Skip to main content
Book cover

Cell Fusions pp 277–314Cite as

Cell Fusion and Stem Cells

  • Chapter
  • First Online:
  • 783 Accesses

Abstract

Differentiation, self-renewal and the ability to readily undergo cell fusion are properties of adult and embryonic stem cells. Spontaneous fusion between stem cells, and fusion of stem cells with various differentiated cell types, has been observed in many in vitro and in vivo contexts. Stem cell fusion is implicated in many crucial functions during normal development and is increasingly being harnessed as a tool for regenerative therapies. Experimentally induced fusion between somatic and stem cells forms the basis for our current understanding of nuclear reprogramming. Additionally, the potential fusion of stem cells with cancer cells may have physiologic contributions to aspects of tumor progression and metastasis. Understanding the mechanisms of stem cell fusion might allow manipulation of these processes to affect tissue regeneration, nuclear reprogramming and cancer chemotherapy. In this chapter we consider the functional consequences of stem cell fusion in development, regeneration and disease and postulate how cell fusion might contribute to the advancement of stem cell therapies in regenerative medicine.

Alain Silk and Anne E. Powell are equally contributed

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADAM:

A Disintegrin And Metalloprotease

BMDC:

Bone marrow-derived cell

FAH:

Fumarylacetoacetate hydrolase

FC:

Founder cell

FCM:

Fusion-competent myoblast

GFP:

Green fluorescent protein

GMP:

Granulocytic macrophage progenitors

iPS cell:

Induced pluripotent stem cell

MSC:

Mesenchymal stem cell

NTBC:

2-(2-Nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione

References

  • Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282

    PubMed  CAS  Google Scholar 

  • Almeida EA, Huovila AP, Sutherland AE et al (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81:1095–1104

    PubMed  CAS  Google Scholar 

  • Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    PubMed  CAS  Google Scholar 

  • Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    PubMed  CAS  Google Scholar 

  • Berninger B, Costa MR, Koch U et al (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27:8654–8664

    PubMed  CAS  Google Scholar 

  • Bjornson CR, Rietze RL, Reynolds BA et al (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537

    PubMed  CAS  Google Scholar 

  • Blobel CP, Myles DG, Primakoff P et al (1990) Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J Cell Biol 111:69–78

    PubMed  CAS  Google Scholar 

  • Blobel CP, Wolfsberg TG, Turck CW et al (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252

    PubMed  CAS  Google Scholar 

  • Bonde S, Pedram M, Stultz R et al (2010) Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells. FASEB J 24:364–373

    PubMed  CAS  Google Scholar 

  • Brazelton TR, Rossi FM, Keshet GI et al (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    PubMed  CAS  Google Scholar 

  • Capers CR (1960) Multinucleation of skeletal muscle in vitro. J Biophys Biochem Cytol 7:559–566

    PubMed  CAS  Google Scholar 

  • Chakraborty A, Lazova R, Davies S et al (2004) Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplant 34:183–186

    PubMed  CAS  Google Scholar 

  • Chakraborty AK, Sodi S, Rachkovsky M et al (2000) A spontaneous murine melanoma lung metastasis comprised of host x tumor hybrids. Cancer Res 60:2512–2519

    PubMed  CAS  Google Scholar 

  • Charames GS, Bapat B (2003) Genomic instability and cancer. Curr Mol Med 3:589–596

    PubMed  CAS  Google Scholar 

  • Chen EH, Olson EN (2001) Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev Cell 1:705–715

    PubMed  CAS  Google Scholar 

  • Chen EH, Olson EN (2005) Unveiling the mechanisms of cell–cell fusion. Science 308:369–373

    PubMed  CAS  Google Scholar 

  • Chen MS, Tung KS, Coonrod SA et al (1999) Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization. Proc Natl Acad Sci USA 96:11830–11835

    PubMed  CAS  Google Scholar 

  • Cho C, Bunch DO, Faure JE et al (1998) Fertilization defects in sperm from mice lacking fertilin beta. Science 281:1857–1859

    PubMed  CAS  Google Scholar 

  • Cowan CA, Atienza J, Melton DA et al (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    PubMed  CAS  Google Scholar 

  • Davies PS, Dismuke AD, Powell AE et al (2008) Wnt-reporter expression pattern in the mouse intestine during homeostasis. BMC Gastroenterol 8:57

    PubMed  Google Scholar 

  • Davies PS, Powell AE, Swain JR et al (2009) Inflammation and proliferation act together to mediate intestinal cell fusion. PLoS One 4:e6530

    PubMed  Google Scholar 

  • Deb A, Wang S, Skelding KA et al (2003) Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107:1247–1249

    PubMed  Google Scholar 

  • Do JT, Han DW, Gentile L et al (2009) Reprogramming of Xist against the pluripotent state in fusion hybrids. J Cell Sci 122:4122–4129

    PubMed  CAS  Google Scholar 

  • Doberstein SK, Fetter RD, Mehta AY et al (1997) Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J Cell Biol 136:1249–1261

    PubMed  CAS  Google Scholar 

  • Doyonnas R, LaBarge MA, Sacco A et al (2004) Hematopoietic contribution to skeletal muscle regeneration by myelomonocytic precursors. Proc Natl Acad Sci USA 101:13507–13512

    PubMed  CAS  Google Scholar 

  • Duesberg P, Li R (2003) Multistep carcinogenesis: a chain reaction of aneuploidizations. Cell Cycle 2:202–210

    PubMed  CAS  Google Scholar 

  • Duncan AW, Dorrell C, Grompe M (2009) Stem cells and liver regeneration. Gastroenterology 137:466–481

    PubMed  Google Scholar 

  • Ellerman DA, Pei J, Gupta S et al (2009) Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol Reprod Dev 76:1188–1199

    PubMed  CAS  Google Scholar 

  • Evans JP (2001) Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 23:628–639

    PubMed  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M et al. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    PubMed  CAS  Google Scholar 

  • Franklin LE (1965) Morphology of gamete membrane fusion and of sperm entry into oocytes of the sea urchin. J Cell Biol 25:81–100

    PubMed  CAS  Google Scholar 

  • Gaspar-Maia A, Alajem A, Polesso F et al. (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460:863–868

    PubMed  CAS  Google Scholar 

  • Goldenberg DM (1968) [On the progression of malignity: a hypothesis]. Klin Wochenschr 46:898–899

    PubMed  CAS  Google Scholar 

  • Gould E, Gross CG (2002) Neurogenesis in adult mammals: some progress and problems. J Neurosci 22:619–623

    PubMed  CAS  Google Scholar 

  • Gritti A, Parati EA, Cova L et al (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16:1091–1100

    PubMed  CAS  Google Scholar 

  • Grompe M, Lindstedt S, al-Dhalimy M et al (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 10:453–460

    PubMed  CAS  Google Scholar 

  • Gupta PB, Chaffer CL, Weinberg RA (2009a) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012

    PubMed  CAS  Google Scholar 

  • Gupta S, Primakoff P, Myles DG (2009b) Can the presence of wild-type oocytes during insemination rescue the fusion defect of CD9 null oocytes? Mol Reprod Dev 76:602

    PubMed  CAS  Google Scholar 

  • Gurtner GC, Davis V, Li H et al (1995) Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 9:1–14

    PubMed  CAS  Google Scholar 

  • Gussoni E, Bennett RR, Muskiewicz KR et al (2002) Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 110:807–814

    PubMed  CAS  Google Scholar 

  • He ZY, Brakebusch C, Fassler R et al (2003) None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev Biol 254:226–237

    PubMed  CAS  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    PubMed  CAS  Google Scholar 

  • Horsley V, Jansen KM, Mills ST et al (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–494

    PubMed  CAS  Google Scholar 

  • Horsley V, Pavlath GK (2004) Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells Tissues Organs 176:67–78

    PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    PubMed  CAS  Google Scholar 

  • Inoue N, Ikawa M, Isotani A et al (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    PubMed  CAS  Google Scholar 

  • Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    PubMed  CAS  Google Scholar 

  • Jahn R, Sudhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    PubMed  CAS  Google Scholar 

  • Johansson CB, Youssef S, Koleckar K et al (2008) Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol 10:575–583

    PubMed  CAS  Google Scholar 

  • Kaji K, Kudo A (2004) The mechanism of sperm-oocyte fusion in mammals. Reproduction 127:423–429

    PubMed  CAS  Google Scholar 

  • Kaji K, Oda S, Shikano T et al (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282

    PubMed  CAS  Google Scholar 

  • Kajstura J, Rota M, Whang B et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137

    PubMed  CAS  Google Scholar 

  • Karin M (2008) The IkappaB kinase – a bridge between inflammation and cancer. Cell Res 18:334–342

    PubMed  CAS  Google Scholar 

  • Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    PubMed  CAS  Google Scholar 

  • Kotton DN, Ma BY, Cardoso WV et al (2001) Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 128:5181–5188

    PubMed  CAS  Google Scholar 

  • Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    PubMed  CAS  Google Scholar 

  • Lagasse E, Connors H, Al-Dhalimy M et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    PubMed  CAS  Google Scholar 

  • Larizza L, Schirrmacher V, Pfluger E (1984) Acquisition of high metastatic capacity after in vitro fusion of a nonmetastatic tumor line with a bone marrow-derived macrophage. J Exp Med 160:1579–1584

    PubMed  CAS  Google Scholar 

  • Le Naour F, Rubinstein E, Jasmin C et al (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    PubMed  Google Scholar 

  • Mao X, Fujiwara Y, Orkin SH (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci USA 96:5037–5042

    PubMed  CAS  Google Scholar 

  • Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    PubMed  CAS  Google Scholar 

  • McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    PubMed  CAS  Google Scholar 

  • Mekler LB (1971) [Hybridization of transformed cells with lymphocytes as 1 of the probable causes of the progression leading to the development of metastatic malignant cells]. Vestn Akad Med Nauk SSSR 26:80–89

    PubMed  CAS  Google Scholar 

  • Mintz B, Baker WW (1967) Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc Natl Acad Sci USA 58:592–598

    PubMed  CAS  Google Scholar 

  • Miyado K, Yamada G, Yamada S et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    PubMed  CAS  Google Scholar 

  • Miyado K, Yoshida K, Yamagata K et al (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 105:12921–12926

    PubMed  CAS  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    PubMed  CAS  Google Scholar 

  • Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324

    PubMed  CAS  Google Scholar 

  • Muller P, Pfeiffer P, Koglin J et al (2002) Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106:31–35

    PubMed  Google Scholar 

  • Nygren JM, Jovinge S, Breitbach M et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    PubMed  CAS  Google Scholar 

  • Nygren JM, Liuba K, Breitbach M et al (2008) Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol 10:584–592

    PubMed  CAS  Google Scholar 

  • Okabe M, Adachi T, Takada K et al (1987) Capacitation-related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro. J Reprod Immunol 11:91–100

    PubMed  CAS  Google Scholar 

  • Okabe M, Yagasaki M, Oda H et al (1988) Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J Reprod Immunol 13:211–219

    PubMed  CAS  Google Scholar 

  • Okamoto R, Matsumoto T, Watanabe M (2006) Regeneration of the intestinal epithelia: regulation of bone marrow-derived epithelial cell differentiation towards secretory lineage cells. Hum Cell 19:71–75

    PubMed  Google Scholar 

  • Okamoto R, Yajima T, Yamazaki M et al (2002) Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med 8:1011–1017

    PubMed  CAS  Google Scholar 

  • Okumura T, Wang SS, Takaishi S et al (2009) Identification of a bone marrow-derived mesenchymal progenitor cell subset that can contribute to the gastric epithelium. Lab Invest 89:1410–1422

    PubMed  Google Scholar 

  • Orkin SH, Zon LI (2002) Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 3:323–328

    PubMed  CAS  Google Scholar 

  • Orlic D, Hill JM, Arai AE (2002) Stem cells for myocardial regeneration. Circ Res 91:1092–1102

    PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001a) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001b) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349

    PubMed  CAS  Google Scholar 

  • Palermo A, Doyonnas R, Bhutani N et al (2009) Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional. FASEB J 23:1431–1440

    PubMed  CAS  Google Scholar 

  • Pawelek JM (2000) Tumour cell hybridization and metastasis revisited. Melanoma Res 10:507–514

    PubMed  CAS  Google Scholar 

  • Pawelek JM (2005) Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol 6:988–993

    PubMed  CAS  Google Scholar 

  • Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8:377–386

    PubMed  CAS  Google Scholar 

  • Potten CS, Owen G, Roberts SA (1990) The temporal and spatial changes in cell proliferation within the irradiated crypts of the murine small intestine. Int J Radiat Biol 57:185–199

    PubMed  CAS  Google Scholar 

  • Primakoff P, Hyatt H, Tredick-Kline J (1987) Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol 104:141–149

    PubMed  CAS  Google Scholar 

  • Primakoff P, Myles DG (2002) Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science 296:2183–2185

    PubMed  CAS  Google Scholar 

  • Primakoff P, Myles DG (2007) Cell–cell membrane fusion during mammalian fertilization. FEBS Lett 581:2174–2180

    PubMed  CAS  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    PubMed  CAS  Google Scholar 

  • Reyes M, Dudek A, Jahagirdar B et al (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    PubMed  CAS  Google Scholar 

  • Richardson BE, Nowak SJ, Baylies MK (2008) Myoblast fusion in fly and vertebrates: new genes, new processes and new perspectives. Traffic 9:1050–1059

    PubMed  CAS  Google Scholar 

  • Rizvi AZ, Swain JR, Davies PS et al (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 103:6321–6325

    PubMed  CAS  Google Scholar 

  • Rochlin K, Yu S, Roy S, Baylies MK (2009) Myoblast fusion: when it takes more to make one. Dev Biol 341:66–83

    PubMed  Google Scholar 

  • Rubinstein E, Ziyyat A, Wolf JP et al (2006) The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 17:254–263

    PubMed  CAS  Google Scholar 

  • Rushton E, Drysdale R, Abmayr SM et al (1995) Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development 121:1979–1988

    PubMed  CAS  Google Scholar 

  • Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    PubMed  CAS  Google Scholar 

  • Schwartz RE, Reyes M, Koodie L et al (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109:1291–1302

    PubMed  CAS  Google Scholar 

  • Shamsadin R, Adham IM, Nayernia K et al (1999) Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 61:1445–1451

    PubMed  CAS  Google Scholar 

  • Silva J, Barrandon O, Nichols J et al (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6:e253

    PubMed  Google Scholar 

  • Silva J, Chambers I, Pollard S et al (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature 441:997–1001

    PubMed  CAS  Google Scholar 

  • Simmons DG, Cross JC (2005) Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 284:12–24

    PubMed  CAS  Google Scholar 

  • Snell WJ, White JM (1996) The molecules of mammalian fertilization. Cell 85:629–637

    PubMed  CAS  Google Scholar 

  • Spees JL, Olson SD, Ylostalo J et al (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 100:2397–2402

    PubMed  CAS  Google Scholar 

  • Srinivas BP, Woo J, Leong WY et al (2007) A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nat Genet 39:781–786

    PubMed  CAS  Google Scholar 

  • Sutovsky P (2009) Sperm-egg adhesion and fusion in mammals. Expert Rev Mol Med 11:e11

    PubMed  Google Scholar 

  • Szollosi DG, Ris H (1961) Observations on sperm penetration in the rat. J Biophys Biochem Cytol 10:275–283

    PubMed  CAS  Google Scholar 

  • Tada M, Takahama Y, Abe K et al (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    PubMed  CAS  Google Scholar 

  • Taylor MV (2002) Muscle differentiation: how two cells become one. Curr Biol 12:R224–228

    Google Scholar 

  • Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    PubMed  CAS  Google Scholar 

  • Tosh D, Slack JM (2002) How cells change their phenotype. Nat Rev Mol Cell Biol 3:187–194

    PubMed  CAS  Google Scholar 

  • Trounson A (2009) New perspectives in human stem cell therapeutic research. BMC Med 7:29

    PubMed  Google Scholar 

  • Turner BM (2008) Open chromatin and hypertranscription in embryonic stem cells. Cell Stem Cell 2:408–410

    PubMed  CAS  Google Scholar 

  • Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904

    PubMed  CAS  Google Scholar 

  • Vignery A (2005) Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med 202:337–340

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    PubMed  CAS  Google Scholar 

  • Wang X, Willenbring H, Akkari Y et al (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901

    PubMed  CAS  Google Scholar 

  • Weimann JM, Charlton CA, Brazelton TR et al (2003a) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100:2088–2093

    PubMed  CAS  Google Scholar 

  • Weimann JM, Johansson CB, Trejo A et al (2003b) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5:959–966

    PubMed  CAS  Google Scholar 

  • Willenbring H, Bailey AS, Foster M et al (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 10:744–748

    PubMed  CAS  Google Scholar 

  • Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven Press New York, NY, pp 189–317

    Google Scholar 

  • Yilmaz Y, Lazova R, Qumsiyeh M et al (2005) Donor Y chromosome in renal carcinoma cells of a female BMT recipient: visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplant 35:1021–1024

    PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Evans EP et al (2002) Changing potency by spontaneous fusion. Nature 416:545–548

    PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, He P et al (2006) Human embryonic stem cells reprogram myeloid precursors following cell–cell fusion. Stem Cells 24:168–176

    PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    PubMed  CAS  Google Scholar 

  • Zhang F, Pomerantz JH, Sen G et al (2007) Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc Natl Acad Sci USA 104:4395–4400

    PubMed  CAS  Google Scholar 

  • Zhang S, Wang D, Estrov Z et al (2004) Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110:3803–3807

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Silk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Silk, A., Powell, A.E., Davies, P.S., Wong, M.H. (2011). Cell Fusion and Stem Cells. In: Larsson, LI. (eds) Cell Fusions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9772-9_14

Download citation

Publish with us

Policies and ethics