Skip to main content

Assessment of Variability in Fungal Plant Pathogens

  • Chapter
  • First Online:
Microbial Plant Pathogens-Detection and Disease Diagnosis:

Abstract

Fungal pathogens show variations in their pathogenic potential (virulence) and physiological functions that support their survival and perpetuation in different environmental conditions. These variations may be largely due to genetic factors that may be conditioned by environmental factors. The existence of strains, races or biotypes may be recognized by differences in virulence of the isolates on differential species or cultivars. Assessment of variability may be performed by applying techniques based on the cultural, biochemical, immunological and nucleic acid characteristics. Attempts have been made to relate the variability in these characteristics to variability in pathogenicity of isolates of fungal pathogens. Information on the extent of variability of isolates of fungal pathogens is essential to plan effective methods of tackling the diseases caused by them. In addition, development of resistance to fungicides has been a serious concern to growers, researchers as well as the administrators, since the decision to continue application or withdrawal of a fungicide can affect both the growers and the industry economically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abang MM, Green KR, Wanyera NW, Iloba C (2001) Characterization of Colletotrichum gloeosporioides Penz from yam (Dioscorea spp.) in Nigeria. In: Akorda AO, Ngeve M (ed), Root Crops in the 21st Century, International Soc Tropical Root Crops, Africa Branch, Cotonou, Benin, pp. 613–615.

    Google Scholar 

  • Abang MM, Winter, S, Green KR, Hoffmann P, Mignouna HD, Wolf GA (2002) Molecular identification of Colletotrichum gloeosporioides causing anthracnose of yam in Nigeria. Plant Pathol 51: 63–71.

    Article  Google Scholar 

  • Abang MM, Winter S, Mignouna HD, Green KR, Asiedu R (2003) Molecular, taxonomic and epidemiological and population genetic approaches to understanding yam anthracnose disease. Afr J Biotechnol 2: 486–496.

    CAS  Google Scholar 

  • Arabi MIE, Al-Safadi B, Charbaji T (2003) Pathogenic variation among isolates of Pyrenophora teres, the causal agents of barley net blotch. J Phytopathol 151: 376–382.

    Article  Google Scholar 

  • Banno S, Fukumori F, Ichiishi A, Okada K, Uekusa H, Kimura M, Fujimura M (2008) Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays. Phytopathology 98: 397–404.

    Article  PubMed  CAS  Google Scholar 

  • Bhat RG, Colowit PM, Tai TH, Aradhya MK, Browne GT (2006) Genetic and pathogenic variation in Phytophthora cactorum affecting fruit and nut crops in California. Plant Dis 90: 161–169.

    Article  CAS  Google Scholar 

  • Braun H, Levivier S, Eber F, Renard M, Chevre AM (1997) Electrophoretic analysis of natural populations of Leptosphaeria maculans directly from leaf lesions. Plant Pathol 46: 147–154.

    Article  Google Scholar 

  • Bridge PD, Hopkinson LK, Rutherford MA (1995) Rapid mitochondrial probes for analysis of polymorphisms in Fusarium oxysporum special forms. Lett Appl Microbiol 21: 198–201.

    Article  PubMed  CAS  Google Scholar 

  • Camele I, Marcone C, Cristinzio G (2005) Detection and identification of Phytophthora species in southern Italy by RFLP and sequence analysis of PCR-amplified nuclear ribosomal DNA. Eur J Plant Pathol 113: 1–14.

    Article  CAS  Google Scholar 

  • Chung WH, Ishii H, Nishimura K, Fukaya M, Yano K, Kajitani T (2006) Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Dis 90: 506–512.

    Article  CAS  Google Scholar 

  • Clarkson JDS, Slater SE (1997) Mildew of Wheat UK Cereal Pathogen Survey. 1996 Annu Rep pp. 6–12.

    Google Scholar 

  • Colas V, Lacourt I, Ricci P, Vanderberghe-Masuli F, Venard P, Poupet A, Panabieres F (1998) Diversity in virulence in Phytophthora parasitica in tobacco as reflected by nuclear RFLPs. Phytopathology 88: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Collado-Romero M, Mercado-Blanco J, Olivares-Garcia C, Valverde-Corredor, Jimenez-Diaz RM (2006) Molecular variability within and among Verticillium dahliae vegetative compatibility groups determined by fluorescent amplified fragment length polymorphism and polymerase chain reaction markers. Phytopathology 96: 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Collado-Romero M, Berbegal M, Jiménz-Díaz RM, Armengol J, Mercado-Blanco J (2009) A PCR-based ‘molecular toolbox’ for in planta differential detection of Verticillium groups infecting artichoke. Plant Pathol 58: 515–526.

    Article  CAS  Google Scholar 

  • Cumagun CJR, Rabenstein F, Miedaner T (2004) Genetic variation and covariation for aggressiveness, deoxynivalenol production and fungal colonization among progeny of Gibberella zeae in wheat. Plant Pathol 53: 446–453.

    Article  CAS  Google Scholar 

  • Daayf F, Nicole M, Geiger JP (1995) Differentiation of Verticillium dahliae population on the basis of vegetative compatibility and pathogenicity on cotton. Eur J Plant Pathol 101: 69–79.

    Article  Google Scholar 

  • Davidse LC, Ishii H (1995) Biochemical and molecular aspects of the mechanisms of action of benzimidazoles, N-phenylcarbamates, N-phenylformamidoximes and the mechanism of resistance to these compounds in fungi. In: Lyr H (ed), Modern Selective Fungicides, Properties, Applications and Mechanisms of Action, Gustav Fischerverlag, New York, pp. 305–322.

    Google Scholar 

  • Day PR, (1974) Genetics of Host-Parasite Interaction. Freeman, San Francisco, USA.

    Google Scholar 

  • Deahl KL, Jones, RW, Perez FM, Shaw DS, Cooke LS (2006) Characterization of isolates of Phytophthora infestans from four solanaceous hosts growing in association with late blight-infected commercial potato crops. HortScience 41: 1635–1639.

    CAS  Google Scholar 

  • Douhan GW, Smith ME, Huyrn KL, Westbrook A, Beerli P, Fishers AJ (2008) Multigene analysis suggests ecological speciation in the fungal pathogen Claviceps purpurea. Mol Ecol: doi: 10.1111/j.1365-294X.2008.03753.x

    PubMed  Google Scholar 

  • Flor HH (1946) Genetics of pathogenicity in Melampsora lini. J Agric Res 73: 335–357.

    Google Scholar 

  • Flor HH (1956) Current status of the gene-for-gene concept. Adv Genet 8: 29–54.

    Article  Google Scholar 

  • Frei U, Wenzel G (1993) Differentiation and diagnosis of Pseudocercosporella herpotrichoides (Fon.) Deighton with genomic DNA probes. J Phytopathol 139: 229–237.

    Article  Google Scholar 

  • Georgopoulos SG (1969) The problem of fungicide resistance. Bioscience 19: 971–973.

    Article  CAS  Google Scholar 

  • Georgopoulos SG, Dovas C (1973) A serious outbreak of strains of Cercospora beticola resistant to benzimidazole fungicides in northern Greece. Plant Dis Rept 57: 321–324.

    Google Scholar 

  • Giannopolitis CN (1978) Occurrence of strains of Cercospora beticola resistant to triphenyltin fungicides in Greece. Plant Dis Rept 62: 205–208.

    CAS  Google Scholar 

  • Grasso V, Sierotzki H, Garibaldi A, Gisi U (2006a) Characterization of cytochrome b gene fragment of Puccinia species responsible for the binding site of QoI fungicides. Pesti Biochem Physiol 84: 72–82.

    Article  CAS  Google Scholar 

  • Grasso V, Siertozki H, Garibaldi A, Gisi U (2006b) Relatedness among agronomically important rusts based on mitochondrial cytochrom b gene and ribosomal ITS sequences. J Phytopathol 154: 110–118.

    Article  CAS  Google Scholar 

  • Harvey HP, Ophel-Keller K (1996) Quantification of Gaeumannomyces graminis var. tritici in infected roots and arid soil using slot-blot hybridization. Mycol Res 100: 962–970.

    Article  Google Scholar 

  • Heilmann LJ, Nitzan N, Johnson DA, Pasche JS, Doetkott C, Gudmestad NC (2006) Genetic variability in the potato pathogen Colletotrichum coccodes as determined by amplified fragment length polymorphism and vegetative compatibility group analyses. Phytopathology 96: 1097–1107.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JF, Posado MA, del Portillo P, Arbelaez G (1999) Identification of molecular markers of Fusarium oxysporum f.sp. dianthi by RAPD. Acta Hortic No. 482, 123–131.

    CAS  Google Scholar 

  • Hirano Y, Arie T (2006) PCR-based differentiation of Fusarium oxysporum f.sp. lycopersici and radicis-lycopersici and races of F. oxysporum f.sp. lycopsersici. J Gen Plant Pathol 72: 273–283.

    Article  CAS  Google Scholar 

  • Hollomon DW, Butters JA (1994) Molecular determinants for resistance to crop protection chemicals. In: Marshall G, Walters D (ed) Molecular Biology in Crop Protection, Chapman & Hall, London, pp. 98–117.

    Chapter  Google Scholar 

  • Huang T-P, Yeh Y, Tzeng DD (2010) Heteroduplex mobility assay for identification and phylogenetic analysis of anthracnose fungi. J Phytopathol 158: 46–55.

    Article  CAS  Google Scholar 

  • Ishii H (2006) Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Japan Agric Res Quart 40: 205–211.

    CAS  Google Scholar 

  • Ishii H, Fraaije BA, Sugiyama T, Noguchi K, Nishimura K, Takeda T, Amano T, Hollomon DW (2001) Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91: 1166–1171.

    Article  PubMed  CAS  Google Scholar 

  • Ishii H, Tanoue J, Oshima M, Yamaguchi J, Nemoto F, So K (2005) Application of a PCR-Luminex system for molecular diagnosis of Magnaporthe grisea isolates resistant to dehydratase in inhibitors in melanin biosynthesis (MBI-D). In: Modern Fungicides and Antifungal Compounds IV. Brighton Crop Protection Conference, Alton, UK, pp. 31–34.

    Google Scholar 

  • Ishii H, Yanok, Date H, Furuta A, Sagehashi Y, Yamaguchi T, Sugiyama T, Nishimura K, Hasama W (2007) Molecular characterization and diagnosis of QoI resistance in cucumber and egg plant fungal pathogens. Phytopathology 97: 1458–1466.

    Article  PubMed  CAS  Google Scholar 

  • Ishii H, Tanoue J, Oshima M, Chung W-H, Nishimura K, Yamaguchi J, Nemoto F, So K, Iwama T, Yoshimatsu H, Shimizu M, Kozawa T (2008) First application of PCR-Luminex system for molecular diagnosis of fungicide resistance and species identification of fungal pathogens. J Gen Plant Pathol 74: 409–416.

    Article  CAS  Google Scholar 

  • Ishii H, Fountaine J, Chung W-H, Kansako M, Nishimura K, Takahashi K, Oshima M (2009) Characterization of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry. Pest Manag Sci 65: 916–922.

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Díaz R, Mercado-Blanco J, Olivares-Garcia C, Collado-Romero M, Bejarano-Alcázar J, Rodriguez-Jurado G, Giménez-Jaime J, Armengol J (2006) Genetic and virulence diversity in Verticillium dahliae populations infecting artichoke in eastern-central Spain. Phytopathology 96: 288–298.

    Article  PubMed  Google Scholar 

  • Judelson HS, Roberts S (1999) Multiple loci determining insensitivity to phenylamide fungicides in Phytophthora infestans. Phytopathology 89: 754–760.

    Article  PubMed  CAS  Google Scholar 

  • Kaku K, Takagaki M, Shimizu T, Nagayama K (2003) Diagnosis of dehydratase inhibitors in melanin biosynthesis inhibitor (MBI-D) resistance by primer-introduced restriction enzyme analysis in scytalone dehydratase gene of Magnaporthe grisea. Pest Manag Sci 59: 843–846.

    Article  PubMed  CAS  Google Scholar 

  • Katan J, Bashi E (1981) Resistance to metalaxyl in isolates of Pseudoperonospora cubensis, the downy mildew of cucurbit. Plant Dis 65: 798–800.

    Article  Google Scholar 

  • Kaufmann PJ, Weidemann GJ (1996) Isozyme analysis of Colletotrichum gloeosporioides from five host genera. Plant Dis 80: 1289–1293.

    Article  CAS  Google Scholar 

  • Kiebacher H, Hoffmann GM (1976) Benizmidazole-Resistenz bei Venturia inaequalis. J Plant Dis Protect 83: 352–358.

    CAS  Google Scholar 

  • Kim DH, Martyn RD, Magil CW (1993) Mitochondrial DNA (mtDNA)-relatedness among formae speciales of Fusarium oxysporum in Cucurbitaceae. Phytopathology 83: 91–97.

    Article  CAS  Google Scholar 

  • Komjati H, Bakonyi J, Spring O, Viranyi F (2008) Isozyme analysis of Plasmopara halstedii using cellulose acetate gel electrophoresis. Plant Pathol 57: 57–63.

    CAS  Google Scholar 

  • Korolev N, Pérez-Artés E, Mercado-Blanco J, Bejarano-Alcázar J, Rodriguez-Jurado D, Jiménez-Díaz RM, Katan T, Katan J (2008) Vegetative compatibility of cotton-defoliating Verticillium dahliae in Israel and its pathogenicity to various crop plants. Eur J Plant Pathol 122: 603–617.

    Article  Google Scholar 

  • Lanoiselet VM, Cother EJ, Cother NJ, Ash GJ, Harper (2005) Comparison of two total cellular fatty acid analysis protocols to differentiate Rhizoctonia oryzae and R. oryzae-sativae. Mycologia 97: 77–83.

    Google Scholar 

  • Larkin RP, Groves CL (2003) Identification and characterization of isolates of Phytophthora infestans using fatty acid methyl ester (FAME) profiles. Plant Dis 87: 1233–1243.

    Article  CAS  Google Scholar 

  • Lee TY, Mizubuti ES, Fry WE (1999) Genetics and metalaxyl resistance in Phytophthora infestans. Fungl Genet Biol 26: 118–130.

    Article  CAS  Google Scholar 

  • LeiÅ¡ova L, Minaríkova L, Ovesná J (2005) Genetic diversity of Pyrenophora teres isolates as detected by AFLP analysis. J Phytopathol 153: 569–578.

    Article  Google Scholar 

  • Leroux P, Besselat B (1984) Pourriture gris: la résistance aux fungicides de Botrytis cinerea. Phytoma Defense des Cultures Juin, pp. 25–33.

    Google Scholar 

  • Leslie JF, Zeller KA, Lamprecht SC, Rheeder JP, Marasas WFO (2005) Toxicity, pathogenicity and genetic differentiation of five species of Fusarium from sorghum and millet. Phytopathology 95: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Romao I, Marchetti MA, Hamer JE (1991) DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell 3: 95–102.

    PubMed  CAS  Google Scholar 

  • Lima CS, Monteiro JHA, Crespo NC, Costa SC, Leslie JF, Pfenning LH (2009) VCG and AFLP analyses identify the same groups in the causal agents of mango malformation in Brazil. Eur J Plant Pathol 123: 17–26.

    Article  CAS  Google Scholar 

  • Maymon M, Zveibil A, Pivonia S, Minz D, Freeman S (2006) Identification and characterization of benomyl-resistant and sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology 96: 542–548.

    Article  PubMed  CAS  Google Scholar 

  • McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87: 448–453.

    Article  PubMed  CAS  Google Scholar 

  • McKay GJ, Cooke LR (1997) A PCR-based method to characterize and identify benzimidazole resistence in Helminthosporium solani. FEMS Microbiol Lett 152: 371–378.

    Google Scholar 

  • Mills PR, Sreenivasaprasad S, Muthumeenakshi S (1998) Assessing diversity in Colletotrichum and Trichoderma species using molecular markers. In: Bridge P, Couteaudier Y, Clarkson J (ed), Molecular Variability of Fungal Pathogens, CAB International, Wallingford, UK, PP. 105–120.

    Google Scholar 

  • Miréte S, Vázquez C, Mule G, Jurado M, González-Jaén MT (2004) Differentiation of Fusarium verticillioides from banana fruits by IGS and EF-1α sequence analyses. Eur J Plant Pathol 110: 515–523.

    Article  Google Scholar 

  • Morricca S, Ragazzi A, Kasuga T, Mitchelson KR (1998) Detection of Fusarium oxysporum f.sp. vasinfectum in cotton tissue by polymerase chain reaction. Plant Pathol 47: 486–494.

    Article  Google Scholar 

  • Müller MM, Kantola R, Kitunen V (1994) Combining sterol and fatty acid profiles for characterization of fungi. Mycol Res 98: 593–603.

    Article  Google Scholar 

  • Murray TD (1996) Resistence to benzimidazole fungicide in cereal eye spot pathogen Pseudocercosporella herpotrichoides in the Pacific Northwest 1984–1990. Plant Dis 80: 19–230.

    Google Scholar 

  • Nicholson P, Rezanoor HN, Hollins TN (1994) The identification of a pathotype specific DNA probe for the R type of Pseudocercosporella herpotrichoides. Plant Pathol 43: 694–700.

    Article  Google Scholar 

  • Okoli CAN, Carder JH, Barbara DJ (1994) Restriction fragment length polymorphism (RFLPs) and the relationships of some host-adapted isolates of Verticillium dahliae. Plant Pathol 43: 33–40.

    Article  Google Scholar 

  • Omer MA, Johnson DA, Douhan LI, Hamm PB, Rowe RC (2008) Detection, quantification and vegetative compatibility of Verticillium dahliae in potato and mint production soils in the Columbia basin of Oregon and Washington. Plant Dis 92: 1127–1131.

    Article  Google Scholar 

  • Paluh JL, Killilea AN, Detrich HWIII, Downing KH (2004) Meiosis-specific failure of cell cycle progression in fission yeast by mutation of a conserved ß-tubulin residue. Mol Biol Cell 15: 1160–1171.

    Article  PubMed  CAS  Google Scholar 

  • Parlevliet JE (1993) What is durable resistance – a general outline. In: Jacobs Th, Parlevliet JE (ed), Durability of Disease Resistance, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 23–35.

    Chapter  Google Scholar 

  • Patiño B, Mirete B, González-Jaen MT, Mulé G, Rodríguez T, Vázquez C (2004) PCR detection assay for the fumonisin producing Fusarium verticillioides strains. J Food Protect 67: 1278–1283.

    Google Scholar 

  • Peres NA, Harakava R, Carroll GC, Adaskaveg JE, Timmer LW (2007) Comparison of molecular procedures for detection and identification of Guignardia citricarpa and G. mangiferae. Plant Dis 91: 525–531.

    Article  CAS  Google Scholar 

  • Person C (1967) Genetic aspects of parasitism. Canad J Bot 45: 1193–2004.

    Article  Google Scholar 

  • Person C, Ebba T (1975) Genetics of fungal pathogens. Genetics 79: 397–408.

    Google Scholar 

  • Pilet F, Pelle R, Ellisséche D, Andrivon D (2005) Efficacy of the R2 resistance gene as a component for durable management of potato late blight in France. Plant Pathol 54: 723–732.

    CAS  Google Scholar 

  • Possiede YM, Gabardo J, Kava-Cordeiro V, Galli-Terasawa LV, Azevedo JL, Glienke C (2009) Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa. Braz J Microbiol 40: 308–313.

    Article  CAS  Google Scholar 

  • Puhalla JE (1979) Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility. Phytopathology 69: 1186–1189.

    Article  Google Scholar 

  • Puhalla JE (1985) Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Canad J Bot 63: 179–183.

    Article  Google Scholar 

  • Puhalla JE, Hummel M (1983) Vegetative compatibility groups within Verticillium dahliae. Phytopathology 73: 1305–1308.

    Article  Google Scholar 

  • Qin QM, Vallad GE, Wu BM, Subbarao KV (2006) Phylogenetic analyses of phytopathogenic isolates of Verticillium spp. Phytopathology 96: 560–566.

    Article  Google Scholar 

  • Qu B, Li HP, Zhang JB, Xu YB, Huang T, Wu AB, Zhao CS, Carter J, Nicholson P, Liao YC (2008) Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol 57: 15–24.

    Article  CAS  Google Scholar 

  • Ramirez ML, Reynoso MM, Farnochi MC, Chulze S (2006) Vegetative compatibility and mycotoxin chemotypes among Fusarium graminearum (Gibberella zeae) isolates from wheat in Argentina. Eur J Plant Pathol 115: 139–148.

    Article  CAS  Google Scholar 

  • Rau D, Brown AHD, Brubaker CL (2002) Population genetic structure of Pyrenophora teres Drechs., the causal agent of net blotch in Sardinian landraces of barley (Hordeum vulgare L.) Theoret Appl Genet 106: 947–959.

    Google Scholar 

  • Rothamstead Research (2003–2004) Rothamstead Annual Report for 2003–2004, Rothamstead Research Station, UK, pp. 13–17.

    Google Scholar 

  • Saito S, Suzuki S, Takayanagi T (2007) Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Pest Manag Sci 65: 197–204.

    Article  Google Scholar 

  • Schüepp H, Küng M (1981) Stability of tolerance to MBC in populations of Botrytis cinerea in vineyards of northern and eastern Switzerland. Canad J Plant Pathol 3: 180–181.

    Article  Google Scholar 

  • Sippell DN, Hall R (1995) Glucose phosphate isomerase polymorphisms distinguish weakly virulent from highly virulent strains of Leptosphaeria maculans. Canad J Plant Pathol 17: 1–6.

    Article  CAS  Google Scholar 

  • Staub T (1991) Fungicide resistance: Practical experience with antiresistance strategies and the role of integrated use. Annu Rev Phytopathol 29: 421–442.

    Article  PubMed  CAS  Google Scholar 

  • Staub T, Sozzi D (1984) Fungicide resistance: A continuing challenge. Plant Dis 68: 1026–1031.

    CAS  Google Scholar 

  • Stevens Johnk J, Jones RK (1992) Determination of whole-cell fatty acids in isolates of Rhizoctonia solani AG-1-1A. Phytopathology 82: 68–72.

    Article  Google Scholar 

  • Stevens Johnk J, Jones RK (2001) Differentiation of three homogeneous groups of Rhizoctonia solani anastomosis group 4 by analysis of fatty acids. Phytpathology 91: 821–830.

    Article  Google Scholar 

  • Svircev AM, Smith RJ, Zhou T, Day AW (2000) Localization of fungal fimbriae by immunocytochemistry in pathogenic and nonpathogenic isolates of Venturia inaequalis. Canad J Microbiol 46: 800–808.

    CAS  Google Scholar 

  • Szkolink M, Gilpatrick JD (1973) Tolerance of Venturia inaequalis to dodine in relation to the history of dodine usage in apple orchards. Plant Dis Rept 57: 817–821.

    Google Scholar 

  • Takamatsu S, Nakano M, Yokoto H, Kumoh (1998) Detection of Rhizoctonia solani AG 2–2 IV, the causal agent of large patch of Zoysia grass using plasmid DNA as a probe. Ann Phytopathol Soc Jpn 64: 451–457.

    Google Scholar 

  • Thuan NTN, Bigirimana J, Roumen E, van der Straeton D, Höfte M (2006) Molecular and pathotype analysis of the rice blast fungus in North Vietnam. Eur J Plant Pathol 114: 381–386.

    Article  CAS  Google Scholar 

  • Tóth B, Mesterhazy A, Nicholson P, Téren J, Varga J (2004) Mycotoxin production and molecular variability of European and American isolates of Fusarium culmorum. Eur J Plant Pathol 110: 587–599.

    Article  Google Scholar 

  • Ueng PP, Cunfer BM, Alano AS, Youmans JD, Chen W (1995) Correlation between molecular and biological characteristics in identifying the wheat and barley biotypes of Stagonospora nodorum. Phytopathology 85: 44–52.

    Article  Google Scholar 

  • Usami T, Abiko M, Shishido M, Amemiya Y (2002) Specific detection of tomato pathotype of Verticillium dahliae by PCR assays. J Gen Plant Pathol 68: 134–140.

    Article  CAS  Google Scholar 

  • Usami T, Fukaya M, Amemiya Y (2008) Electrophoretic karyotyping and mapping of pathotype-specific DNA sequence in Japanese isolates of Verticillium dahliae. J Gen Plant Pathol 74: 61–65.

    Article  CAS  Google Scholar 

  • Vanderplank JE (1963) Plant Diseases: Epidemics and Control. Academic Press, NY.

    Google Scholar 

  • Vanderplank JE (1978) Genetic and Molecular Basis of Plant Pathogenesis. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Vöhringer G, Sander G (2001) Comparison of antibodies in chicken egg yolk (IgY) and rabbit IgG for quantitative strain detection of Colletotrichum falcatum and Fusarium subglutinans. J Plant Dis Protect 108: 39–48.

    Google Scholar 

  • Wang B, Brubaker CL, Tate W, Woods MJ, Matheson BA, Burdon JJ (2006) Genetic variation and population structure of Fusarium oxysporum f.sp. vasinfectum in Australia. Plant Pathol 55: 746–755.

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 12: 6531–6535.

    Article  Google Scholar 

  • Zanotti MGS, de Queiroz MV, dos Santos JK, Rocha RB, de Barros EG, AÅ•ujo EF (2006) Analysis of genetic diversity of Fusarium oxysporum f.sp. phaseoli pathogenic and nonpathogenic to common bean (Phaeolus vulgaris L.). J Phytopathol 154: 549–559.

    Article  Google Scholar 

  • Zhang AW, Harman GL, Riccioni L, Chen WD, Ma RZ, Pedersen WL (1997) Using PCR to distinguish Diaporthe phaseolorum and Phomopsis longicolla from other soybean fungal pathogens and to detect them in soybean tissues. Plant Dis 81: 1143–1149.

    Article  CAS  Google Scholar 

  • Zipper R, Hammer TR, Spring O (2009) PCR-based monitoring of recent isolates of tobacco blue mold from Europe reveals the presence of two genetically distinct phenotypes differing in fungicide sensitivity. Eur J Plant Pathol 123: 367–375.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Appendix 1: Identification of Guignardia citricarpa by PCR-Based Technique (Peres et al. 2007)

Appendix 1: Identification of Guignardia citricarpa by PCR-Based Technique (Peres et al. 2007)

A. Extraction of DNA from fruit lesions

  1. (i)

    Dissect out very small citrus fruit lesions (approximately 2 to 4 mm in diameter); discard the surrounding healthy flavedo, the pigmented outer tissue of the fruit rind and disrupt the tissue using alkaline lysis extraction method.

  2. (ii)

    Follow the dipstick method by adding 150 μl of 100% ethanol and a small piece of cellulose thin-layer chromatography plate (dipstick) to the 2-ml tube; place the tubes on their sides on ice and shake for 30 min.

  3. (iii)

    Aspirate off the liquid from the tube; add 500 μl of wash buffer [10 × (Tris Na2-EDTA and NaCl, pH 7.0)] diluted to 25%; invert tubes to mix the contents well; repeat washing twice; place the dipstick in a new tube and dry under vacuum.

  4. (iv)

    Place the tubes on their sides; add 50 μl Tris-EDTA buffer; incubate for 5 min; spin the tubes for 10 s; discard the dipstick and recover the DNA.

B. PCR amplification

  1. (i)

    Carry out the amplification in a total volume of 20 μl in the mixture containing 8 μl 2.5 × Eppendorf MasterMix (Taq DNA polymerase at 0.06 U/μl, 2.5 × Taq reaction buffer (125 mM KCl,75 mM Tris-HCl, pH 8.4, 4 mM Mg2+ and 0.25% Nonidet-P40, 500 μM each of dNTP and stabilizers), 0.8 μl of each primer at 10 μM and 2 μl of template DNA.

  2. (ii)

    Provide the following conditions: 94°C for 2 min, followed by 39 cylces of 94°C for 30 s, annealing at 64°C for 30 s, 72°C for 1 min and a final extension for 10 min at 72°C

  3. (iii)

    Separate the amplicons by electrophoresis in 1% agarose gels in 1 × Tris-borate-EDTA buffer.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Narayanasamy, P. (2011). Assessment of Variability in Fungal Plant Pathogens. In: Microbial Plant Pathogens-Detection and Disease Diagnosis:. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9735-4_4

Download citation

Publish with us

Policies and ethics