Skip to main content

Changed Views on Mathematical Knowledge in the Course of Didactical Theory Development: Independent Corpus of Scientific Knowledge or Result of Social Constructions?

  • Chapter
  • First Online:
Mathematical Knowledge in Teaching

Part of the book series: Mathematics Education Library ((MELI,volume 50))

Abstract

This chapter shows how the German didactical tradition has evolved in response to new theoretical ideas and new – empirical – research approaches in mathematics education. First, classical mathematical didactics, notably the tradition of ‘stoffdidaktik’, is described. The critiques raised against ‘stoffdidaktik’ [for example, forms of ‘progressive mathematisation’, ‘actively discovering learning processes’ and ‘guided reinvention’ (cf. Freudenthal, Wittmann)] changed basic views on the roles that ‘mathematical knowledge’, ‘teacher’ and ‘student’ play in teaching-learning processes; this conceptual change was supported by empirical studies on the professional knowledge and activities of mathematics teachers [for example, empirical studies of teacher thinking (cf. Bromme)] and of students’ conceptions and misconceptions (for example psychological research on students’ mathematical thinking). Through interpretative empirical research on everyday mathematical teaching-learning situations (for example, by the research group around Bauersfeld) a new research paradigm for mathematics education was constituted: the cultural system of mathematical interaction between teacher and students.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One can suppose that this is where the famous didactical triangle originates.

  2. 2.

    In this paper ‘stoffdidaktik’ is restricted to a certain fundamentalist form of content-related mathematical analysis based on ideas from the New Math era. Later, there were further developments and modifications of the stoffdidaktik approach – no longer explicitly linked to the New Math era – that relate the analysis of mathematical content knowledge to the learning processes of students. These kinds of stoffdidaktik still exist; there are also types of stoffdidaktik that emphasize the epistemological analysis of mathematical content matter.

  3. 3.

    Concerning the individual-psychological perspective, see e.g. Cobb, Yackel, and Wood (1991); and for the collectivistic perspective, see Solomon (1989).

References

  • Arbeitsgruppe ‘Mathematiklehrerausbildung’. (1981). Perspektiven für die Ausbildung des Mathematiklehrers. Köln: Aulis Verlag Deubner & CoKG.

    Google Scholar 

  • Bartolini-Bussi, M. G., & Bazzini, L. (2003). Research, practice and theory in didactics of mathematics: Towards dialogue between different fields. Educational Studies in Mathematics, 54(2–3), 203–223.

    Article  Google Scholar 

  • Bauersfeld, H. (1978). Kommunikationsmuster im Mathematikunterricht – Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung. In H. Bauersfeld (Ed.), Fallstudien und Analysen zum Mathematikunterricht (pp. 158–170). Hannover: Schroedel.

    Google Scholar 

  • Bauersfeld, H. (1988). Interaction, construction and knowledge: Alternative perspectives for mathematics education. In D. A. Grouws, T. J. Cooney, & D. Jones (Eds.), Effective mathematics teaching (pp. 27–46). Reston, VA: NCTM & Lawrence Erlbaum.

    Google Scholar 

  • Bazzini, L. (Ed.). (1994). Theory and practice in mathematics education. Proceedings of the 5th international conference on systematic cooperation between theory and practice in mathematics education. Grado, Italy. Padua: ISDAF.

    Google Scholar 

  • Bourbaki, N. (1971). The architecture of mathematics. In F. Le Lionnais (Ed.), Great currents of mathematical thought (pp. 23–36). New York, NY: Dover Publications, Inc.

    Google Scholar 

  • Bromme, R. (1981). Das Denken von Lehrern bei der Unterrichtsvorbereitung. Eine empirische Untersuchung zu kognitiven Prozessen von Mathematiklehrern. Weinheim: Beltz.

    Google Scholar 

  • Bromme, R. (1992). Der Lehrer als Experte. Zur Psychologie des professionellen Wissens. Bern, Göttingen: Verlag Hans Huber.

    Google Scholar 

  • Bromme, R., & Seeger, F. (1979). Unterrichtsplanung als Handlungsplanung. Königstein: Scriptor.

    Google Scholar 

  • Bruner, J. (1972). Einige Elemente des Entdeckens. In A. Halbfas, et al. (Eds.), Entwicklung der Lernfähigkeit (pp. 84–99). Stuttgart: Klett.

    Google Scholar 

  • Cassirer, E. (1923). Substance and function and Einstein’s theory of relativity. New York, NY: Dover.

    Google Scholar 

  • Cassirer, E. (1957). The Philosophy of symbolic forms. Volume 3: The phenomenology of knowledge. New Haven, CT: Yale University Press.

    Google Scholar 

  • Cobb, P., & Bauersfeld, H. (Eds.) (1995). The emergence of mathematical meaning – Interaction in classroom cultures (Vol. 2). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Cobb, P., Yackel, E., & Wood, T. (1991). Learning through problem solving: A constructivist approach to second grade mathematics. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 157–176). Dordrecht, Boston, London: Kluwer Academic Publishers.

    Google Scholar 

  • Even, R., & Loewenberg Ball, D. (Eds.). (2003). Connecting research, practice and theory in the development and study of mathematics education. Special Issue of Educational Studies in Mathematics, 54(2–3), 139–313.

    Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Griesel, H. (1971). Die Neue Mathematik für Lehrer und Studenten (Band 1). Hannover: Hermann Schroedel Verlag KG.

    Google Scholar 

  • Griesel, H. (1974). Überlegungen zur Didaktik der Mathematik als Wissenschaft. Zentralblatt für Didaktik der Mathematik, 3, 115–119.

    Google Scholar 

  • Holland, G. (1974). Geometrie für Lehrer und Studenten (Band 1). Hannover: Hermann Schroedel Verlag KG.

    Google Scholar 

  • Jahnke, H. N., & Otte, M. (1981). On ‘science as a language’. In H. N. Jahnke & M. Otte (Eds.), Epistemological and social problems of the sciences in the early nineteenth century (pp. 75–89). Dordrecht: Reidel.

    Google Scholar 

  • Kline, M. (1973). Why Johnny can’t add: The failure of new maths. London: St. James Press.

    Google Scholar 

  • Krainer, K. (2003). “Selbstständig arbeiten – aber auch gemeinsam und kritisch prüfend!” Aktion, Reflexion, Autonomie und Vernetzung als Qualitätsdimensionen von Unterricht und Lehrerbildung. In H.-W. Henn (Ed.), Beiträge zum Mathematikunterricht 2003 (pp. 25–32). Berlin: Franzbecker: Hildesheim.

    Google Scholar 

  • Krummheuer, G. (1984). Zur unterrichtsmethodischen Diskussion von Rahmungsprozessen. Journal für Mathematik Didaktik, 5(4), 285–306.

    Google Scholar 

  • Krummheuer, G. (1988). Verständigungsprobleme im Mathematikunterricht. Der Mathematikunterricht, 34(2), 55–60.

    Google Scholar 

  • Künzli, R. (2000). German didaktik: Models of re-presentation, of intercourse, and of experience. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice – The German Tradition. Mahwah (pp. 41–54). New Jersey, NJ: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Maier, H., & Voigt, J. (Eds.). (1991). Interpretative Unterrichtsforschung. Köln: Aulis.

    Google Scholar 

  • Maier, H., & Voigt, J. (Eds.). (1994). Verstehen und Verständigung im Mathematikunterricht – Arbeiten zur interpretativen Unterrichtsforschung. Köln: Aulis.

    Google Scholar 

  • Peterßen, W. H. (2001). Lehrbuch Allgemeine Didaktik. (6). Auflage, München: Oldenbourg Schulbuchverlag GmbH.

    Google Scholar 

  • Scherer, P., & Steinbring, H. (2006). Noticing children’s learning processes – Teachers jointly reflect on their own classroom interaction for improving mathematics teaching. Journal of Mathematics Teacher Education, 9(2), 157–185.

    Google Scholar 

  • Seeger, F., & Steinbring, H. (Eds.). (1992). The dialogue between theory and practice in mathematics education: Overcoming the broadcast metaphor. Proceedings of the 4th conference on Systematic Cooperation between Theory and Practice in mathematics education (SCTP). Brakel. IDM Materialien und Studien 38. Bielefeld: IDM Universität Bielefeld.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Google Scholar 

  • Solomon, Y. (1989). The practice of mathematics. London: Routledge.

    Google Scholar 

  • Sorger, P. (1991). 25 Jahre Bewegung im Mathematikunterricht der Grundschule – doch was hat sich wirklich bewegt? In Beiträge zum Mathematikunterricht (pp. 33–40). Bad Salzdetfurth: Franzbecker.

    Google Scholar 

  • Steinbring, H. (1994). Dialogue between theory and practice in mathematics education. In R. Biehler, R. W. Scholz, R. Strässer, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 89–102). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Steinbring, H. (1997). Vorraussetzungen und Perspektiven der Erforschung mathematischer Kommunikationsprozesse. In G. N. Müller, H. Steinbring, & E. Ch. Wittmann (Eds.), 10 Jahre “mathe 2000” – Bilanz und Perspektive (pp. 66–75). Leipzig: Ernst Klett Grundschulverlag.

    Google Scholar 

  • Steinbring, H. (1998a). From ‘Stoffdidaktik’ to Social Interactionism: An evolution of approaches to the study of language and communication in German mathematics education research. In H. Steinbring, M. G. B. Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp.102–119). Reston, Virginia: National Council of Teachers of Mathematics.

    Google Scholar 

  • Steinbring, H. (1998b). Mathematikdidaktik: Die Erforschung theoretischen Wissens in sozialen Kontexten des Lernens und Lehrens. Zentralblatt für Didaktik der Mathematik, 5, 161–167.

    Article  Google Scholar 

  • Steinbring, H. (1998c). Elements of epistemological knowledge for mathematics teachers. Journal of Mathematics Teacher Education, 1(2), 157–189.

    Article  Google Scholar 

  • Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction – An epistemological perspective: Vol. 38. Mathematics Education Library. Berlin, New York: Springer.

    Google Scholar 

  • Steinbring, H. (2006). What makes a sign a mathematical sign? An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61(1–2), 133–162.

    Article  Google Scholar 

  • Steinbring, H. (2008). Changed views on mathematical knowledge in the course of didactical theory development – independent corpus of scientific knowledge or result of social constructions? Zentralblatt für Didaktik der Mathematik, 40(2), 303–316.

    Article  Google Scholar 

  • Steiner, H. G. (1974). Didaktik der Mathematik. Analysen, Vorbemerkung. Zentralblatt für Didaktik der Mathematik, 6(3), 109.

    Google Scholar 

  • Strässer, R. (1994). A propos de la transposition franco-allemande en didactique des mathématiques. In M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt Ans de Didactique des Mathématiques en France (pp. 161–176). Editions: Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Verstappen, P. F. L. (Ed.). (1988). Report of the 2nd conference on systematic cooperation between theory and practice in mathematics education. Lochem/Netherlands. Enschede: S.L.O.

    Google Scholar 

  • Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht – Theoretische Grundlagen und mikroethnographische Falluntersuchungen. Weinheim: Beltz.

    Google Scholar 

  • Voigt, J. (1994). Negotiation of mathematical meaning and learning mathematics. Educational Studies in Mathematics, 26, 275–298.

    Article  Google Scholar 

  • Voigt, J. (1996). Empirische Unterrichtsforschung in der Mathematikdidaktik. In G. Kadunz, G. Kautschitsch, G. Ossimitz, & E. Schneider (Eds.), Trends und Perspektiven, Beiträge zum 7. Internationalen Symposium zur ‘Didaktik der Mathematik’ (Klagenfurt 1994) (pp. 383–398). Wien: Hölder-Pichler-Tempsky.

    Google Scholar 

  • von Glasersfeld, E. (Ed.). (1991). Radical constructivism in mathematics education. Dordrecht, Boston, London: Kluwer Academic Publishers.

    Google Scholar 

  • Winter, H. (1985). Reduktionistische Ansätze in der Mathematikdidaktik. Der Mathematikunterricht (MU), 5, 75–88.

    Google Scholar 

  • Wittmann, E. C. (1992). Mathematikdidaktik als ‘design science’. Journal für Didaktik der Mathematik, 13(1), 55–70.

    Google Scholar 

  • Wittmann, E. C. (1995). Mathematics education as a ‘design science’. Educational Studies in Mathematics, 29, 355–374.

    Article  Google Scholar 

  • Wittmann, E. C. (1998). Mathematics education as a ‘design science’. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity. An ICMI Study, Book I (pp. 87–103). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Wittmann, E. C. (2001). Developing mathematics education in a systemic process. Educational Studies in Mathematics, 48(1), 1–20.

    Article  Google Scholar 

Download references

Acknowledgement

With kind permission from Springer Science+Business Media: Steinbring, H. (2008). Changed views on mathematical knowledge in the course of didactical theory development – independent corpus of scientific knowledge or result of social constructions? Zentralblatt für Didaktik der Mathematik, 40(2), 303–316. Many parts of this contribution are based on Steinbring, 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Steinbring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Steinbring, H. (2011). Changed Views on Mathematical Knowledge in the Course of Didactical Theory Development: Independent Corpus of Scientific Knowledge or Result of Social Constructions?. In: Rowland, T., Ruthven, K. (eds) Mathematical Knowledge in Teaching. Mathematics Education Library, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9766-8_4

Download citation

Publish with us

Policies and ethics