Skip to main content

Uptake of Organic Contaminants from Soil into Vegetables and Fruits

  • Chapter
  • First Online:
Dealing with Contaminated Sites

Abstract

Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plant-specific properties that determine the importance of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log K OW < 3) and non-volatile (K AW < 10–6) contaminants have the highest potential for accumulation from soil, and concentrations in leaves may be several hundred times higher than in soil. However, for most contaminants the accumulation in vegetables or fruits is much lower. Lipophilic (log K OW > 3) contaminants are mainly transported to leaves by attached soil particles, or from air. Volatile contaminants have a low potential for accumulation because they quickly escape to air. Experimental data are listed that support these model predictions, but underline also the high variability of accumulation under field conditions. Plant uptake predictions are uncertain, due to the immense variation in environmental and plant physiological conditions. Uptake of organic contaminants into vegetables and fruits may lead to human health risks, but it may also be used to delineate subsurface plumes and monitor Natural Attenuation. Most models mentioned in this chapter are freely available from the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Baduru KK, Trapp S, Burken JG (2008) Direct measurement of VOC diffusivities in tree tissues: impacts on tree-based phytoremediation. Environ Sci Technol 42:1268–1275

    Article  CAS  Google Scholar 

  • Bakker M, Vorenhout M, Sijm DTHM, Kollöffel C (1999) Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three plantago species. Environ Toxicol Chem 18, 2289–2294

    CAS  Google Scholar 

  • Balouet J-C, Oudijk G, Smith KT, Petrisor I, Grudd H, Stocklassa B (2007) Applied dendroecology and environmental forensics. Characterizing and age dating environmental releases: fundamentals and case studies. Environ Forensics 8:1–17

    Article  CAS  Google Scholar 

  • Barret M (1995) Metabolism of herbicides by cytochrome P 450 in corn. Drug Metabol Drug Interactions 12:299–315

    Google Scholar 

  • Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54(6):2288–2297

    Article  CAS  Google Scholar 

  • Börner H (1995) Unkrautbekämpfung. Gustav Fischer, Jena, D

    Google Scholar 

  • Brand E, Otte PF, Lijzen JPA (2007) CSOIL 2000: an exposure model for human risk assessment of soil contamination. RIVM Report 711701054/2007, National Institute of Public Health and the Environment. http://rivm.openrepository.com/rivm/bitstream/10029/13385/1/711701054.pdf. Accessed 13 August 2010

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationship between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci 13:495–504

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA, Williams M (1983) Relationships between lipophilicity and the distribution of non-ionised chemicals in barley shoots following uptake by the roots. Pestic Sci 14:492–500

    Article  CAS  Google Scholar 

  • Briggs GG, Rigitano RLO, Bromilow RH (1987) Physicochemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101–112

    Article  CAS  Google Scholar 

  • Buchholz A, Baur P, Schönherr J (1998) Differences among plane species in cuticular permeabilities and solute mobilities are not caused by differential size selectivities. Planta 206:322–328

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Chamberlain K, Patel S, Bromilow RH (1998) Uptake by roots and translocation to shoots of two morpholine fungicides in barley. Pestic Sci 54:1–7

    Article  CAS  Google Scholar 

  • Chard BK, Doucette WJ, Chard JK, Bugbee B, Gorder K (2006) Trichloroethylene uptake by apple and peach trees: greenhouse study. Environ Sci Technol 40:4788–4793

    Article  CAS  Google Scholar 

  • Chiou CT, Sheng GY, Manes M (2001) A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ Sci Technol 35(7):1437–1444

    Article  CAS  Google Scholar 

  • Collins CD, Bell JNB, Crews C (2000) Benzene accumulation in horticultural crops. Chemosphere 40:109–114

    Article  CAS  Google Scholar 

  • Cousins I, Mackay D (2001) Gas-particle partitioning of organic compounds and its interpretation using relative solubilities. Environ Sci Technol 35:643–647

    Article  CAS  Google Scholar 

  • Czub G, McLachlan MS (2004) A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ Toxicol Chem 23:2356–2366

    Article  CAS  Google Scholar 

  • DEFRA (Department for Environment Food and Rural Affairs) (2002) The Contaminated land exposure assessment model (CLEA): technical basis and algorithms. R & D Publications CLR 10, Environment Agency. http://publications.environment-agency.gov.uk/pdf/SCLR10-e-p.pdf?lang=_e. Accessed 13 August 2010

  • Delschen T, Hembrock-Heger A, Necker U (1996) Systematische Untersuchungen zum Verhalten von PAK und PCB im System Boden/Pflanze auf der Lysimeter-Anlage Waldfeucht (1989–1994). In: Landesumweltamt NRW (eds) Materialien zur Ermittlung und Sanierung von Altlasten, LUA Essen, Germany, pp 1–214

    Google Scholar 

  • Delschen T, Hembrock-Heger A, Leisner-Saaber J, Sopczak D (1999) Bedeutung verschiedener Belastungsursachen für den PAK-Gehalt von Kulturpflanzen. Umweltwissenschaften und Schadstoff-Forschung, UWSF – Z Umweltchem Ökotox 11:79–87

    Article  CAS  Google Scholar 

  • Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43(2):324–329

    Article  CAS  Google Scholar 

  • Doucette WJ, Chard TJK, Moore BJ, Staudt WJ, Headley JV (2005) Uptake of sulfolane and diisopropanolamine (DIPA) by cattails (Typha latifolia). Microchem J 81:41–49

    Article  CAS  Google Scholar 

  • Dreicer M, Hakonson TE, White GC, Whicker FW (1984) Rainsplash as a mechanism for soil contamination of plant surfaces. Health Phys 46:177–187

    Article  CAS  Google Scholar 

  • Ebbs S, Bushey J, Poston S, Kosma D, Samiotakis M, Dzombak D (2003) Transport and metabolism of free cyanide and iron cyanide complexes by willow. Plant Cell Environ 26:1467–1478

    Article  CAS  Google Scholar 

  • EC (European Commission) (2003) Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market, European Communities, Italy. http://ecb.jrc.it/documents/. Accessed 13 August 2010

  • ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) (2001) Exposure factors sourcebook for european populations (with focus on UK data). Technical Report No. 79, Brussels, Belgium

    Google Scholar 

  • EFSA (European Food Safety Authority) (2006) Pesticides are EU citizens’ top food-related health concern. Available online at http://www.euractiv.com. Accessed 17 March 2006

  • Fahl GM, Kreft L, Altenburger R, Faust M, Boedeker W, Grimme LH (1995) pH-Dependent sorption, bioconcentration and algal toxicity of sulfonylurea herbicides. Aquat Toxicol 31(2):175–187

    Article  CAS  Google Scholar 

  • Franco A, Trapp S (2008) Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals. Environ Toxicol Chem 27(10):1995–2004

    Article  CAS  Google Scholar 

  • Franke W (1987) Nutzpflanzenkunde. Thieme Verlag, Stuttgart, Germany

    Google Scholar 

  • Fryer ME, Collins CD (2003) Model intercomparison for the uptake of organic chemicals by plants. Environ Sci Technol 37:1617–1624

    Article  CAS  Google Scholar 

  • Fujisawa T, Ichise K, Fukushima M, Katagi T, Takimoto Y (2002a) Mathematical model for the uptake of non-ionized pesticides by edible root of root crops. J Pesticide Sci 27:242–248

    CAS  Google Scholar 

  • Fujisawa T, Ichise K, Fukushima M, Katagi T, Takimoto Y (2002b) Improved uptake models of non-ionized pesticides to foliage and seed of crops. J Agric Food Chem 50: 532–537

    Article  CAS  Google Scholar 

  • Gent MPN, White JC, Parrish ZD, Isleyen M, Eitzer BD, Mattina MI (2007) Uptake and translocation of p,p'-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita. Environ Toxicol Chem 26(12):2467–2475

    Article  CAS  Google Scholar 

  • Gopalakrishnan G, Negri MC, Minsker BS, Werth CJ (2007) Monitoring subsurface contamination using tree branches. Ground Wat Monit Rem 27:65–74

    Article  CAS  Google Scholar 

  • Hsu FC, Marxmiller RL, Yang AYS (1990) Study on root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiol 93:1573–1578

    Article  CAS  Google Scholar 

  • Hülster A, Marschner H (1994) PCDD/PCDF-Transfer in Zucchini und Tomaten. Veröff PAÖ 8:579–589

    Google Scholar 

  • Hülster A, Marschner H (1995) Identifizierung PCDD/PCDF-mobilisierender Verbindungen in Wurzelexudaten von Zucchini. Veröff PAÖ 12:359–369

    Google Scholar 

  • Hülster A, Müller JF, Marschner H (1994) Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28:1110–1115

    Article  Google Scholar 

  • Hung H, Mackay D (1997) A novel and simple model of the uptake of organic chemicals by vegetation from air and soil. Chemosphere 35:959–977

    Article  CAS  Google Scholar 

  • Inoue J, Chamberlain K, Bromilow RH (1998) Physicochemical factors affecting the uptake by roots and translocation to shoots of amine bases in barley. Pestic Sci 54:8–21

    Article  CAS  Google Scholar 

  • Kaupp H (1996) Atmosphärische Eintragswege und Verhalten von polychlorierten Dibenzo-p-dioxinen und -furanen sowie polyzyklischen Aromaten in einem Maisbestand. PhD thesis, faculty of biology, chemistry and earth science, University of Osnabrück

    Google Scholar 

  • Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N (2001) Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 39:423–436

    Article  CAS  Google Scholar 

  • Kleier DA (1988) Phloem mobility of xenobiotics. Plant Physiol 86:803–810

    Article  CAS  Google Scholar 

  • Komossa D, Langebartels C, Sandermann H Jr (1995) Metabolic processes for organic chemicals in plants. In: Trapp S, Mc Farlane C (eds) Plant contamination – modeling and simulation of organic chemical processes. Lewis, Boca Raton, Florida, pp 69–103

    Google Scholar 

  • Kömp P, McLachlan M (1997) Interspecies variability of the plant/air partitioning of polychlorinated biphenyls. Environ Sci Technol 31:2944–2948

    Article  Google Scholar 

  • Kühne R, Ebert RU, Schüürmann G (2005) Prediction of the temperature dependency of Henry’s Law constant from chemical structure. Environ Sci Technol 39:6705–6711

    Article  CAS  Google Scholar 

  • Larsen M, Trapp S (2006) Uptake of iron cyanide complexes into willow trees. Environ Sci Technol 40:1956–1961

    Article  CAS  Google Scholar 

  • Larsen M, Trapp S, Pirandello A (2004) Removal of cyanide by woody plants. Chemosphere 54:325–333

    Article  CAS  Google Scholar 

  • Larsen M, Ucisik A, Trapp S (2005) Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ Sci Technol 39:2135–2142

    Article  CAS  Google Scholar 

  • Larsen M, Burken J, Machackova J, Karlson UG, Trapp S (2008) Using tree core samples to monitor natural attenuation and plume distribution after a PCE spill. Environ Sci Technol 42:1711–1717

    Article  CAS  Google Scholar 

  • Legind CN, Trapp S (2009) Modeling the exposure of children and adults via diet to chemicals in the environment with crop-specific models. Environ Pollut 157:778–785

    Article  CAS  Google Scholar 

  • Lewis GN (1907) A new system of thermodynamic chemistry. Proc Am Acad Arts Sci 43: 259–297

    Article  Google Scholar 

  • Li JG, Gerzabek MH, Mück K (1994) An experimental study on mass loading of soil particles on plant surfaces. Bodenkultur 45:15–24

    Google Scholar 

  • Lunney AI, Zeeb BA, Reimer K (2004) Uptake of weathered DDT in vascular plants: potential for phytoremediation. Environ Sci Technol 38:6147–6154

    Article  CAS  Google Scholar 

  • Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391

    Article  CAS  Google Scholar 

  • McKone TE, Maddalena RL (2007) Plant uptake of organic pollutants from soil: bioconcentration estimates based on models and experiments. Environ Toxicol Chem 26:2494–2504

    Article  CAS  Google Scholar 

  • Mikes O, Cupr P, Trapp S, Klanova J (2009) Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus). Environ Pollut 157(2):488–496

    Article  CAS  Google Scholar 

  • Monteith JL (1995) Accommodation between transpiring vegetation and the convective boundary-layer. J Hydrol 166(3–4):251–263

    Article  Google Scholar 

  • Müller JF, Hülster A, Päpke O, Ball M, Marschner H (1993) Transfer pathways of PCDD/F into fruits. Chemosphere 27:195–201

    Article  Google Scholar 

  • Müller JF, Hülster A, Päpke O, Ball M, Marschner H (1994) Transfer of PCDD/F from contaminated sites into carrots, lettuce and peas. Chemosphere 29:2175–2181

    Article  Google Scholar 

  • Mueller KE, Mueller-Spitz SR, Henry HF, Vonderheide AP, Soman RS, Kinkle BK, Shann JR (2006) Fate of pentabrominated diphenyl ethers in soil: abiotic sorption, plant uptake, and the impact of interspecific plant interactions. Environ Sci Technol 40:6662–6667

    Article  CAS  Google Scholar 

  • Paretzke HG, Garland JA (1990) Assessment of the radiological significance of surface contamination in entrained radioactivity. Final Report, EC-contract No 90-ET-015

    Google Scholar 

  • Paterson S, Mackay D, McFarlane C (1994) A model of organic-chemical uptake by plants from soil and the atmosphere. Environ Sci Technol 28:2259–2266

    Article  CAS  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lon A 193(1032):120–145

    Article  CAS  Google Scholar 

  • Pflugmacher S, Schröder P (1995) Glutathione S-transferases in trees: inducibility by various organic xenobiotics. Z Pflanzenernähr Bodenk 158:71–73

    Article  CAS  Google Scholar 

  • Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic chemicals in sediments and soils. Environ Toxicol Chem 25:1239–1245

    Article  CAS  Google Scholar 

  • Riederer M (1995) Partitioning and transport of organic chemicals between the atmospheric environment and leaves. In: Trapp S, Mc Farlane JC (eds) Plant contamination. Modeling and simulation of organic chemical processes. Lewis, Boca Raton, FL, pp 153–190

    Google Scholar 

  • Rikken MGJ, Lijzen JPA, Cornelese AA (2001) Evaluation of model concepts on human exposure. Proposals for updating the most relevant exposure routes of CSOIL. RIVM report 711 701 022, Bilthoven, NL

    Google Scholar 

  • Russell RS, Shorrocks VM (1959) The relationship between transpiration and the absorption of inorganic ions by intact plants. J Exp Bot 10(29):301–316

    Article  Google Scholar 

  • Samiotakis M, Ebbs SD (2003) Possible evidence for transport of an iron cyanide complex by plants. Environ Pollut 127:169–173

    Article  CAS  Google Scholar 

  • Samsøe-Petersen L, Larsen EH, Larsen PB, Bruun P (2002) Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol 36:3057–3063

    Article  CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  CAS  Google Scholar 

  • Sandermann H (2004) Bound and unextractable pesticidal plant residues: chemical characterization and consumer exposure. Pest Manag Sci 60:613–623

    Article  CAS  Google Scholar 

  • Satchivi NM, Stoller EW, Wax LM, Briskin DP (2000a) A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application I. Conceptual foundation for model development. Pestic Biochem Phys 68:67–84

    CAS  Google Scholar 

  • Satchivi NM, Stoller EW, Wax LM, Briskin DP (2000b) A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application II. Model validation. Pestic Biochem Phys 68:85–95

    Article  CAS  Google Scholar 

  • SCF (Scientific Committee on Food) (2002) Annex: background document to the opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food. Polycyclic aromatic hydrocarbons – occurrence in foods, dietary exposure and health effects. http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf. Accessed 13 August 2010

  • Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic-chemicals in plant cuticles. Rev Environ Contam Toxicol 108:1–70

    Google Scholar 

  • Shone MGT, Wood AV (1974) Comparison of uptake and translocation of some organic herbicides and a systemic fungicide by barley 1. Absorption in relation to physicochemical properties. J Exp Bot 25(85):390–400

    CAS  Google Scholar 

  • Sicbaldi F, Sacchi GA, Trevisan M, Del Re AAM (1997) Root uptake and xylem translocation of pesticides from different chemical classes. Pestic Sci 50:111–119

    Article  CAS  Google Scholar 

  • Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1991) Lehrbuch der Botanik für Hochschulen, 33rd edn. Gustav Fischer, Stuttgart

    Google Scholar 

  • Sorek A, Atzmon N, Dahan O, Gerstl, Z, Kushisin, L, Laor Y, Mingelgrin U, Nasser A, Ronen D, Tschachansky L, Weisbrod N, Graber ER (2008) “Phytoscreening”: the use of trees for discovering subsurface contamination by VOCs. Environ Sci Technol 42:536–542

    Article  CAS  Google Scholar 

  • Søvik AK, Alfnes E, Breedveld GD, French HK, Pedersen TS, Aagaard P (2002) Transport and degradation of toluene and o-xylene in an unsaturated soil with dipping sedimentary layers. J Environ Qual 31:1809–1823

    Article  Google Scholar 

  • TA-Luft (Technische Anleitung zur Reinhaltung der Luft) (1986) In: Handbuch des Umweltschutzes, Vol. II-2, appendix 3.1. ecomed, Landsberg aL, D

    Google Scholar 

  • Ter Laak TL, Barendregt A, Hermens JLM (2006) Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ Sci Technol 40:2184–2190

    Article  CAS  Google Scholar 

  • Thompson PL, Ramer LA, Guffey AP, Schnoor JL (1998) Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene. Environ Toxicol Chem 17:902–906

    Article  CAS  Google Scholar 

  • Trapp S (1995) Model for uptake of xenobiotics into plants. In: Trapp S, Mc Farlane JC (eds) Plant contamination. Modeling and simulation of organic chemical processes. Lewis, Boca Raton, FL, pp 107–152

    Google Scholar 

  • Trapp S (2000) Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manage Sci 56:767–778

    Article  CAS  Google Scholar 

  • Trapp S (2002) Dynamic root uptake model for neutral lipophilic organics. Environ Toxicol Chem 21:203–206

    Article  CAS  Google Scholar 

  • Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39

    Article  CAS  Google Scholar 

  • Trapp S (2007) Fruit Tree model for uptake of organic compounds from soil and air. SAR QSAR Environ Res 18:367–387

    Article  CAS  Google Scholar 

  • Trapp S, Christiansen H (2003) Phytoremediation of cyanide-polluted soils. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, NJ, pp 829–862

    Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic compounds. J Soils Sed 1:37–43

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M (1995) Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Technol 29:2333–2338; erratum 30, 360

    Article  CAS  Google Scholar 

  • Trapp S, Pussemier L (1991) Model calculations and measurements of uptake and translocation of carbamates by bean plants. Chemosphere 22:327–339

    Article  CAS  Google Scholar 

  • Trapp S, Schwartz S (2000) Proposals to overcome limitations in the EU chemical risk assessment scheme. Chemosphere 41:965–971

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M, Scheunert I, Topp EM (1990) Modeling the bioconcentration of organic chemicals in plants. Environ Sci Technol 24:1246–1252

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M, Mc Farlane C (1994) Model for uptake of xenobiotics into plants: validation with bromacil experiments. Environ Toxicol Chem 13:413–422

    Article  CAS  Google Scholar 

  • Trapp S, Yu X, Mosbæk H (2003) Persistence of methyl tertiary butyl ether (MTBE) against metabolism by Danish vegetation. Environ Sci Pollut Res 10:357–360

    Article  CAS  Google Scholar 

  • Trapp S, Cammarano A, Capri E, Reichenberg F, Mayer P (2007a) Diffusion of PAH in potato and carrot slices and application for a potato model. Environ Sci Technol 41:3103–3108

    Article  CAS  Google Scholar 

  • Trapp S, Ucisik AS, DelChicca Romano P, Larsen M (2007b) The role of plants and bacteria in phytoremediation – kinetic aspects. In: Heipieper HJ (ed) Bioremediation of soils contaminated with aromatic compounds. NATO science series, IV. Earth and environmental sciences – vol 76. Springer, Dordrecht, NL, pp 41–49

    Chapter  Google Scholar 

  • Trapp S, Feificova D, Rasmussen NF, Bauer-Gottwein P (2008) Plant uptake of NaCl in relation to enzyme kinetics and toxic effects. Environ Exp Bot 64: 1–7

    Google Scholar 

  • Trapp S, Larsen M, Legind CN, Burken J, Machackova J, Karlson UG (2009) A guide to vegetation sampling for screening of subsurface pollution. Freely available at http://homepage.env.dtu.dk/stt/. Accessed 13 August 2010

  • Travis CC, Arms AD (1988) Bioconcentration of organics in beef, milk, and vegetation. Environ Sci Technol 22:271–274

    Article  CAS  Google Scholar 

  • Travis CC, Hattemer-Frey HA (1991) Human exposure to dioxin. Sci Total Environ 104:97–127

    Article  CAS  Google Scholar 

  • Ucisik AS, Trapp S (2006) Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis). Environ Toxicol Chem 25:2455–2460

    Article  CAS  Google Scholar 

  • Ucisik AS, Trapp S (2008) Uptake, accumulation, phytotoxicity and removal of 4-chlorophenol in willow trees. Arch Environ Contam Toxicol 54:619–627

    Article  CAS  Google Scholar 

  • Ucisik AS, Trapp S, Kusk KO (2007) Uptake, accumulation, phytotoxicity and removal of 2,4-dichlorophenol in willow trees. Environ Toxicol Chem 26:1165–1171

    Article  CAS  Google Scholar 

  • Vroblesky DA, Nietch CT, Morris JT (1999) Chlorinated ethenes from groundwater in tree trunks. Environ Sci Technol 33:510–515

    Article  CAS  Google Scholar 

  • Whitfield Åslund ML, Zeeb BA, Rutter A, Reimer KJ (2007) In situ phytoextraction of polychlorinated biphenyl – (PCB) contaminated soil. Sci Total Environ 374:1–12

    Article  CAS  Google Scholar 

  • White JC (2002) Differential bioavailability of field-weathered p,p'-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49:143–152

    Article  CAS  Google Scholar 

  • Yu X, Trapp S, Puhua Z, Chang W, Xishi Z (2004) Metabolism of cyanide by Chinese vegetation. Chemosphere 56:121–126

    Article  CAS  Google Scholar 

  • Yu X, Trapp S, Zhou P, Hu H (2005a) The effect of temperature on the rate of cyanide metabolism of two woody plants. Chemosphere 59:1099–1104

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou P (2005b) Phytotoxicity of cyanide to weeping willow trees. Environ Sci Pollut Res 12:109–113

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH, Chen L (2007) Effect of temperature on the uptake and metabolism of cyanide by weeping willows. Int J Phytorem 9:243–255

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang S, Zhu Y-G, Christie P, Shan X (2007) Improved approaches for modeling the sorption of phenanthrene by a range of plant species. Environ Sci Technol 41:7818–7823

    Article  CAS  Google Scholar 

  • Zohair A, Salim A-B, Soyibo AA, Beck AJ (2006) Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere 63:541–553

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank our editor, Frank Swartjes, for his initiative, patience and help. Our work is supported by the European Union 6th Framework Program of Research, Thematic Priority 6 (Global change and ecosystems), contract number GOCE-CT-2007–036976, project 2-FUN, and contract number GOCE 037017, project OSIRIS. This work received also financial support from the Danish Council for Strategic Research, project REMTEC, contract 2104-07-0009. Support for this work was furthermore provided through a PhD grant of the University of Copenhagen for Charlotte N. Legind.

Model Availability Most models mentioned in this chapter are freely available via the authors. Please send an email if you are interested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Trapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Trapp, S., Legind, C.N. (2011). Uptake of Organic Contaminants from Soil into Vegetables and Fruits. In: Swartjes, F. (eds) Dealing with Contaminated Sites. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9757-6_9

Download citation

Publish with us

Policies and ethics