Skip to main content

Regulation and Control of Cell–Cell Fusions

  • Chapter
  • First Online:
Book cover Cell Fusions
  • 717 Accesses

Abstract

Cell fusions are important to fertilization, fetal development and homeostasis. Retroviruses infect cells by fusing with them and recent data suggest that mammals may have adopted the retroviral fusion machinery for their own use and combined it with numerous other factors controlling cell specificity and self recognition, motility-migration, filopodia formation, signaling and membrane organization. The multifactorial aspect of the process is suggested to create a certain amount of wobble so that, in specific disease states, heterotypic cell fusions may occur. Professional phagocytes, which specialize in recognizing and eliminating injured or dying cells, appear to be particularly prone to fusion. Such fusions may be useful for repairing damaged tissues and have been harnessed in immune therapy against cancer but may also contribute to disease development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and a metalloprotease

ASCT:

Alanine, serine and cysteine selective transporters

BMDC:

Bone marrow-derived cells

CD:

Cluster of differentiation

CRISP:

Cysteine-rich secretory protein

DC-STAMP:

Dendritic cell-specific transmembrane protein

env:

Envelope

ERM:

Ezrin-radixin-moesin

F-actin:

Filamentous (polymerized) actin

FuRMAS:

Fusion restricted myogenic adhesive structure

GCM:

Glial cells missing

HERV:

Human endogenous retrovirus

LTR:

Long terminal repeat

MFR:

Macrophage fusion receptor

NSF:

N-ethylmaleimide-sensitive factor

PCD:

Programmed cell death

PKA:

Protein kinase A

RANK:

Receptor activator of NFκ B

RANKL:

RANK ligand

SIRP-α:

Signal regulatory protein-alpha

SNAP:

Soluble NSF attachment protein

SNARE:

SNAP receptors

t-SNARE:

Target-SNARE

v-SNARE:

Vesicle-SNARE

References

  • Andersen TL, Boissy P, Sondergaard TE et al (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17

    Article  CAS  PubMed  Google Scholar 

  • Bjerregaard B, Holck S, Christensen IJ et al (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63:1906–1911

    Article  CAS  PubMed  Google Scholar 

  • Blond JL, Lavillette D, Cheynet V et al (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329

    Article  CAS  PubMed  Google Scholar 

  • Chen EH (2008) Cell fusion. Overviews and methods. Methods Mol Biol 475:1–421

    Article  Google Scholar 

  • Duelli DM, Hearn S, Myers MP et al (2005) A primate virus generates transformed human cells by fusion. J Cell Biol 171:493–503

    Article  PubMed  Google Scholar 

  • Duelli DM, Padilla-Nash HM, Berman D et al (2007) A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr Biol 17:431–437

    Article  CAS  PubMed  Google Scholar 

  • Dunlap KA, Palmarini M, Varela M et al (2006) Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci USA 103:14390–14395

    Article  CAS  PubMed  Google Scholar 

  • Dupressoir A, Marceau G, Vernochet C et al (2005) Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA 102:725–730

    Article  CAS  PubMed  Google Scholar 

  • Dupressoir A, Vernochet C, Bawa O et al (2009) Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci USA 106:12127–12132

    Article  CAS  PubMed  Google Scholar 

  • Heidmann O, Vernochet C, Dupressoir A et al (2009) Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new “syncytin” in a third order of mammals. Retrovirology 6:107

    Article  PubMed  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Lee X, Li X, Veldman GM et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  • Miyado K, Yamada G, Yamada S et al (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    Article  CAS  PubMed  Google Scholar 

  • Mortensen K, Lichtenberg J, Thomsen PD et al (2004) Spontaneous fusion between cancer cells and endothelial cells. Cell Mol Life Sci 61:2125–2131

    Article  CAS  PubMed  Google Scholar 

  • Muroi Y, Sakurai T, Hanashi A et al (2009) CD9 regulates transcription factor GCM1 and ERVWE1 expression through the cAMP/protein kinase A signaling pathway. Reproduction 138:945–951

    Article  CAS  PubMed  Google Scholar 

  • Oren-Suissa M, Podbilewicz B (2007) Cell fusion during development. Trends Cell Biol 17:537–546

    CAS  PubMed  Google Scholar 

  • Parthasarathy V, Martin F, Higginbottom A et al (2009) Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology 127:237–248

    Article  CAS  PubMed  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63

    Article  CAS  PubMed  Google Scholar 

  • Sala-Valdés M, Ursa A, Charrin S et al (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281:19665–19675

    Article  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Strick R, Ackermann S, Langbein M et al (2007) Proliferation and cell–cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med 85:23–38

    Article  CAS  PubMed  Google Scholar 

  • Weng J, Krementsov DN, Khurana S et al (2009) Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol 83:7467–7474

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z (2007) New phosphatidylserine receptors: clearance of apoptotic cells and more. Dev Cell 13:759–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work by the author presented herein was supported by the Danish MRC, FTP and Lundbeck foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Inge Larsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Larsson, LI. (2011). Regulation and Control of Cell–Cell Fusions. In: Larsson, LI. (eds) Cell Fusions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9772-9_1

Download citation

Publish with us

Policies and ethics