Skip to main content

Introduction to Ecological Risk Assessment

  • Chapter
  • First Online:
Dealing with Contaminated Sites

Abstract

The topsoil is the most biologically diverse part of the earth, harbouring more than one billion organisms per square meter. These soil organisms live in extremely complex mutual interaction and, additionally, in similarly complex interactions with their physical and chemical environment. Although not always acknowledged by the general public, the soil ecosystems perform so-called Ecosystem Services which are very important for society. Some of these Ecosystem Services, described in detail in this chapter, are soil structuring, humus formation, nutrient supply, cleaning function, disease control, and – only recently recognised – energy-related processes. The conclusion to be drawn is that intensive communication about Ecological Risk Assessment is a necessity, both to guarantee that appropriate ecological protection is on the political agenda and to justify protection of the soil ecosystem and the costs involved for the tax payer. Soil contamination has a big impact on the soil ecosystem. Ecological Risk Assessment is an extremely useful process for supporting the decisions taken concerning contaminated sites. The general target for Ecological Risk Assessment is Ecological Health (the preferred state) rather than the Ecological Integrity (the unimpaired condition), and this ideally at the level of a whole ecosystem. The important factors that relate to ecological effects in soil will be introduced in this chapter, factors such as bioavailability, food supply, sealing, resilience and recovery, adaptation, land use, secondary poisoning, the food web approach, wildlife protection, scale and contaminant pattern, and spatial planning. Finally, insight will be provided as to how Ecological Risk Assessment actually works in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresource Technol 74(1):35–47

    Article  CAS  Google Scholar 

  • Almli B, Mwase M, Sivertsen T, Musonda MM, Flåøyen A (2005) Hepatic and renal concentrations of 10 trace elements in crocodiles (Crocodylus niloticus) in the Kafue and Luangwa rivers in Zambia. Sci Total Environ 337(1–3):75–82

    CAS  Google Scholar 

  • Avidano L, Gamalero E, Cossa GP, Carraro E (2006) Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators, Appl Soil Ecol 30(1):21–33

    Article  Google Scholar 

  • The Bacteria Guide (2009) http://go-to1.com/bacteria. Retrieved 24 Feb 2009

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C. (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  Google Scholar 

  • Barron MG, Wharton SR (2005) Survey of methodologies for developing media screening values for ecological risk assessment. Integrated Environ Assess Manage 1(4):320–332

    Article  CAS  Google Scholar 

  • Beck L, Römbke J, Breure AM, Mulder C (2005) Considerations for the use of soil ecological classification and assessment concepts in soil protection. Ecotoxicol Environ Safety 62(2):189–200

    Article  CAS  Google Scholar 

  • Bloem J, Breure AM (2003) Microbial indicators. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier Science, Oxford, pp 259–282

    Chapter  Google Scholar 

  • Boekhold A (2008) Ecological risk assessment in legislation on contaminated soil in The Netherlands. Sci Total Environ 406(3):518–522

    Article  CAS  Google Scholar 

  • Bowman G (1994) Why soil health matters. The New Farm, January 1994, http://newfarm.rodaleinstitute.org/depts/nf_classics/0905/soil_print.shtml. Retrieved 19 Mar 2009

  • Boivin M-E, Breure AM, Posthuma L, Rutgers M (2002) Determination of field effects of contaminants – significance of pollution-induced community tolerance. Human Ecol Risk Assess 8(5):1035–1055

    Article  Google Scholar 

  • Boyle M, Frankenberger WT, Stolzy LH (1989) The influence of organic matter on soil aggregation and water infiltration. J Prod Agric 2:209–299

    Google Scholar 

  • Breure AM, Mulder Ch, Rutgers M, Schouten T, De Zwart D, Bloem J (2004) A biological indicator for soil quality. In: Proceedings from an OECD expert meeting Rome, Italy, March 2003: Agricultural impacts on soil erosion and soil biodiversity: developing indicators for policy analysis, pp 485–494

    Google Scholar 

  • Breure AM, Mulder Ch, Römbke J, Ruf A (2005) Ecological classification and assessment concepts in soil protection, Ecotoxicol Environ Safety 62(2):211–229

    Article  CAS  Google Scholar 

  • Breure AM, Groot M, Eijsackers HJP (2008) System-oriented ecotoxicological research: which way to go? Sci Total Environ 406:530–537

    Article  CAS  Google Scholar 

  • Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Biomed Life Sci 42(1):11–21

    CAS  Google Scholar 

  • Callicott JB, Crowder LB, Mumford K (1999) Current normative concepts in conservation. Conservation Biol 13(1):22–35

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment (1999) Canadian environmental quality guidelines. Winnipeg (MB), Canada

    Google Scholar 

  • Carlon C, Swartjes F (2007) Analysis of variability and reasons of differences. In: Carlon (ed) Derivation methods of soil screening values in Europe. A review of national procedures towards harmonisation opportunities, JRC PUBSY 7123, HERACLES. European Commission Joint Research Centre, Ispra

    Google Scholar 

  • Chapple CK (2006) Jainism and ecology: transformation of tradition. In: Gottlieb (ed) The Oxford handbook of religion and ecology. Oxford university, New York

    Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications, Appl Microbiol Biotechnol. doi:10.1007/s00253-008-1522-2

    Google Scholar 

  • Conklin AR Jr (2002) Soil microorganism. Soil, Sediment Water, AEHS magazine

    Google Scholar 

  • Commission of the European Communities (2006) Communication from the commission to the council, the European parliament, the European economic and social committee and the committee of the regions. Thematic strategy for soil protection. COM (2006)231 final, Brussels, 22.9.2006

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Cuypers MP (2001) Bioavailability of polycyclic aromatic hydrocarbons in soils and sediments. Prediction of bioavailability and characterization of organic matter domains. Dissertation Wageningen University, Wageningen, the Netherlands

    Google Scholar 

  • Daily GC, Söderqvist T, Aniyar S, Arrow K, Dasgupta P, Ehrlich PR, Folke C, Jansson AM, Jansson BO, Kautsky N, Levin S, Lubchenco J, Mäler K-G, Simpson D, Starrett D, Tilman D, Walker B (2000) The value of nature and the nature of value. Science 289:395–396

    Article  CAS  Google Scholar 

  • Dawson JJC, Godsiffe EJ, Thompson IP, Ralebitso-Senior TK, Killham KS, Paton GI (2007) Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem 39:164–177

    Article  CAS  Google Scholar 

  • De Zwart D, Posthuma L (2005) Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem 24:2665–2672

    Article  Google Scholar 

  • De Leo GA, Levin S (1997) The multifaceted aspects of ecosystem integrity. Conservation ecology [online] 1(1):3. Available from the internet. url:http://www.consecol.org/vol1/iss1/art3/. Retrieved 19 Mar 2009

  • Doelman P, Jansen E, Michels M, Van Til M (1994) Effects of heavy metals on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soils 17:177–184

    Article  CAS  Google Scholar 

  • Duffy LK, Duffy RS, Finstad G, Gerlach C (2005) A note on mercury levels in the hair of Alaskan reindeer. Sci Total Environ 339(1–3):273–276

    CAS  Google Scholar 

  • Dykhuizen DE (1998) Santa Rosalia revisited: why are there so many species of bacteria. Antonie van Leeuwenhoek 73:25–33

    Article  CAS  Google Scholar 

  • EC (2000) Directive of the European parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy (2000)/60/EC, Commission of the European Communities, Brussels, 23 October 2000

    Google Scholar 

  • EC (2006) Proposal for a directive of the European parliament and of the council establishing a framework for the protection of soil and amending Directive 2004/35/EC, COM(2006) 232 final (2006)/0086 (COD), Commission of the European Communities, Brussels, 22 September 2006

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London

    Google Scholar 

  • Edwards CA, Burrows I (1988) The potential of earthworm composts as plant growth media. In: Edwards CA, Neuhauser E (eds) Earthworms in waste and environmental management. SPB Academic, the Hague, the Netherlands, pp 21–32

    Google Scholar 

  • Efroymson RA, Will ME, Suter GW II, Wooten AC (1997) Toxicological benchmarks for screening contaminants of potential concern for effects on terrestrial plants: 1997 revision. Oak Ridge National Laboratory, Oak Ridge (TN), USA, ES/ER/TM-85/R3

    Google Scholar 

  • Eijsackers H (2004) Leading concepts towards vital soils. In: Doelman P, Eijsackers H (eds) Vital soil, function, value and properties, developments in soil science 29, Elsevier

    Google Scholar 

  • Eijsackers HJP, Groot M, Breure AM (2008) Upgrading system-oriented ecotoxicological research, Sci Total Environ 406(3):373–384

    Article  CAS  Google Scholar 

  • Emmerling Ch, Schloter M, Hartmann A, Kandeler E (2002) Functional diversity of soil organisms – a review of recent research activities in Germany. J Plant Nutr Soil Sci 165:408–420

    Article  CAS  Google Scholar 

  • Ernst G, Frey B (2007) The effect of feeding behavior on Hg accumulation in the ecophysiologically different earthworms Lumbricus terrestris and Octolaseon cyaneum: a microcosm experiment. Soil Biol Biochem 39(1):386–390

    Article  CAS  Google Scholar 

  • European Commission DG ENV (2010) Soil biodiversity: functions, threats and tools for policy makers, contract 07.0307/2008/517444/ETU/B1, final report, February 2010, Bio Intelligence Service S.A.S. in association with IRD and NIOO

    Google Scholar 

  • European Environment Agency (2008) EEA briefing 2008/02, European environment agency, TH-AM-08–002-EN-N, Copenhagen

    Google Scholar 

  • Fairbrother A (2003) Lines of evidence in wildlife risk assessments. Human Ecol Risk Assess 9(6):1475–1491

    Article  CAS  Google Scholar 

  • Fernández MD, Cagigal E, Milagrosa Vega M, Urzelai A, Babín M, Pro J, Tarazona JV (2005) Ecological Risk assessment of contaminated soils through direct toxicity assessment, Ecotoxicol Environ Safety 2(2):174–184

    Article  Google Scholar 

  • Fishwick S (2004) Soil screening values for use in UK. Ecological risk assessment. Environment Agency

    Google Scholar 

  • Gottlieb RS (2006) Religion and ecology – what is the connection and why does it matter? In: Gottlieb RS (ed) The Oxford handbook of religion and ecology. Oxford university, New York

    Chapter  Google Scholar 

  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen S, Bååth E, Bloem J, de Ruiter P, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294

    Article  Google Scholar 

  • Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sørensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33(12–13):1713–1722

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads, Nature Reviews Microbiology, AOP, published online 10 March 2005; doi:10.1038/nrmicro1129

    Google Scholar 

  • Hankard PK, Svendsen C, Wright J, Wienberg C, Fishwick SK, Spurgeon DJ, Weeks JM (2004) Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis, Sci Total Environ 330(1–3):9–20

    CAS  Google Scholar 

  • Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott ET, Moore JC, Rose SL, Reid CPP, Morley CR (1987) The detrital food web in a shortgrass prairie. Biol Fertility Soils 3(1–2):57–68

    Google Scholar 

  • Ingham ER (2000a) The soil food web, chapter 1. In: Tugel AJ, Lewandowski AM, Happe-vonArb D (eds) Soil biology primer. rev. ed. Ankeny, Soil and Water Conservation Society, Iowa

    Google Scholar 

  • Ingham ER (2000b) Soil fungi, chapter 4. In: Tugel AJ, Lewandowski AM, Happe-vonArb D (eds) Soil biology primer. rev. ed. Ankeny, Soil and Water Conservation Society, Iowa

    Google Scholar 

  • Jager T, den Hollander HA, van der Poel P, Rikken MGJ, Vermeire T (2001) Probabilistic environmental risk assessment for dibutylphthalate (DBP). Hum Ecol Risk Assess Int J 7(6):1681–1697

    Google Scholar 

  • Jensen J, Mesman M (2006) Ecological risk assessment of contaminated land, Decisions support for site specific investigations. Report number 711701047, National Institute for Public Health and the Environment, Bilthoven, the Netherlands

    Google Scholar 

  • Kapustka LA, Landis WG (1998) Ecology: the science versus the myth. Human Ecol Risk Assess 4(4):829–838

    Article  Google Scholar 

  • Koster M, De Groot A, Vijver M, Peijnenburg W (2006) Copper in the terrestrial environment: verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. Soil Biol Biochem 38:1788–1796

    Article  CAS  Google Scholar 

  • Lackey RT (2001) Values, policy, and ecosystem health. Bioscience 51(6):437–443

    Article  Google Scholar 

  • Lancaster J (2000) The ridiculous notion of assessing ecological health and identifying the useful concepts underneath. Human Ecol Risk Assess: Int J 6(2):213–222

    Google Scholar 

  • Langmaack M, Wiermann C, Schrader S (1999) Interrelation between soil physical properties and Enchytraeidae abundances following a single soil compaction in arable land. J Plant Nutr Soil Sci 162(5):517–525

    Article  CAS  Google Scholar 

  • Lindahl BD, Ihrmark J, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  CAS  Google Scholar 

  • Lomako J, Lomako WM, Whelan WJ (2004) Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochim Biophys Acta 1673:45–55

    CAS  Google Scholar 

  • Luttik R (2003) Risk assessment scheme for the impact of plant protection products on birds and mammals. Dissertation University of Leiden, the Netherlands

    Google Scholar 

  • Madsen EL, Winding A, Malachowsky K, Thomas CT, Ghiorse WC (1992) Contrasts between subsurface microbial communities and their metabolic adaptation to polycyclic aromatic hydrocarbons at a forested and an urban coal-tar disposal site. Microb Ecol 24:199–213

    Article  CAS  Google Scholar 

  • Martino E, Cerminara S, Prandi L, Fubini B, Perotto S (2004) Physical and biochemical interactions of soil fungi with asbestos fibers. Environ Toxicol Chem 23(4):938–944

    Article  CAS  Google Scholar 

  • McDonough W, Braungart M (2002) Remaking the way we make things. Cradle to cradle. North Point Press USA Edition ISBN10:0-86547-587-3 | ISBN13:9780865475878

    Google Scholar 

  • Mihail JD, Bruhn JN (2005) Foraging behaviour of Armillaria rhizomorph systems. Mycol Res 109:1195–1207

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Ministry of VROM (2008) Soil remediation circular 2006, as amended on 1 October 2008

    Google Scholar 

  • Mueller GM, Schmit JP (2006) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5

    Article  Google Scholar 

  • Mulder Ch, Cohen JE, Setälä H, Bloem J, Breure AM (2005) Bacterial traits, animals’ body mass and numerical abundance in the detrital soil food web of Dutch agricultural grasslands. Ecol Lett 8:80–90

    Article  Google Scholar 

  • Mulder Ch (2006) Driving forces from soil invertebrates to ecosystem functioning: the allometric perspective. Naturwissenschaften 93:467–479

    Article  CAS  Google Scholar 

  • National Environmental Protection Council (2003) Guideline on the investigation levels for soil and groundwater, Canberra, Australia. National Environmental Protection Measure 1999, Schedule B(1)

    Google Scholar 

  • NYSDEC (1998). Ambient water quality standards and guidance values and groundwater effluent limitations. New York State Department of Environmental Conservation, Albany, NY, USA

    Google Scholar 

  • Oregon Department of Environmental Quality (2001). Guidance for ecological risk assessment, level ii screening level values, Portland (OR), USA

    Google Scholar 

  • Ötvös E, Pázmándi T, Tuba Z (2003) First national survey of atmospheric heavy metal deposition in Hungary by the analysis of mosses. Sci Total Environ 309:151–160

    Article  Google Scholar 

  • Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere, Trends Microbiol 5:496–501

    Article  CAS  Google Scholar 

  • Peijnenburg WJGM, Posthuma L, Eijsackers HJP, Allen HE (1997) A conceptual framework for implementation of bioavailability of metals for environmental management purposes. Ecotoxicol Environ Safety 37:163–172

    Article  CAS  Google Scholar 

  • Posthuma L, Suter GW, Traas TP (2002) Species sensitivity distributions in ecotoxicology. Lewis, Boca Raton, FL

    Google Scholar 

  • Posthuma L, Hogervorst RF, Van Straalen NM (1992) Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L.) (Collembola). Archiv Environ Contamin Toxicol 22(1):146–156

    Article  CAS  Google Scholar 

  • Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18

    Article  CAS  Google Scholar 

  • Rapport DJ (1995) Ecosystem Health: exploring the territory. Ecosystem Health 1(1):5–13

    Google Scholar 

  • Religion and Ecology (2009) http://www.religionandecology.org. Retrieved 18 Feb 2009

  • Römbke J, Breure AM, Mulder Ch, Rutgers M (2005) Legislation and ecological quality assessment of soil:implementation of ecological indication systems in Europe. Ecotoxicol Environ Saf 62(2):201–210

    Google Scholar 

  • Rutgers M (2008) Field effects of pollutants at the community level – experimental challenges and significance of community shifts for ecosystem functioning. Sci Total Environ 406(3):469–478

    Article  CAS  Google Scholar 

  • Rutgers M, Mulder C, Schouten AJ, Bloem J, Bogte JJ, Breure AM, Brussaard L, De Goede RGM, Faber JH, Jagers op Akkerhuis GAJM, Keidel H, Korthals GW, Smeding FW, Ter C, Van Eekeren N (2008) Soil ecosystem profiling in the Netherlands with ten references for biological soil quality, RIVM report 607604009, RIVM, Bilthoven, the Netherlands

    Google Scholar 

  • Sláviková E, Vadkertiová R (2003) Culture collection of yeasts. J Basic Microbiol 43(5):430–436

    Article  Google Scholar 

  • Sobańska MA (2004) Wild boar hair (Sus scrofa) as a non-invasive indicator of mercury pollution. Sci Total Environ 339(1–3):81–88

    Google Scholar 

  • Sokhn J, De Leij FAAM, Hart TD, Lynch JM (2001) Effect of copper on the degradation of phenanthrene by soil micro-organisms. Lett Appl Microbiol 33(2):164–168. doi:10.1046/j.1472–765x.2001.00972.x

    Article  CAS  Google Scholar 

  • Spurgeon DJ, Sandifer RD, Hopkin SP (1996) The use of macroinvertebrates for population and community monitoring of metal contamination: indicator taxa, effect parameters and the need for a soil invertebrate prediction and classification scheme (SIVPACS), Bioindicator Syst Soil Pollut 10:96–110

    Google Scholar 

  • Stams AJM, de Bok FAM, Plugge CM, van Eekert MHA, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities, Environ Microbiol 8:371–382

    Article  CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Struijs J, van de Meent D, Peijnenburg WJGM, van den Hoop MAGT, Crommentuijn T (1997) Added risk approach to derive maximum permissible concentrations for heavy metals: how to take natural background levels into account. Ecotoxicol Environ Safety 37:112–118

    Article  CAS  Google Scholar 

  • Sullivan P (2004) Sustainable soil management, ATTRA (national sustainable agriculture information service; formerly known as appropriate technology transfer for rural areas), National sustainable agriculture information service, ATTRA Publication #IP027/133, ATTRA, Fayetteville, USA

    Google Scholar 

  • Swartjes FA (1999) Risk-based assessment of soil and groundwater quality in the Netherlands: standards and remediation urgency. Risk Anal 19(6):1235–1249

    CAS  Google Scholar 

  • Swartjes FA, Carlon C, de Wit NHSM (2008) The possibilities for the EU-wide use of similar ecological risk-based soil contamination assessment tools, Sci Total Environ 406(3):523–529

    Article  CAS  Google Scholar 

  • Takeda N, Kalam Azad MA, Ishikawa K, Yoshimura T, Fujii J, Kawasoe S (2007) Development of soil activating agents for agriculture using bakuhan-seki, J Food, Agric Environ 5(3–4):363–367

    Google Scholar 

  • Tarazona JV, Fernandez MD, Vega MM (2005) Regulation of contaminated soils in Spain: a new legal instrument. J Soils Sediments 5(22):121–124

    Article  Google Scholar 

  • Texas Natural Resource Conservation Commission (2001) Guidance for conducting ecological risk assessments at remediation sites in Texas, Austin (TX), USA

    Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Tilman D, Fargione B, Wolff C, D’Antonio A, Dobson R, Howarth D, Schindler WH, Schlesinger D, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity of DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Traas TP, Luttik R, Jongbloed RH (1996) A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators I. Model description and uncertainty analysis. Ecotoxicol Environ Safety 34(3):264–278

    Article  CAS  Google Scholar 

  • Traas TP (2004) Food web models in ecotoxicological risk assessment. Dissertation IRAS, Utrecht University, Utrecht, the Netherlands

    Google Scholar 

  • UNEP Convention of Biological Diversity (2010) http://www.cbd.int/2010/countries. Retrieved 31 Mar 2010

  • United Nations Conference on Environment and Development (UNCED) (1992) Report of the United Nations conference on environment and development. Rio de Janeiro, 3–14 June 1992. Annex I: Rio declaration on environment and development. A/CONF.151/26 (vol I). Distr. Genral, 12 Aug 1992

    Google Scholar 

  • US Environmental Protection Agency (1999) Ecological screening levels for RCRA Appendix IX hazardous constituents. Region V, Washington DC

    Google Scholar 

  • US Environmental Protection Agency (2001) Supplemental guidance to RAGS: region IV bulletins, ecological risk assessment, Originally published November 1995

    Google Scholar 

  • US Environmental Protection Agency (2003) Ecological soil screening level guidance, Washington DC

    Google Scholar 

  • UNEP (2005) Millennium Ecosystem Assessment, http://www.millenniumassessment.org

  • Van den Berg MMHE, Tamis WLM, Van Straalen NM (1998) Current advantages from Europe: the food web approach in ecotoxicological risk assessment. Human Ecol Risk Assess 4(1):49–55

    Article  Google Scholar 

  • Van Paassen LA (2009) Biogrout, ground improvement by microbial induced carbonate precipitation. Dissertation Technical University Delft, the Netherlands

    Google Scholar 

  • Van Straalen NM, Denneman CAJ (1989) Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Safety 18:241–251

    Article  Google Scholar 

  • Van Straalen NM, van Gestel CAM (2008) A stress ecology framework for comprehensive risk assessment of diffuse pollution. Sci Total Environ 406(3):479–483

    Article  Google Scholar 

  • Van der Wal A (2007) Soils in transition: dynamics and functioning of fungi. PhD Thesis Leiden University, The Netherlands

    Google Scholar 

  • Verbruggen EMJ, Posthumus R, Van Wezel AP (2001) Ecotoxicological serious risk concentrations for soil, sediment and (ground)water: updated proposals for first series of compounds, RIVM report 711701020, RIVM, Bilthoven, the Netherlands

    Google Scholar 

  • Vijver MG (2005) The ins and outs of bioaccumulation. PhD Thesis Free University Amsterdam, The Netherlands

    Google Scholar 

  • Wallace KJ (2007) Classification of ecosystem services: problems and solutions. Biol Conservation 139(3–4):235–246

    Article  Google Scholar 

  • Wan JHC, Wong MH (2004) Effects of earthworm activity and P-solubilizing bacteria on P availability in soil. J Plant Nutr Soil Sci 167(2):209–213

    Article  CAS  Google Scholar 

  • Weeks JM, Comber SDW (2005) Ecological risk assessment of contaminated soil. Mineral Mag 69(5):601–613

    Article  CAS  Google Scholar 

  • Westra L (1998) The ethics of integrity. In: The land ethic: meeting human needs for the land and its resources. Society of American Foresters, Bethesda, MD, pp 31–44

    Google Scholar 

  • Whitman W, Coleman D, Wiebe W (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95(12):6578–6583

    Article  CAS  Google Scholar 

  • Wijnhoven S, Leuven RSEW, Van der Velde G, Eijsackers HJP (2008) Toxicological risks for small mammals in a diffusely and moderately polluted floodplain. Sci Total Environ 406(3):401–406

    Article  CAS  Google Scholar 

  • Wright JF (2000) Assessing the biological quality of fresh waters: RIVPACS and other techniques, pp 1–24

    Google Scholar 

  • Youn-Joo A (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127(1):21–26

    Article  Google Scholar 

  • Zorn MI, van Gestel CAM, Eijsackers HJP (2008) Metal redistribution by surface casting of four earthworm species in sandy and loamy clay soils. Sci Total Environ 406(3):396–400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Swartjes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Swartjes, F.A., Breure, A.M., Beaulieu, M. (2011). Introduction to Ecological Risk Assessment. In: Swartjes, F. (eds) Dealing with Contaminated Sites. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9757-6_13

Download citation

Publish with us

Policies and ethics