Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

Chapter 2 describes the Track and Hold (T&H) architecture for a time-interleaved ADC. Mismatch between channels, like difference in offset, gain and timing, degrades the performance and therefore this topic is investigated in detail.

Two T&H architectures are discussed, one with a frontend sampler and one without. The use of a frontend sampler has the advantage of good timing alignment between channels, the resistance of the switch is however a problem: it limits both the input bandwidth and the achievable resolution and the track-time has to be less than one sample period.

A new open-loop buffer is introduced together with a new technique to increase its bandwidth. The result of this combination is a T&H buffer with good linearity and high bandwidth, while the power consumption is kept low.

The topic of calibration is discussed and while offset and gain calibrations are relatively easy to implement, timing calibration is much harder to realize: it requires high-frequency test-signals and the required adjustable timing circuitry causes jitter by itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this example, only 2 samples per period are of importance, so the square-wave can also be replaced by a sine-wave.

  2. 2.

    The relation between the scales in dB and bits is: dB≈6.02n+1.76.

  3. 3.

    The amount of channel charge dump mainly depends on the area of the transistor channel. Since sample switches usually have a large aspect ratio (large W, small L) e.g. 10/0.13, a small absolute variation in W has little impact, while the same absolute variation in L has a much larger impact. The relative mismatch in charge dump is therefore quite independent on W, resulting in an absolute mismatch proportional to W. So, increasing the switch width leads to an increase in the mismatch of the charge dump. For a bootstrapped sample-switch this results in increased offset mismatch. As offset calibration is often required for time-interleaved ADCs, this is not considered to be a problem.

  4. 4.

    A derivation is given in Sect. 3.2.2 starting at p. 42. However, a step-size of half the range is assumed there, while here the step-size equals the entire range for an input signal at the Nyquist frequency. Therefore, n needs to be replaced by n+1.

  5. 5.

    This buffer does use feedback, but it is only local.

  6. 6.

    Increasing the number of phase shifted input signals does not only remove harmonics. For example, when going from 2 to 3 signals, some even-order harmonics appear again.

  7. 7.

    Compare (2.3) and see footnote 4 on p. 15.

  8. 8.

    This is in contrast with the buffers after the T&H switch, as these have relaxed speed requirements due to the interleaving [26].

  9. 9.

    Depending on the architecture, the capacitance increases between 4 and 8 times more per bit.

Bibliography

  1. A.M. Abo, P.R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits 34(5), 599–606 (1999)

    Article  Google Scholar 

  2. V.J. Arkesteijn, Analog front-ends for software-defined radio receivers. Ph.D. dissertation, University of Twente, 2007

    Google Scholar 

  3. V.J. Arkesteijn, E.A.M. Klumperink, B. Nauta, Jitter requirements of the sampling clock in software radio receivers. IEEE Trans. Circuits Syst. (TCAS) II 53(2), 90–94 (2006)

    Article  Google Scholar 

  4. W.C. Black, D.A. Hodges, Time interleaved converter arrays. IEEE J. Solid-State Circuits 15(6), 1022–1029 (1980)

    Article  Google Scholar 

  5. M. El-Chammas, B. Murmann, General analysis on the impact of phase-skew in time-interleaved ADCs, in IEEE International Symposium on Circuits and Systems (ISCAS) (2008), pp. 17–20

    Google Scholar 

  6. S.K. Gupta, M.A. Inerfield, J. Wang, A 1-GS/s 11-bit ADC with 55-dB SNDR, 250-MAW power realized by a high bandwidth scalable time-interleaved architecture. IEEE J. Solid-State Circuits 41(12), 2650–2657 (2006)

    Article  Google Scholar 

  7. K. Hadidi, A. Khoei, A highly linear cascode-driver CMOS source-follower buffer, in IEEE Intl. Conf. on Electronics, Circuits and Systems (1996), pp. 1243–1246

    Google Scholar 

  8. C.-C. Hsu, F.-C. Huang, C.-Y. Shih, C.C. Huang, Y.-H. Lin, C.-C. Lee, B. Razavi, An 11 b 800 MS/s time-interleaved ADC with digital background calibration, in ISSCC Dig. Tech. Papers (2007), pp. 464–465

    Google Scholar 

  9. E. Iroaga, B. Murmann, L. Nathawad, A background correction technique for timing errors in time-interleaved analog-to-digital converters, in IEEE International Symposium on Circuits and Systems (ISCAS), vol. 6 (2005), pp. 5557–5560

    Google Scholar 

  10. N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, K. Kobayashi, Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001)

    Article  Google Scholar 

  11. S.M. Louwsma, E.J.M. van Tuijl, M. Vertregt, B. Nauta, A 1.6 GS/s, 16 times interleaved track & hold with 7.6 ENOB in 0.12 μm CMOS, in Proc. ESSCIRC (2004), pp. 343–346

    Google Scholar 

  12. S.M. Louwsma, E.J.M. van Tuijl, M. Vertregt, B. Nauta, A 1.35 GS/s, 10 b, 175 mW time-interleaved AD converter in 0.13 μm CMOS, in Proceedings of the Symposium on Very Large Scale Integration (VLSI) Circuits (2007), pp. 62–63

    Google Scholar 

  13. S.M. Louwsma, E.J.M. van Tuijl, M. Vertregt, B. Nauta, A time-interleaved track & hold in 0.13 μm CMOS sub-sampling a 4 GHz signal with 43 dB SNDR, in Proceedings of the Custom Integrated Circuits Conference (CICC) (2007), pp. 329–332

    Google Scholar 

  14. E. Mensink, E.A.M. Klumperink, B. Nauta, Distortion cancellation by polyphase multipath circuits. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(9), 1785–1794 (2005)

    Article  Google Scholar 

  15. B. Murmann, ADC Performance Survey 1997–2009. Available online: http://www.stanford.edu/~murmann/adcsurvey.html (2009)

  16. H. Pan, M. Segame, M. Choi, J. Cao, A.A. Abidi, A 3.3-V 12-b 50-MS/s A/D converter in 0.6-μm CMOS with over 80-dB SFDR. IEEE J. Solid-State Circuits 35, 1769–1780 (2000)

    Article  Google Scholar 

  17. M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)

    Article  Google Scholar 

  18. K. Poulton, J.J. Corcoran, T. Hornak, A 1-GHz 6-bit ADC System. IEEE J. Solid-State Circuits 22(6), 962–970 (1987)

    Article  Google Scholar 

  19. K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, A. Montijo, A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 μm CMOS, in ISSCC Dig. Tech. Papers (2003), pp. 318–496

    Google Scholar 

  20. B. Razavi, Rf Microelectronics (Prentice Hall, New York, 1998)

    Google Scholar 

  21. H.P. Tuinhout, G. Hoogzaad, M. Vertregt, R.L.J. Roovers, C. Erdmann, Design and characterization of a high precision resistor ladder test structure, in Proceedings of the IEEE International Conference on Microelectronic Test Structures (ICMTS), vol. 15 (2002), pp. 223–228

    Google Scholar 

  22. R.J. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters (Kluwer Academic, Dordrecht, 1994)

    Book  Google Scholar 

  23. H. van der Ploeg, Calibration techniques in two-step a/d converters. Ph.D. dissertation, University of Twente, 2005

    Google Scholar 

  24. M. Vertregt, The analog challenge of nanometer CMOS, in International Electron Devices Meeting (IEDM) (2006), pp. 1–8

    Google Scholar 

  25. M. Vertregt, H.P. Tuinhout, personal communication

    Google Scholar 

  26. R.H. Walden, Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999)

    Article  Google Scholar 

  27. W. Yang, D. Kelly, L. Mehr, M.T. Sayuk, L. Singer, A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input. IEEE J. Solid-State Circuits 36(12), 1931–1936 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Louwsma .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Louwsma, S., van Tuijl, E., Nauta, B. (2011). Time-interleaved Track and Holds. In: Time-interleaved Analog-to-Digital Converters. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9716-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9716-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9715-6

  • Online ISBN: 978-90-481-9716-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics