase. Virology 361:149–160

    Article  PubMed  CAS  Google Scholar 

  • Li K, Zhang S, Kronqvist M et al (2008) Intersubunit disulfide isomerization controls membrane fusion of human T-cell leukemia virus Env. J Virol 82:7135–7143

    Article  PubMed  CAS  Google Scholar 

  • Li M, Li Z, Yao Q et al (2006) Murine leukemia virus R Peptide inhibits influenza virus hemagglutinin-induced membrane fusion. J Virol 80:6106–6114

    Article  PubMed  CAS  Google Scholar 

  • Linial M (2007) Foamy viruses. In: Knipe DM, Howley PM (eds) Fields’s virology. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Lorizate M, Brügger B, Akiyama H et al (2009) Probing HIV-1 membrane liquid order by Laurdan staining reveals producer cell-dependent differences. J Biol Chem 284:22238–22247

    Article  PubMed  CAS  Google Scholar 

  • Löwer R, Löwer J, Kurth R (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 93:5177–5184

    Article  PubMed  Google Scholar 

  • Lu M, Blacklow SC, Kim PS (1995) A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Malassiné A, Blaise S, Handschuh K et al (2007) Expression of the fusogenic HERV-FRD Env glycoprotein (syncytin 2) in human placenta is restricted to villous cytotrophoblastic cells. Placenta 28:185–191

    Article  PubMed  CAS  Google Scholar 

  • Malassiné A, Handschuh K, Tsatsaris V et al (2005) Expression of HERV-W Env glycoprotein (syncytin) in the extravillous trophoblast of first trimester human placenta. Placenta 26:556–562

    Article  PubMed  CAS  Google Scholar 

  • Mallet F, Bouton O, Prudhomme S et al (2004) The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101:1731–1736

    Article  PubMed  CAS  Google Scholar 

  • Manel N, Kim FJ, Kinet S et al (2003) The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115:449–459

    Article  PubMed  CAS  Google Scholar 

  • Mangeney M, Renard M, Schlecht-Louf G et al (2007) Placental syncytins: genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci USA 104:20534–20539

    Article  PubMed  CAS  Google Scholar 

  • Mangeney M, de Parseval N, Thomas G et al (2001) The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J Gen Virol 82:2515–2518

    PubMed  CAS  Google Scholar 

  • McClure MO, Sommerfelt MA, Marsh M et al (1990) The pH independence of mammalian retrovirus infection. J Gen Virol 71(Pt 4):767–773

    Article  PubMed  CAS  Google Scholar 

  • Medstrand P, Mager DL (1998) Human-specific integrations of the HERV-K endogenous retrovirus family. J Virol 72:9782–9787

    PubMed  CAS  Google Scholar 

  • Metzner C, Salmons B, Günzburg WH et al (2008) Rafts, anchors and viruses – a role for glycosylphosphatidylinositol anchored proteins in the modification of enveloped viruses and viral vectors. Virology 382:125–131

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Lee X, Li X et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  PubMed  CAS  Google Scholar 

  • Miller AD (2003) Identification of Hyal2 as the cell-surface receptor for jaagsiekte sheep retrovirus and ovine nasal adenocarcinoma virus. Curr Top Microbiol Immunol 275:179–199

    PubMed  CAS  Google Scholar 

  • Miller AD (2008) Hyaluronidase 2 and its intriguing role as a cell-entry receptor for oncogenic sheep retroviruses. Semin Cancer Biol 18:296–301

    Article  PubMed  CAS  Google Scholar 

  • Miller DG, Miller AD (1994) A family of retroviruses that utilize related phosphate transporters for cell entry. J Virol 68(12):8270–8276

    PubMed  CAS  Google Scholar 

  • Miyauchi K, Kim Y, Latinovic O et al (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:433–444

    Article  PubMed  CAS  Google Scholar 

  • Mothes W, Boerger AL, Narayan S et al (2000) Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 103:679–689

    Article  PubMed  CAS  Google Scholar 

  • Netter RC, Amberg SM, Balliet JW et al (2004) Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate. J Virol 78:13430–13439

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum O, Roop A, Anderson WF (1993) Sequences determining the pH dependence of viral entry are distinct from the host range-determining region of the murine ecotropic and amphotropic retrovirus envelope proteins. J Virol 67:7402–7405

    PubMed  CAS  Google Scholar 

  • O’Neill RJ, O’Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  PubMed  Google Scholar 

  • Olsen KE, Andersen KB (1999) Palmitoylation of the intracytoplasmic R peptide of the transmembrane envelope protein in Moloney murine leukemia virus. J Virol 73:8975–8981

    PubMed  CAS  Google Scholar 

  • Pantaleo G, Butini L, Graziosi C et al (1991) Human immunodeficiency virus (HIV) infection in CD4+ T lymphocytes genetically deficient in LFA-1: LFA-1 is required for HIV-mediated cell fusion but not for viral transmission. J Exp Med 173:511–514

    Article  PubMed  CAS  Google Scholar 

  • Papandreou M, Barbouche R, Guieu R et al (2010) Mapping of domains on HIV envelope protein mediating association with calnexin and protein disulfide isomerase. J Biol Chem. doi 10.1074/jbc.M109.066670

    Google Scholar 

  • Paré M, Gauthier S, Landry S et al (2005) A new sensitive and quantitative HTLV-I-mediated cell fusion assay in T cells. Virology 338:309–322

    Article  PubMed  CAS  Google Scholar 

  • Perfettini J, Castedo M, Roumier T et al (2005) Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ 12(Suppl 1):916–923

    Article  PubMed  CAS  Google Scholar 

  • Picard-Maureau M, Jarmy G, Berg A et al (2003) Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process. J Virol 77:4722–4730

    Article  PubMed  CAS  Google Scholar 

  • Pietschmann T, Zentgraf H, Rethwilm A et al (2000) An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 74:4474–4482

    Article  PubMed  CAS  Google Scholar 

  • Pinter A, Kopelman R, Li Z et al (1997) Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembles the active-site sequence of thiol-disulfide exchange enzymes. J Virol 71:8073–8077

    PubMed  CAS  Google Scholar 

  • Ponferrada VG, Mauck BS, Wooley DP (2003) The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus. Arch Virol 148:659–675

    Article  PubMed  CAS  Google Scholar 

  • Prassolov V, Hein S, Ziegler M et al (2001) Mus cervicolor murine leukemia virus isolate M813 belongs to a unique receptor interference group. J Virol 75:4490–4498

    Article  PubMed  CAS  Google Scholar 

  • Qian Z, Albritton LM (2004) An aromatic side chain is required at residue 8 of SU for fusion of ecotropic murine leukemia virus. J Virol 78:508–512

    Article  PubMed  CAS  Google Scholar 

  • Ragheb JA, Anderson WF (1994) pH-independent murine leukemia virus ecotropic envelope-mediated cell fusion: implications for the role of the R peptide and p12E TM in viral entry. J Virol 68:3220–3231

    PubMed  CAS  Google Scholar 

  • Rein A, Mirro J, Haynes JG et al (1994) Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein. J Virol 68:1773–1781

    PubMed  CAS  Google Scholar 

  • Renard M, Varela PF, Letzelter C, Duquerroy S, Rey FA, Heidmann T (2005) Crystalstructure of a pivotal domain of human syncytin-2, a 40 million years oldendogenous retrovirus fusogenic envelope gene captured by primates. J Mol Biol 352:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Roeder GS, Fink GR (1980) DNA rearrangements associated with a transposable element in yeast. Cell 21:239–249

    Article  PubMed  CAS  Google Scholar 

  • Rotman G, Itin A, Keshet E (1984) ‘Solo’ large terminal repeats (LTR) of an endogenous retrovirus-like gene family (VL30) in the mouse genome. Nucleic Acids Res 12:2273–2282

    Article  PubMed  CAS  Google Scholar 

  • Shaheen F, Collman RG (2004) Co-receptor antagonists as HIV-1 entry inhibitors. Curr Opin Infect Dis 17:7–16

    Article  PubMed  CAS  Google Scholar 

  • Shankarappa R, Margolick JB, Gange SJ et al (1999) Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73:10489–10502

    PubMed  CAS  Google Scholar 

  • Sherer NM, Mothes W (2008) Cytonemes and tunneling nanotubules in cell–cell communication and viral pathogenesis. Trends Cell Biol 18:414–420

    Article  PubMed  CAS  Google Scholar 

  • Shih A, Coutavas EE, Rush MG (1991) Evolutionary implications of primate endogenous retroviruses. Virology 182:495–502

    Article  PubMed  CAS  Google Scholar 

  • Siess DC, Kozak SL, Kabat D (1996) Exceptional fusogenicity of Chinese hamster ovary cells with murine retroviruses suggests roles for cellular factor(s) and receptor clusters in the membrane fusion process. J Virol 70:3432–3439

    PubMed  CAS  Google Scholar 

  • Skehel JJ, Bayley PM, Brown EB et al (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci USA 79:968–972

    Article  PubMed  CAS  Google Scholar 

  • Springer MS, Murphy WJ, Eizirik E et al (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci USA 100:1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenet Evol 41:384–394

    Article  PubMed  CAS  Google Scholar 

  • Sverdlov ED (1998) Perpetually mobile footprints of ancient infections in human genome. FEBS Lett 428:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tailor CS, Nouri A, Lee CG, Kozak C, Kabat D (1999) Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses. Proc Natl Acad Sci USA 96:927–932

    Article  PubMed  CAS  Google Scholar 

  • Turner G, Barbulescu M, Su M et al (2001) Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol 11:1531–1535

    Article  PubMed  CAS  Google Scholar 

  • Urisman A, Molinaro RJ, Fischer N et al (2006) Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2:e25

    Article  PubMed  CAS  Google Scholar 

  • Van Hoeven NS, Miller AD (2005) Use of different but overlapping determinants in a retrovirus receptor accounts for non-reciprocal interference between xenotropic and polytropic murine leukemia viruses. Retrovirology 2:76

    Article  PubMed  CAS  Google Scholar 

  • Villesen P, Aagaard L, Wiuf C et al (2004) Identification of endogenous retroviral reading frames in the human genome. Retrovirology 1:32

    Article  PubMed  CAS  Google Scholar 

  • Wallin M, Ekström M, Garoff H (2004) Isomerization of the intersubunit disulphide-bond in Env controls retrovirus fusion. EMBO J 23:54–65

    Article  PubMed  CAS  Google Scholar 

  • Wallin M, Ekström M, Garoff H (2005) The fusion-controlling disulfide bond isomerase in retrovirus Env is triggered by protein destabilization. J Virol 79:1678–1685

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Obeng-Adjei N, Ying Q et al (2008) Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells. Virology 381:230–240

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Kavanaugh MP, North RA et al (1991) Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 352:729–731

    Article  PubMed  CAS  Google Scholar 

  • White JM (1992) Membrane fusion. Science 258:917–924

    Article  PubMed  CAS  Google Scholar 

  • White JM, Delos SE, Brecher M et al (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189–219

    Article  PubMed  CAS  Google Scholar 

  • Willey RL, Maldarelli F, Martin MA et al (1992a) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66:7193–7200

    PubMed  CAS  Google Scholar 

  • Willey RL, Maldarelli F, Martin MA et al (1992b) Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J Virol 66:226–234

    PubMed  CAS  Google Scholar 

  • Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289:366–373

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Compans RW (1996) Analysis of the cell fusion activities of chimeric simian immunodeficiency virus-murine leukemia virus envelope proteins: inhibitory effects of the R peptide. J Virol 70:248–254

    PubMed  CAS  Google Scholar 

  • Yang YL, Guo L, Xu S et al (1999) Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nat Genet 21:216–219

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Skou Pedersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kjeldbjerg, A.L., Bahrami, S., Pedersen, F.S. (2011). Retroviruses and Cell Fusions: Overview. In: Larsson, LI. (eds) Cell Fusions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9772-9_2

Download citation

Publish with us

Policies and ethics