Skip to main content
Book cover

Cell Fusions pp 267–275Cite as

The Endogenous Envelope Protein Syncytin Is Involved in Myoblast Fusion

  • Chapter
  • First Online:

Abstract

Development of human skeletal muscle depends upon fusion of myoblast s to form multinucleated muscle fibers . Many factors are important to this process, but, so far, molecules directly mediating fusions have not been identified. In man, the highly conserved endogenous retroviral envelope protein syncytin-1 is the best candidate for a true fusogen. Here, we summarize data showing that syncytin-1 and its receptors ASCT-1 and -2 are expressed in human myoblasts and that syncytin-1 is involved in myoblast fusion. These data suggest a more wide-ranging biological role for this endogenous retroviral envelope gene that hitherto suspected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADAM:

A disintegrin and metalloproteinase domain

ASCT:

Alanine, serine and cysteine-selective transporters

CD:

Cluster of differentiation

EFF-1:

Epithelial fusion failure

ERV:

Endogenous retrovirus

F-actin:

Filamentous actin

GADPH:

Glyceraldehyde 3-phosphate dehydrogenase,

GCM:

Glial cell missing

HERV:

Human endogenous retrovirus

IL:

Interleukin

MFSD2:

Major facilitator superfamily domain containing 2

NCAM:

Neural cell adhesion molecule

NFATc2:

Nuclear factor of activated T cells c2

PCR:

Polymerase chain reaction

RT:

Reverse transcriptase

VCAM:

Vascular cell adhesion molecule

References

  • Antony JM, van Marle G, Opii W et al (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7:1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Bjerregaard B, Holck S, Christensen I J et al (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63:1906–19

    Article  Google Scholar 

  • Blond J, Lavillette D, Cheynet V et al (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Chen PT, Chang GD et al (2004) Functional characterization of the placental fusogenic membrane protein syncytin. Biol Reprod 71:1956–1962

    Article  CAS  PubMed  Google Scholar 

  • Chang CW, Chuang HC, Yu C et al (2005) Stimulation of GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to CBP-mediated acetylation of GCMa. Mol Cell Biol 25:8401–8414

    Article  CAS  PubMed  Google Scholar 

  • Charlton CA, Mohler WA, Blau HM (2000) Neural cell adhesion molecule (NCAM) and myoblast fusion. Dev Biol 221:112–119

    Article  CAS  PubMed  Google Scholar 

  • Charrasse S, Comunale F, Fortier M et al (2007) M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Mol Biol Cell 18:1734–1743

    Article  CAS  PubMed  Google Scholar 

  • Chen EH, Olson EN (2005) Unveiling the mechanisms of cell–cell fusion. Science 308:369–373

    CAS  Google Scholar 

  • Cheynet V, Ruggieri A, Oriol G et al (2005) Synthesis, assembly and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J Virol 79:5585–5593

    Article  CAS  PubMed  Google Scholar 

  • Cheynet V, Oriol G, Mallet F (2006) Identification of the hASCT2-binding domain of the Env ERVWE1/syncytin-1 fusogenic glycoprotein. Retrovirology 3:41

    Article  PubMed  Google Scholar 

  • Doberstein SK, Fetter RD, Mehta AY et al (1997) Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J Cell Biol 136:1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Dupressoir A, Marceau G, Vermochet C et al (2005) Syncytin- A and syncytin-B, two fusogenic placenta-specific murine envelope gtenes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA 102:725–730

    Article  CAS  PubMed  Google Scholar 

  • Dupressoir A, Vernochet C, Bawa O et al (2009) Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci USA 106:12127–12132

    Article  CAS  PubMed  Google Scholar 

  • Esnault C, Priet S, Ribet D et al (2008) A placenta-specific receptor or the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci USA. 105:17532–17537

    Article  CAS  PubMed  Google Scholar 

  • Frendo JL, Olivier D, Cheynet V et al (2003) Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol 23:3566–3574

    Article  CAS  PubMed  Google Scholar 

  • Galbiati F, Volonte D, Engelman JA et al (1999) Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem 274:30315–30321

    Article  CAS  PubMed  Google Scholar 

  • Gong R, Huang L, Shi J et al (2007) Syncytin-A mediates the formation of syncytiotrophoblast involved in mouse placental development. Cell Physiol Biochem 20:517–526

    Article  CAS  PubMed  Google Scholar 

  • Heidmann O, Vernochet C, Dupressoir A et al (2009) Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new “syncytin” in a third order of mammals. Retrovirology 6:107

    Article  PubMed  Google Scholar 

  • Horsley V, Pavlath GK (2004) Forming a multinucleated cell: molecules that regulate myoblast fusion. Cell Tissues Organs 176:67–78

    Article  Google Scholar 

  • Horsley V, Jansen KM, Mills ST et al (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–494

    Article  CAS  PubMed  Google Scholar 

  • Knerr I, Schubert SW, Wich C et al (2005) Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS Lett 579:3991–3998

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Kim S, Shin H et al (2008) Intercellular interaction observed by atomic force microscopy. Ultramicroscopy 108:1148–1151

    Article  CAS  PubMed  Google Scholar 

  • Kontarides MI, Eminaga S, Fornaro M et al (2004) SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Mol Cell Biol 24:5340–5352

    Article  Google Scholar 

  • Larsen JM, Christensen IJ, Nielsen HJ et al (2009) Syncytin immunoreactivity in colorectal cancer: potential prognostic impact. Cancer Lett 280:44–49

    Article  CAS  PubMed  Google Scholar 

  • Larsson LI, Holck S, Christensen IJ (2007) Prognostic role of syncytin expression in breast cancer. Hum Pathol 38:726–731

    Article  CAS  PubMed  Google Scholar 

  • Lavillette D, Marin M, Ruggieri A et al (2000) The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol 76:6442–6452

    Article  Google Scholar 

  • Mi S, Lee X, Li X et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  • Muroi Y, Sakurai T, Hanashi A et al (2009) CD9 regulates transcription factor GCM1 and ERVWE1 expression through the cAMP/protein kinase A signaling pathway. Reproduction 138:945–951

    Article  CAS  PubMed  Google Scholar 

  • Nowak SJ, Nahirney PC, Hadjantonakis AK et al (2010) Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. J Cell Sci 122:3282–3293

    Article  Google Scholar 

  • Oluwole OSA, Yao Y, Conradi S et al (2007) Elevated levels of transcripts encoding a human retroviral envelope protein (syncytin) in muscles from patients with motor neuron disease. Amyotroph Lateral Scler 8:67–72

    Article  CAS  PubMed  Google Scholar 

  • Oren-Suissa M, Podbilewicz B (2007) Cell fusion during development. Trends Cell Biol 17:537–546

    CAS  PubMed  Google Scholar 

  • Pavlath GK, Horsley V (2003) Cell fusion in skeletal muscle. Central role of NFATC2 in regulating muscle cell size. Cell Cycle 2:420–425

    CAS  PubMed  Google Scholar 

  • Sapir A, Avinoam O, Podbilewicz B et al (2008) Viral and developmental cell fusion mechanisms: conservation and divergence. Dev Cell 14:11–21

    Article  CAS  PubMed  Google Scholar 

  • Schwander M, Leu M, Stumm M et al (2003) Beta-1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 4:673–685

    Article  CAS  PubMed  Google Scholar 

  • Städler B, Blättler TM, Franco-Obregón A (2010) Time-lapse imaging of in vitro myogenesis using atomic force microscopy. J Microsc 237:63–69

    Article  PubMed  Google Scholar 

  • Strick R, Ackermann S, Langbein M et al (2007) Proliferation and cell–cell fusion of endometrial carcinoma are induced by the human endogenous retroviral syncytin-1 and regulated by TGF-beta. J Mol Med 85:23–38

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Ouyang DY, Pang W et al (2010) Expression of syncytin in leukemia and lymphoma cells. Leuk Res. doi:10.1016/j.leukres.2010.03.016

    Google Scholar 

  • Tachibana I, Hemler ME (1999) Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J Cell Biol 146:893–904

    Article  CAS  PubMed  Google Scholar 

  • Vargas A, Moreau J, Landry S, LeBellego F, Toufaily C, Rassart E, Lafond J, Barbeau B (2009) Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol 392:301–318

    Google Scholar 

  • Vargas A, Moreau J, Le Bellego F, Lafond J, Barbeau B (2008) Induction of trophoblast cell fusion by a protein tyrosine phosphatase inhibitor. Placenta 29:170–174

    Google Scholar 

  • Yagami-Hiromasa T, Sato T, Kurisaki T et al (1995) A metalloproteinase-disintegrin participating in myoblast fusion. Nature 377:652–656

    Article  CAS  PubMed  Google Scholar 

  • Yang JT, Rando TA, Mohler WA et al (1996) Genetic analysis of alpha 4 integrin functions in the development of mouse skeletal muscle. J Cell Biol 135:829–835

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Molloy MJ, Wu MP et al (2007) C6ORF32 is upregulated during muscle cell differentiation and induces the formation of cellular filopodia. Dev Biol 301:70–81

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolette Bjerregaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bjerregaard, B., Talts, J.F., Larsson, LI. (2011). The Endogenous Envelope Protein Syncytin Is Involved in Myoblast Fusion. In: Larsson, LI. (eds) Cell Fusions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9772-9_13

Download citation

Publish with us

Policies and ethics