Skip to main content

Alterations in Mitochondria and Their Impact in Aging Skeletal Muscle

  • Chapter
  • First Online:
Sarcopenia – Age-Related Muscle Wasting and Weakness

Abstract

There is an abundance of studies examining the involvement of mitochondria in aging, including their role in the functional and structural deterioration of skeletal muscle with aging. Despite years of study, the precise involvement of mitochondria in the aging of skeletal muscle remains to be fully understood. This chapter provides some context for the current knowledge in this area and areas that will be refined through further study. It will examine the issue of “mitochondrial dysfunction” in aging; why it occurs and the functional consequences. The potential impact of three important age-related changes in mitochondria will be considered here: a reduced capacity for generating cellular energy in the form of adenosine triphosphate (ATP); an increased susceptibility to apoptosis; and an increase in reactive oxygen species (ROS) production with aging. The chapter considers the extent to which the mitochondrial content may be up-regulated in response to muscle activity as a means of assessing the malleability of the age-related impairments in mitochondria. Given the central importance of mitochondrial biology to so many facets of normal cell function, particularly in tissues with a wide metabolic scope like skeletal muscle, new discoveries about the significance of changes in mitochondria for aging skeletal muscles, and their potential remedy through lifestyle modification (e.g., exercise training, diet) and/or medical intervention (e.g., pharmaceuticals, gene therapy), will remain at the forefront of our quest to promote healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhihetty, P. J., O’Leary, M. F., Chabi, B., Wicks, K. L., Hood, D. A. (2007). Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. Journal of Applied Physiology, 102, 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  • Altmann, R. (1890). Die Elementarorganismen und ihre Beziehungen zu den Zellen. Verlag von Veit & Comp Leipzig.

    Google Scholar 

  • Alway, S. E., Degens, H., Krishnamurthy, G., Smith, C. A. (2002). Potential role for Id ­myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats. AJP – Cell Physiology, 283, C66–C76.

    CAS  PubMed  Google Scholar 

  • Baar, K., Wende, A. R., Jones, T. E., Marison, M., Nolte, L. A., Chen, M., Kelly, D. P., Holloszy, J. O. (2002). Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. The FASEB Journal, 16, 1879–1886.

    Article  CAS  PubMed  Google Scholar 

  • Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P. (1978). Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. Biochim Biophys Acta, 501, 349–369.

    CAS  Google Scholar 

  • Baker, D. J. & Hepple, R. T. (2006). Elevated caspase and AIF signaling correlates with the progression of sarcopenia during aging in male F344BN rats. Experimental Gerontology, 41, 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  • Baker, D. J., Betik, A. C., Krause, D. J., Hepple, R. T. (2006). No decline in skeletal muscle oxidative capacity with aging in long-term caloric restricted rats: effects are independent of mtDNA integrity. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 61A, 675–684.

    CAS  Google Scholar 

  • Bejma, J. & Ji, L. L. (1999). Aging and acute exercise enhance free radical generation in rat skeletal muscle. Journal of Applied Physiology, 87, 465–470.

    CAS  PubMed  Google Scholar 

  • Betik, A. C., Baker, D. J., Krause, D. J., McConkey, M. J., Hepple, R. T. (2008). Exercise training in late middle-aged male Fischer 344 x Brown Norway F1-hybrid rats improves skeletal muscle aerobic function. Experimental Physiology, 93, 863–871.

    Article  PubMed  Google Scholar 

  • Betik, A. C., Thomas, M. M., Wright, K. J., Riel, C. D., Hepple, R. T. (2009). Exercise training from late middle age until senescence does not attenuate the declines in skeletal muscle aerobic function. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 297, R744–R755.

    CAS  PubMed  Google Scholar 

  • Bhattacharya, A., Muller, F. L., Liu, Y., Sabia, M., Liang, H., Song, W., Jang, Y. C., Ran, Q., Van Remmen, H. (2009). Denervation induces cytosolic phospholipase A2-mediated fatty acid hydroperoxide generation by muscle mitochondria. The Journal of Biological Chemistry, 284, 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Blough, E. R. & Linderman, J. K. (2000). Lack of skeletal muscle hypertrophy in very aged male Fischer 344 X Brown Norway rats. Journal of Applied Physiology, 88, 1265–1270.

    CAS  PubMed  Google Scholar 

  • Boncompagni, S., d’Amelio, L., Fulle, S., Fano, G., Protasi, F. (2006). Progressive disorganization of the excitation-contraction coupling apparatus in aging human skeletal muscle as revealed by electron microscopy: A possible role in the decline of muscle performance. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 61, 995–1008.

    Google Scholar 

  • Booth, F. W. & Holloszy, J. O. (1977). Cytochrome c turnover in rat skeletal muscles. The Journal of Biological Chemistry, 252, 416–419.

    CAS  PubMed  Google Scholar 

  • Bota, D. A., Van Remmen, H., Davies, K. J. (2002). Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Letters, 532, 103–106.

    Article  CAS  PubMed  Google Scholar 

  • Bua, E., Johnson, J., Herbst, A., Delong, B., McKenzie, D., Salamat, S., Aiken, J. M. (2006). Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. American Journal of Human Genetics, 79, 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Bua, E. A., McKiernan, S. H., Wanagat, J., McKenzie, D., Aiken, J. M. (2002). Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. Journal of Applied Physiology, 92, 2617–2624.

    PubMed  Google Scholar 

  • Capel, F., Buffiere, C., Patureau, M. P., Mosoni, L. (2004). Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats. Mechanisms of Ageing and Development, 125, 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Capel, F., Rimbert, V., Lioger, D., Diot, A., Rousset, P., Mirand, P. P., Boirie, Y., Morio, B., Mosoni, L. (2005). Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mechanisms of Ageing and Development, 126, 505–511.

    Article  CAS  PubMed  Google Scholar 

  • Cartee, G. D. & Farrar, R. P. (1987). Muscle respiratory capacity and VO 2max in identically trained young and old rats. Journal of Applied Physiology, 63, 257–261.

    CAS  PubMed  Google Scholar 

  • Chabi, B., Ljubicic, V., Menzies, K. J., Huang, J. H., Saleem, A., Hood, D. A. (2008). Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell, 7, 2–12.

    Article  CAS  PubMed  Google Scholar 

  • Choksi, K. B., Nuss, J. E., Deford, J. H., Papaconstantinou, J. (2008). Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes. Free Radical Biology & Medicine, 45, 826–838.

    Article  CAS  Google Scholar 

  • Coggan, A. R., Spina, R. J., King, D. S., Rogers, M. A., Brown, M., Nemeth, P. M., Holloszy, J. O. (1992). Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. Journal of Gerontology, 47, B71–B76.

    CAS  PubMed  Google Scholar 

  • Conley, K. E., Jubrias, S. A., Esselman, P. C. (2000). Oxidative capacity and aging in human muscle. The Journal of Physiology, 526.1, 203–210.

    Article  Google Scholar 

  • Davies, K. J., Packer, L., Brooks, G. A. (1981). Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Archives of Biochemistry and Biophysics, 209, 539–554.

    Article  CAS  PubMed  Google Scholar 

  • Desai, V. G., Weindruch, R., Hart, R. W., Feuers, R. J. (1996). Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice. Archives of Biochemistry and Biophysics, 333, 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Dirks, A. & Leeuwenburgh, C. (2002). Apoptosis in skeletal muscle with aging. AJP - Regulatory, Integrative and Comparative Physiology, 282, R519–R527.

    CAS  PubMed  Google Scholar 

  • Drew, B., Phaneuf, S., Dirks, A., Selman, C., Gredilla, R., Lezza, A., Barja, G., Leeuwenburgh, C. (2003). Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 284, R474–R480.

    CAS  PubMed  Google Scholar 

  • Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

    CAS  PubMed  Google Scholar 

  • Dupuis, L., Gonzalez de Aguilar, J. L., Echaniz-Laguna, A., Eschbach, J., Rene, F., Oudart, H., Halter, B., Huze, C., Schaeffer, L., Bouillaud, F., Loeffler, J. P. (2009). Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degeneration of motor neurons. PLoS ONE, 4, e5390.

    Article  PubMed  Google Scholar 

  • Essen-Gustavsson, B. & Borges, O. (1986). Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiologica Scandinavica, 126, 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Fano, G., Mecocci, P., Vecchiet, J., Belia, S., Fulle, S., Polidori, M. C., Felzani, G., Senin, U., Vecchiet, L., Beal, M. F. (2001). Age and sex influence on oxidative damage and functional status in human skeletal muscle. Journal of Muscle Research and Cell Motility, 22, 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Fugere, N. A., Ferrington, D. A., Thompson, L. V. (2006). Protein nitration with aging in the rat semimembranosus and soleus muscles. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 61, 806–812.

    Google Scholar 

  • Giresi, P. G., Stevenson, E. J., Theilhaber, J., Koncarevic, A., Parkington, J., Fielding, R. A., Kandarian, S. C. (2005). Identification of a molecular signature of sarcopenia. Physiological Genomics, 21, 253–263.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Cabrera, M. C., Borras, C., Pallardo, F. V., Sastre, J., Ji, L. L., Vina, J. (2005). Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. The Journal of Physiology Online, 567, 113–120.

    Article  CAS  Google Scholar 

  • Hagberg, J. M., Graves, J. E., Limacher, M. C., Woods, D. R., Legget, S. H., Cononie, C. C., Gruber, J. J., Pollock, M. L. (1989). Cardiovascular responses of 70- to 79-yr-old men and women to exercise training. Journal of Applied Physiology, 66, 2589–2594.

    Article  CAS  PubMed  Google Scholar 

  • Hagen, J. L., Krause, D. J., Baker, D. J., Fu, M., Tarnopolsky, M. A., Hepple, R. T. (2004). Skeletal muscle aging in F344BN F1-hybrid rats: I. Mitochondrial dysfunction contributes to the age-associated reduction in VO2max. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 59A, 1099–1110.

    CAS  Google Scholar 

  • Hepple, R. T. (2003). Sarcopenia – A critical perspective. Science of Aging Knowledge Environment, 2003, pe31.

    Google Scholar 

  • Hepple, R. T., Hagen, J. L., Krause, D. J., Jackson, C. C. (2003). Aerobic power declines with aging in rat skeletal muscles perfused at matched convective O2 delivery. Journal of Applied Physiology, 94, 744–751.

    PubMed  Google Scholar 

  • Hepple, R. T., Hagen, J. L., Krause, D. J., Baker, D. J. (2004a). Skeletal muscle aging in F344BN F1-hybrid rats: II. Improved contractile economy in senescence helps compensate for reduced ATP generating capacity. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 59A, 1111–1119.

    CAS  Google Scholar 

  • Hepple, R. T., Ross, K. D., Rempfer, A. B. (2004b). Fiber Atrophy and Hypertrophy in Skeletal Muscles of Late Middle-Aged Fischer 344 x Brown Norway F1-Hybrid Rats. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 59, B108–B117.

    Google Scholar 

  • Hepple, R. T., Baker, D. J., Kaczor, J. J., Krause, D. J. (2005). Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function. The FASEB Journal, 19, 1320–1322.

    CAS  PubMed  Google Scholar 

  • Hepple, R. T., Baker, D. J., McConkey, M., Murynka, T., Norris, R. (2006). Caloric restriction protects mitochondrial function with aging in skeletal and cardiac muscles. Rejuvenation Research, 9, 219–222.

    Article  CAS  PubMed  Google Scholar 

  • Hepple, R. T., Qin, M., Nakamoto, H., Goto, S. (2008). Caloric restriction optimizes the proteasome pathway with aging in rat plantaris muscle: implications for sarcopenia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1231–1237.

    CAS  PubMed  Google Scholar 

  • Hepple, R. T. & Vogell, J. E. (2004). Anatomic capillarization is maintained in relative excess of fiber oxidative capacity in some skeletal muscles of late middle aged rats. Journal of Applied Physiology, 96, 2257–2264.

    Article  PubMed  Google Scholar 

  • Hutter, E., Skovbro, M., Lener, B., Prats, C., Rabol, R., Dela, F., Jansen-Durr, P. (2007). Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell, 6, 245–256.

    Article  PubMed  Google Scholar 

  • Jackman, R. W., Kandarian, S. C. (2004). The molecular basis of skeletal muscle atrophy. AJP – Cell Physiology, 287, C834–C843.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, H. T. (2003). The mitochondrial theory of aging: dead or alive? Aging Cell, 2, 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Kayar, S. R., Hoppeler, H., Mermod, L., Weibel, E. R. (1988). Mitochondrial size and shape in equine skeletal muscle: a three-dimensional reconstruction study. Anatomical Record, 222, 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. M., Lopez, M. E., Weindruch, R., Aiken, J. M. (1998). Association of age-related mitochondrial abnormalities with skeletal muscle fiber atrophy. Free Radical Biology and Medicine, 25, 964–972.

    Article  CAS  PubMed  Google Scholar 

  • Lexell, J., Taylor, C. C., Sjostrom, M. (1988). What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. Journal of the Neurological Sciences, 84, 275–294.

    Article  CAS  PubMed  Google Scholar 

  • Ljubicic, V. & Hood, D. A. (2009). Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle. Aging Cell, 8, 394–404.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, D. A., Surek, J. T., Thomas, D. D., Thompson, L. V. (2001). Electron paramagnetic resonance reveals age-related myosin structural changes in rat skeletal muscle fibers. American Journal of Physiology – Cell Physiology, 280, C540–C547.

    CAS  PubMed  Google Scholar 

  • Ma, Y. S., Wu, S. B., Lee, W. Y., Cheng, J. S., Wei, Y. H. (2009). Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochimica et Biophysica Acta, 1790, 1021–1029.

    CAS  PubMed  Google Scholar 

  • Mansouri, A., Muller, F. L., Liu, Y., Ng, R., Faulkner, J., Hamilton, M., Richardson, A., Huang, T. T., Epstein, C. J., Van, R. H. (2006). Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mechanisms of Ageing and Development, 127, 298–306.

    Article  CAS  PubMed  Google Scholar 

  • Marzetti, E., Wohlgemuth, S. E., Lees, H. A., Chung, H. Y., Giovannini, S., Leeuwenburgh, C. (2008). Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mechanisms of Ageing and Development, 129, 542–549.

    Article  CAS  PubMed  Google Scholar 

  • Mathieu-Costello, O., Ju, Y., Trejo-Morales, M., Cui, L. (2005). Greater capillary-fiber interface per fiber mitochondrial volume in skeletal muscles of old rats. Journal of Applied Physiology, 99, 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Meredith, C. N., Frontera, W. R., Fisher, E. C., Hughes, V. A., Herland, J. C., Edwards, J., Evans, W. J. (1989). Peripheral effects of endurance training in young and old subjects. Journal of Applied Physiology, 66, 2844–2849.

    CAS  PubMed  Google Scholar 

  • Miwa, S., Lawless, C., von Zglinicki, T. (2008). Mitochondrial turnover in liver is fast in vivo and is accelerated by dietary restriction: application of a simple dynamic model. Aging Cell, 7, 920–923.

    Article  CAS  PubMed  Google Scholar 

  • Muller, F. L., Song, W., Jang, Y. C., Liu, Y., Sabia, M., Richardson, A., Van Remmen, H. (2007). Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 293, R1159–1168.

    CAS  PubMed  Google Scholar 

  • Navarro, A. & Boveris, A. (2007). The mitochondrial energy transduction system and the aging process. AJP – Cell Physiology, 292, C670–C686.

    Article  CAS  PubMed  Google Scholar 

  • Norrbom, J., Sundberg, C. J., Ameln, H., Kraus, W. E., Jansson, E., Gustafsson, T. (2004). PGC-1{a} mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. Journal of Applied Physiology, 96, 189–194.

    Article  CAS  PubMed  Google Scholar 

  • Ogata, T. & Yamasaki, Y. (1997). Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anatomical Record, 248, 214–223.

    Article  CAS  PubMed  Google Scholar 

  • Orlander, J. & Aniansson, A. (1980). Effects of physical training on skeletal muscle metabolism and ultrastructure in 70 to 75-year-old men. Acta Physiologica Scandinavica, 109, 149–154.

    Article  CAS  PubMed  Google Scholar 

  • Pollack, M. & Leeuwenburgh, C. (2001). Apoptosis and Aging: Role of the Mitochondria. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 56, B475–B482.

    CAS  Google Scholar 

  • Powers, S. K., Kavazis, A. N., DeRuisseau, K. C. (2005). Mechanisms of disuse muscle atrophy: role of oxidative stress. AJP – Regulatory, Integrative and Comparative Physiology, 288, R337–R344.

    Article  CAS  PubMed  Google Scholar 

  • Prochniewicz, E., Thomas, D. D., Thompson, L. V. (2005). Age-related decline in actomyosin function. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 60, 425–431.

    Google Scholar 

  • Raffaello, A., Laveder, P., Romualdi, C., Bean, C., Toniolo, L., Germinario, E., Megighian, A., Danieli-Betto, D., Reggiani, C., Lanfranchi, G. (2006). Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling. Physiological Genomics, 25, 60–74.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, U. F., Krustrup, P., Kjaer, M., Rasmussen, H. N. (2003). Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes of ATP formation and mitochondrial capacity. Pflugers Archiv, 446, 270–278.

    CAS  PubMed  Google Scholar 

  • Raue, U., Slivka, D., Minchev, K., Trappe, S. (2009). Improvements in whole muscle and myocellular function are limited with high-intensity resistance training in octogenarian women. Journal of Applied Physiology, 106, 1611–1617.

    Article  PubMed  Google Scholar 

  • Reznick, R. M., Zong, H., Li, J., Morino, K., Moore, I. K., Yu, H. J., Liu, Z. X., Dong, J., Mustard, K. J., Hawley, S. A., Befroy, D., Pypaert, M., Hardie, D. G., Young, L. H., Shulman, G. I. (2007). Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metabolism, 5, 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Rice, K. M. & Blough, E. R. (2006). Sarcopenia-related apoptosis is regulated differently in fast- and slow-twitch muscles of the aging F344/NxBN rat model. Mechanisms of Ageing and Development, 127, 670–679.

    Article  CAS  PubMed  Google Scholar 

  • Rooyackers, O. E., Adey, D. B., Ades, P. A., Nair, K. S. (1996). Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 93, 15364–15369.

    Article  CAS  PubMed  Google Scholar 

  • Rossiter, H. B., Howlett, R. A., Holcombe, H. H., Entin, P. L., Wagner, H. E., Wagner, P. D. (2005). Age is no barrier to muscle structural, biochemical and angiogenic adaptations to training up to 24 months in female rats. Journal de Physiologie, 565, 993–1005.

    Article  CAS  Google Scholar 

  • Sacheck, J. M., Hyatt, J. P., Raffaello, A., Jagoe, R. T., Roy, R. R., Edgerton, V. R., Lecker, S. H., Goldberg, A. L. (2007). Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. The FASEB Journal, 21, 140–155.

    Article  CAS  PubMed  Google Scholar 

  • Seo, A. Y., Xu, J., Servais, S., Hofer, T., Marzetti, E., Wohlgemuth, S. E., Knutson, M. D., Chung, H. Y., Leeuwenburgh, C. (2008). Mitochondrial iron accumulation with age and functional consequences. Aging Cell, 7, 706–716.

    Article  CAS  PubMed  Google Scholar 

  • Short, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Rizza, R. A., Coenen-Schimke, J. M., Nair, K. S. (2003). Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes, 52, 1888–1896.

    Article  CAS  PubMed  Google Scholar 

  • Short, K. R., Bigelow, M. L., Kahl, J., Singh, R., Coenen-Schimke, J., Raghavakaimal, S., Nair, K. S. (2005). Decline in skeletal muscle mitochondrial function with aging in humans. Proceedings of the National Academy of Sciences of the United States of America, 102, 5618–5623.

    Article  CAS  PubMed  Google Scholar 

  • Slivka, D., Raue, U., Hollon, C., Minchev, K., Trappe, S. (2008). Single muscle fiber adaptations to resistance training in old (>80 yr) men: Evidence for limited skeletal muscle plasticity. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R273–R280.

    CAS  PubMed  Google Scholar 

  • Stathokostas, L., Jacob-Johnson, S., Petrella, R. J., Paterson, D. H. (2004). Longitudinal changes in aerobic power in older men and women. Journal of Applied Physiology, 97, 781–789.

    Article  PubMed  Google Scholar 

  • Sugiyama, S., Takasawa, M., Hayakawa, M., Ozawa, T. (1993). Changes in skeletal muscle, heart and liver mitochondrial electron transport activities in rats and dogs of various ages. Biochemistry and Molecular Biology International, 30, 937–944.

    CAS  PubMed  Google Scholar 

  • Terada, S., Goto, M., Kato, M., Kawanaka, K., Shimokawa, T., Tabata, I. (2002). Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochemical and Biophysical Research Communications, 296, 350–354.

    Article  CAS  PubMed  Google Scholar 

  • Terman, A. & Brunk, U. T. (2004). Myocyte aging and mitochondrial turnover. Experimental Gerontology, 39, 701–705.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M. M., Vigna, C., Betik, A. C., Tupling, A. R., Hepple, R. T. (2009). Initiating treadmill exercise training in late middle age offers modest adaptations in Ca2+ handling but enhances protein oxidative damage in senescent rat skeletal muscle. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298, R1269–R1278.

    Google Scholar 

  • Thompson, L. V., Durand, D., Fugere, N. A., Ferrington, D. A. (2006). Myosin and actin expression and oxidation in aging muscle. Journal of Applied Physiology, 101(6), 1581–1587.

    Article  CAS  PubMed  Google Scholar 

  • Tonkonogi, M., Fernstrom, M., Walsh, B., Ji, L. L., Rooyackers, O., Hammarqvist, F., Wernerman, J., Sahlin, K. (2003). Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Archiv, 446, 261–269.

    CAS  PubMed  Google Scholar 

  • Vasilaki, A., Mansouri, A., Remmen, H., der Meulen, J. H., Larkin, L., Richardson, A. G., McArdle, A., Faulkner, J. A., Jackson, M. J. (2006). Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell, 5, 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Wanagat, J., Cao, Z., Pathare, P., Aiken, J. M. (2001). Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. The FASEB Journal, 15, 322–332.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell T. Hepple .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hepple, R.T. (2011). Alterations in Mitochondria and Their Impact in Aging Skeletal Muscle. In: Lynch, G. (eds) Sarcopenia – Age-Related Muscle Wasting and Weakness. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9713-2_7

Download citation

Publish with us

Policies and ethics