Skip to main content

Excitation-Contraction Coupling Regulation in Aging Skeletal Muscle

  • Chapter
  • First Online:
Sarcopenia – Age-Related Muscle Wasting and Weakness

Abstract

Aging is associated with decreasing strength that can lead to impaired performance of daily living activities in the elderly. Functional and structural decline in the neuromuscular system has been recognized as a cause of this impairment and loss of independence, but the age-related loss of strength is greater than the loss of muscle mass in mammals, including humans, and the underlying mechanisms remain only partially understood. This chapter focuses on skeletal muscle excitation-contraction uncoupling (ECU), external calcium-dependent skeletal muscle contraction, the role of JP-45 and other recently discovered molecules of the muscle T-tubule-sarcoplasmic reticulum junction (triad) in excitation-contraction coupling (ECC), the neural influence of skeletal muscle, and the role of trophic factors–particularly insulin-like growth factor-I (IGF-1)–in structural and functional modifications of the motor unit and the neuromuscular junction with aging. A better understanding of the triad proteins involved in muscle ECC and nerve/muscle interactions and their regulation will lead to more rational interventions to delay or prevent muscle weakness with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, G. R. & Mccue, S. A. (1998). Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol, 84, 1716–22.

    CAS  PubMed  Google Scholar 

  • Andersson, A. M., Olsen, M., Zhernosekov, D., Gaardsvoll, H., Krog, L., Linnemann, D., Bock, E. (1993). Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: a comparative study of newborn, adult and aged rats. Biochem J, 290(Pt 3), 641–8.

    CAS  PubMed  Google Scholar 

  • Anderson, A. A., Altafaj, X., Zheng, Z., Wang, Z. M., Delbono, O., Ronjat, M., Treves, S., Zorzato, F. (2006). The junctional SR protein JP-45 affects the functional expression of the voltage-dependent Ca2+ channel Cav1.1. J Cell Sci, 119, 2145–55.

    Article  CAS  PubMed  Google Scholar 

  • Balice-Gordon, R. J. (1997). Age-related changes in neuromuscular innervation. Muscle & Nerve, S5, S83–S87.

    Article  Google Scholar 

  • Barton-Davis, E. R., Shoturma, D. I., Musaro, A., Rosenthal, N., Sweeney, H. L. (1998). Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muslce function. Proceedings of the National Academy of Science, 95, 15603–15607.

    Article  CAS  Google Scholar 

  • Baumgartner, R. N., Koehler, K. M., Gallagher, D. (1998). Epidemiology of sarcopenia among the elderly in New Mexico. American Journal of Epidemiology, 147, 755–763.

    CAS  PubMed  Google Scholar 

  • Bergman, E., Ulfhake, B., Fundin, B. T. (2000). Regulation of NGF-family ligands and receptors in adulthood and senescence: correlation to degenerative and regenerative changes in cutaneous innervation. Eur J Neurosci, 12, 2694–706.

    Article  CAS  PubMed  Google Scholar 

  • Bezakova, G. & Lomo, T. (2001). Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AchR) aggregates in skeletal muscle fibers. J Cell Biol, 153, 1453–63.

    Article  CAS  PubMed  Google Scholar 

  • Bleunven, C., Treves, S., Jinyu, X., Leo, E., Ronjat, M., DE waard, M., Kern, G., Flucher, B. E., Zorzato, F. (2008). SRP-27 is a novel component of the supramolecular signalling complex involved in skeletal muscle excitation-contraction coupling. Biochem J, 411, 343–9.

    Article  CAS  PubMed  Google Scholar 

  • Bondy, C., Werner, H., JR Roberts, C. T., Leroith, D. (1992). Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience, 46, 909–23.

    Article  CAS  PubMed  Google Scholar 

  • Boulanger, L. & Poo, M. M. (1999). Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat Neurosci, 2, 346–51.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, S. V. & Faulkner, J. A. (1994). Skeletal muscle weakness in old age: underlying mechanisms. Medicine & Science in Sports & Exercise, 26, 432–9.

    Article  CAS  Google Scholar 

  • Buller, A. J., Eccles, J. C., Eccles, R. M. (1960a). Differentiation of fast and slow muscles in the cat hind limb. Journal of Physiology, 150, 399–416.

    CAS  PubMed  Google Scholar 

  • Buller, A. J., Eccles, J. C., Eccles, R. M. (1960b). Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. Journal of Physiology, 150, 417–439.

    CAS  PubMed  Google Scholar 

  • Carlson, B. M., Dedkov, E. I., Borisov, A. B., Faulkner, J. A. (2001). Skeletal muscle regeneration in very old rats. J Gerontol A Biol Sci Med Sci, 56, B224–33.

    CAS  PubMed  Google Scholar 

  • Carrasco, M., Jaimovich, E., Kemmerling, U., Hidalgo, C. (2004). Signal transduction and gene expression regulated by calcium release from internal stores in excitable cells. Biological Research, 37, 701–712.

    Article  PubMed  Google Scholar 

  • Ceballos, D., Cuadras, J., Verdu, E., Navarro, X. (1999). Morphometric and ultrastructural changes with ageing in mouse peripheral nerve. J Anat, 195(Pt 4), 563–76.

    Article  PubMed  Google Scholar 

  • Cederna, P. S., Asato, H., Gu, X., Van Der Meulen, J., Jr Kuzon, W. M., Carlson, B. M., Faulkner, J. A. (2001). Motor unit properties of nerve-intact extensor digitorum longus muscle grafts in young and old rats. J Gerontol A Biol Sci Med Sci, 56, B254–8.

    CAS  PubMed  Google Scholar 

  • Chakravarthy, M. V., Fiorotto, M. L., Schwartz, R. J., Booth, F. W. (2001). Long-term insulin-like growth factor-1 expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice. Mechanisms of Ageing and Development, 122, 1303–1320.

    Article  CAS  PubMed  Google Scholar 

  • Chaudari, N. & Beam, K. G. (1993). mRNA for cardiac calcium channel is expressed during development of skeletal muscle. Developmental Biology, 155, 507–515.

    Article  Google Scholar 

  • Coleman, M. E., Demayo, F., Yin, K. C., Lee, H. M., Geske, R., Montgomery, C., Schwartz, R. J. (1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. Journal of Biological Chemistry, 270, 12109–16.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo, E. M., Barry, J. A., Ribchester, R. R. (2000). Competition at silent synapses in reinnervated skeletal muscle. Nat Neurosci, 3, 694–700.

    Article  CAS  PubMed  Google Scholar 

  • Cowen, T. & Gavazzi, I. (1998). Plasticity in adult and ageing sympathetic neurons. Prog Neurobiol, 54, 249–88.

    Article  CAS  PubMed  Google Scholar 

  • Cross, D. J., Flexman, J. A., Anzai, Y., Maravilla, K. R., Minoshima, S. (2008). Age-related decrease in axonal transport measured by MR imaging in vivo. NeuroImage, 39, 915.

    Article  PubMed  Google Scholar 

  • Davies, A. M. (1996). The neurotrophic hypothesis: where does it stand? Philos Trans R Soc Lond B Biol Sci, 351, 389–94.

    Article  CAS  PubMed  Google Scholar 

  • Decary, S., Mouly, V., Hamida, C. B., Sautet, A., Barbet, J. P., Butler-Browne, G. S. (1997). Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther, 8, 1429–38.

    Article  CAS  PubMed  Google Scholar 

  • Delbono, O. (1992). Calcium current activation and charge movement in denervated mammalian skeletal muscle fibres. Journal of Physiology, 451, 187–203.

    CAS  PubMed  Google Scholar 

  • Delbono, O. (2002). Molecular Mechanisms and Therapeutics of the Deficit in Specific Force in Ageing Skeletal Muscle. Biogerontology, 3, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Delbono, O. (2003). Neural Control of Aging Skeletal Muscle. Aging Cell, 2, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Delbono, O. & CHU, A. (1995). Ca2+ release channels in rat denervated skeletal muscles. Experimental Physiology, 80, 561–74.

    CAS  PubMed  Google Scholar 

  • Delbono, O. & Stefani, E. (1993). Calcium current inactivation in denervated rat skeletal muscle fibres. Journal of Physiology, 460, 173–83.

    CAS  PubMed  Google Scholar 

  • Delbono, O., O’rourke, K. S., Ettinger, W. H. (1995). Excitation-calcium release uncoupling in aged single human skeletal muscle fibers. Journal of Membrane Biology, 148, 211–22.

    CAS  PubMed  Google Scholar 

  • Delbono, O., Renganathan, M., Messi, M. L. (1997). Excitation-Ca2+ release-contraction coupling in single aged human skeletal muscle fiber. Muscle and Nerve Supplement, 5, S88–92.

    Article  CAS  PubMed  Google Scholar 

  • Delbono, O., Xia, J., Treves, S., Wang, Z. M., Jimenez-Moreno, R., Payne, A. M., Messi, M. L., Briguet, A., Schaerer, F., Nishi, M., Takeshima, H., Zorzato, F. (2007). Loss of skeletal muscle strength by ablation of the sarcoplasmic reticulum protein JP45. Proc Natl Acad Sci U S A, 104, 20108–20113.

    Article  CAS  PubMed  Google Scholar 

  • Dobrowolny, G., Giacinti, C., Pelosi, L., Nicoletti, C., Winn, N., Barberi, L., Molinaro, M., Rosenthal, N., Musaro, A. (2005). Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol, 168, 193–9.

    Article  CAS  PubMed  Google Scholar 

  • Doherty, T. J., Vandervoort, A. A., Taylor, A. W., Brown, W. F. (1993). Effects of motor unit losses on strength in older men and women. Journal of Applied Physiology, 74, 868–74.

    Article  CAS  PubMed  Google Scholar 

  • Dulhunty, A. F. (2006). Excitation-contraction coupling from the 1950s into the new millennium. Clin Exp Pharmacol Physiol, 33, 763–72.

    Article  CAS  PubMed  Google Scholar 

  • Dulhunty, A. F. & Gage, P. W. (1985). Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles. J Physiol, 358, 75–89.

    CAS  PubMed  Google Scholar 

  • Dutta, C. (1997). Significance of sarcopenia in the elderly. Journal of Nutrition, 127, 992S–993S.

    CAS  PubMed  Google Scholar 

  • Edstrom, E., Altun, M., Bergman, E., Johnson, H., Kullberg, S., Ramirez-Leon, V., Ulfhake, B. (2007). Factors Contributing to neuromuscular impairment and sarcopenia during aging. Physiol Behav, 92, 129–35.

    Article  PubMed  CAS  Google Scholar 

  • Einsiedel, L. J. & Luff, A. R. (1992). Effect of partial denervation on motor units in the ageing rat medial gastrocnemius. Journal of the Neurological Sciences, 112, 178–184.

    Article  CAS  PubMed  Google Scholar 

  • Fahim, M. A. (1997). Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice. J Appl Physiol, 83, 59–66.

    CAS  PubMed  Google Scholar 

  • Faulkner, J. A., Brooks, S. V., Opiteck, J. A. (1993). Injury to skeletal muscle fibers during contractions: conditions of occurrence and prevention. Physical Therapy, 73, 911–921.

    CAS  PubMed  Google Scholar 

  • Finol, H. J., Lewis, D. M., Owens, R. (1981). The effects of denervation on contractile properties or rat skeletal muscle. J Physiol, 319, 81–92.

    CAS  PubMed  Google Scholar 

  • Frey, D., Schneider, C., Xu, L., Borg, J., Spooren, W., Caroni, P. (2000). Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. Journal of Neuroscience, 20, 2534–2542.

    CAS  PubMed  Google Scholar 

  • Frontera, W. R., Hughes, V. A., Fielding, R. A., Fiatarone, M. A., Evans, W. J., Roubenoff, R. (2000a). Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol, 88, 1321–6.

    CAS  PubMed  Google Scholar 

  • Frontera, W. R., Suh, D., Krivickas, L. S., Hughes, V. A., Goldstein, R., Roubenoff, R. (2000b). Skeletal muscle fiber quality in older men and women. Am J Physiol Cell Physiol, 279, C611–8.

    CAS  PubMed  Google Scholar 

  • Funakoshi, H., Belluardo, N., Arenas, E., Yamamoto, Y., Casabona, A., Persson, H., Ibanez, C. F. (1995). Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science, 268, 1495–9.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, A., Wreford, N., Pankhurst, J., Bailey, K. (2005). Continuous supply of the neurotrophins BDNF and NT-3 improve chick motor neuron survival in vivo. International Journal of Developmental Neuroscience, 23, 389.

    Article  CAS  PubMed  Google Scholar 

  • González, E. & Delbono, O. (2001a). Age-dependent fatigue in single intact fast- and slow-fibers from mouse EDL and soleus skeletal muscles. Mechanisms of Ageing and Development, 122, 1019–1032.

    Article  PubMed  Google Scholar 

  • González, E. & Delbono, O. (2001b). Recovery from fatigue in fast and slow single intact skeletal muscle fibers from aging mouse. Muscle Nerve, 24, 1219–1224.

    Article  Google Scholar 

  • González, E. & Delbono, O. (2001c) Sustained overexpression of IGF-1 prevents age-dependent decline in skeletal muscle fiber force and intracellular calcium. Society for Neuroscience, 31st Annual Meeting, 519.13.

    Google Scholar 

  • Gonzalez, A., Kirsch, W. G., Shirokova, N., Pizarro, G., Brum, G., Pessah, I. N., Stern, M. D., Cheng, H., Rios, E. (2000a). Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle. Proc Natl Acad Sci U S A, 97, 4380–5.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, E., Messi, M. L., Delbono, O. (2000b). The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging. J Membr Biol, 178, 175–83.

    Article  CAS  PubMed  Google Scholar 

  • González, E., Messi, M. L., Zheng, Z., Delbono, O. (2003). Insulin-like growth factor-1 prevents age-related decrease in specific force and intracellular Ca2+ in single intact muscle fibres from transgenic mice. J Physiol, 552, 833–44.

    Article  PubMed  CAS  Google Scholar 

  • Gosztonyi, G., Naschold, U., Grozdanovic, Z., Stoltenburg-Didinger, G., Gossrau, R. (2001). Expression of Leu-19 (CD56, N-CAM) and nitric oxide synthase (NOS) I in denervated and reinnervated human skeletal muscle. Microsc Res Tech, 55, 187–97.

    Article  CAS  PubMed  Google Scholar 

  • Greensmith, L. & Vrbova, G. (1996). Motoneurone survival: a functional approach. Trends Neurosci, 19, 450–5.

    Article  CAS  PubMed  Google Scholar 

  • Hammarberg, H., Risling, M., Hokfelt, T., Cullheim, S., Piehl, F. (1998). Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries. Journal of Comparative Neurology, 400, 57–72.

    Article  CAS  PubMed  Google Scholar 

  • Hashizume, K., Kanda, K., Burke, R. (1988). Medial gastrocnemius motor nucleus in the rat: Age-related changes in the number and size of motoneurons. The Journal of Comparative Neurology, 269, 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Hook, P., Li, X., Sleep, J., Hughes, S., Larsson, L. (1999). In vitro motility speed of slow myosin extracted from single soleus fibres from young and old rats. Journal of Physiology, 520, 463–71.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, J. M. (1998). Lumbar motor neuron size and number is affected by age in male F344 rats. Mechanisms of Aging and Development, 106, 205–216.

    Article  CAS  Google Scholar 

  • Jacob, J. M. & Robbins, N. (1990). Age differences in morphology of reinnervation of partially denervated mouse muscle. J Neurosci, 10, 1530–40.

    CAS  PubMed  Google Scholar 

  • Johnson, H., Mossberg, K., Arvidsson, U., Piehl, F., Hokfelt, T., Ulfhake, B. (1995). Increase in alpha-CGRP and GAP-43 in aged motoneurons: A study of peptides, growth factors, and ChAT mRNA in the lumbar spinal cord of senescent rats with symptoms of hindlimb incapacities. The Journal of Comparative Neurology, 359, 69–89.

    Article  CAS  PubMed  Google Scholar 

  • Kadhiresan, V. A., Hassett, C. A., Faulkner, J. A. (1996). Properties of single motor units in medial gastrocnemius muscles of adult and old rats. Journal of Physiology, 493, 543–52.

    CAS  PubMed  Google Scholar 

  • Kallen, R. G., Sheng, Z. H., Yang, J., Chen, L. Q., Rogart, R. B., Barchi, R. L. (1990). Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron, 4, 233–42.

    Article  CAS  PubMed  Google Scholar 

  • Kanda, K. & Hashizume, K. (1989). Changes in properties of the medial gastrocnemius motor units in aging rats. Journal of Neurophysiology, 1989, 737–746.

    Google Scholar 

  • Kanda, K. & Hashizume, K. (1992). Factors causing difference in force output among motor units in the rat medial gastrocnemius muscle. Journal of Physiology, 448, 677–695.

    CAS  PubMed  Google Scholar 

  • Kanda, K. & Hashizume, K. (1998). Effects of long-term physical exercise on age-related changes of spinal motoneurons and peripheral nerves in rats. Neurosci Res, 31, 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Kawabuchi, M., Zhou, C. J., Wang, S., Nakamura, K., Liu, W. T., Hirata, K. (2001). The spatiotemporal relationship among Schwann cells, axons and postsynaptic acetylcholine receptor regions during muscle reinnervation in aged rats. Anat Rec, 264, 183–202.

    Article  CAS  PubMed  Google Scholar 

  • Kent-Braun, J. A. & Ng, A. V. (1999). Specific strength and voluntary muscle activation in young and elderly women and men. Journal of Applied Physiology, 87, 22–9.

    CAS  PubMed  Google Scholar 

  • Kerezoudi, E. & Thomas, P. K. (1999). Influence of age on regeneration in the peripheral nervous system. Gerontology, 45, 301–6.

    Article  CAS  PubMed  Google Scholar 

  • Kyselovic, J., Leddy, J. J., Ray, A., Wigle, J., Tuana, B. S. (1994). Temporal differences in the induction of dihydropyridine receptor subunits and ryanodine receptors during skeletal muscle development. Journal of Biological Chemistry, 269, 21770–21777.

    CAS  PubMed  Google Scholar 

  • Larsson, L. (1995). Motor units: remodeling in aged animals. Journals of Gerontology. Series A, Biological Sciences Medical Sciences, 50, 91–5.

    Google Scholar 

  • Larsson, L. & Ansved, T. (1995). Effects of ageing on the motor unit. Progress in Neurobiology, 45, 397–458.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, L., Ansved, T., Edstrom, L., Gorza, L., Schiaffino, S. (1991). Effects of age on physiological, immunohistochemical and biochemical properties of fast-twitch single motor units in the rat. Journal of Physiology, 443, 257–275.

    CAS  PubMed  Google Scholar 

  • Lauretani, F., Bandinelli, S., Bartali, B., Di Iorio, A., Giacomini, V., Corsi, A. M., Guralnik, J. M., Ferrucci, L. (2006). Axonal degeneration affects muscle density in older men and women. Neurobiol Aging, 27, 1145–54.

    Article  PubMed  Google Scholar 

  • Leßmann, V. & Brigadski, T. (2009) Mechanisms, locations, and kinetics of synaptic BDNF secretion: An update. Neurosci Res, 65, 316–317.

    Google Scholar 

  • Lexell, J. (1995). Human aging, muscle mass, and fiber type composition. Journals of Gerontology. Series A, Biological Sciences Medical Sciences, 50, 11–16.

    Google Scholar 

  • Liu, R.-H., Bertolotto, C., Engelhardt, J. K., Chase, M. H. (1996). Age-related changes in soma size of neurons in the spinal cord motor column of the cat. Neuroscience Letters, 211, 163–166.

    Article  CAS  PubMed  Google Scholar 

  • Loeser, R. F. & Delbono, O. (2009). The musculoskeletal and joint system. In Halter, J. B., Ouslander, J. G., Tinetti, M. E., Studenski, S., High, K. P., Asthana, S. (Eds.), Hazzard’s Geriatric Medicine and Gerontology (6th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Lohof, A. M., Ip, N. Y., Poo, M. M. (1993). Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature, 363, 350–3.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, D. A., Thomas, D. D., Thompson, L. V. (2002). Force generation, but not myosin ATPase activity, declines with age in rat muscle fibers. Am J Physiol Cell Physiol, 283, C187–92.

    CAS  PubMed  Google Scholar 

  • Lynch, N. A., Metter, E. J., Lindle, R. S., Fozard, J. L., Tobin, J. D., Roy, T. A., Fleg, J. L., Hurley, B. F. (1999). Muscle quality I. Age-associated differences between arm and leg muscle groups. Journal of Applied Physiology, 86, 188–94.

    CAS  PubMed  Google Scholar 

  • Mathews, L. S., Hammer, R. E., Behringer, R. R., D’ercole, A. J., Bell, G. I., Brinster, R. L., Palmiter, R. D. (1988). Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology, 123, 2827–2833.

    Article  CAS  PubMed  Google Scholar 

  • Mcquarrie, I. G., Brady, S. T., Lasek, R. J. (1989). Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging. Neurobiol Aging, 10, 359–65.

    Article  CAS  PubMed  Google Scholar 

  • Messi, M. L. & Delbono, O. (2003). Target-derived trophic effect on skeletal muscle innervation in senescent mice. Journal of Neuroscience, 23, 1351–1359.

    CAS  PubMed  Google Scholar 

  • Messi, M. L., Clark, H. M., Prevette, D. M., Oppenheim, R. W., Delbono, O. (2007). The lack of effect of specific overexpression of IGF-1 in the central nervous system or skeletal muscle on pathophysiology in the G93A SOD-1 mouse model of ALS. Exp Neurol, 207, 52–63.

    Article  CAS  PubMed  Google Scholar 

  • Moreno, R., Messi, M., Zheng, Z., Wang, Z.-M., Ye, P., J, D. E. Delbono, O. (2006) Role of sustained overexpression of central nervous system IGF-1 in the age-dependent decline of mouse excitation-contraction coupling. Journal of Membrane Biology, 212, 147–161.

    Google Scholar 

  • Musaro, A., Mccullagh, K. J., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton-Davis, E. R., Sweeney, H. L., Rosenthal, N. (2001). Localized IGF-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics, 27, 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Neff, N. T., Prevette, D. M., Houenou, L. J., Lewis, M. E., Glicksman, M. A., Yin, Q.-W., Oppenheim, R. W. (1993). Insulin-like growth factors: Putative muscle-derived trophic agents that promote motoneuron survival. Journal of Neurobiology, 24, 1578–1588.

    Article  CAS  PubMed  Google Scholar 

  • O’kusky, J. R., Ye, P., D’ercole, J. (2000). Insulin-Like growth factor-1 promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. The Journal of Neuroscience, 15, 8435–8442.

    Google Scholar 

  • Orike, N., Thrasivoulou, C., Wrigley, A., Cowen, T. (2001). Differential regulation of survival and growth in adult sympathetic neurons: an in vitro study of neurotrophin responsiveness. J Neurobiol, 47, 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Owino, W., Yang, S. Y., Goldspink, G. (2001). Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1 (MGF) in response to mechanical overload. FEBS Letters, 505, 259–263.

    Article  CAS  PubMed  Google Scholar 

  • Pappone, P. A. (1980). Voltage-clamp experiments in normal and denervated mammalian ­skeletal muscle fibres. J Physiol, 306, 377–410.

    CAS  PubMed  Google Scholar 

  • Pauwels, P. J., Van Assouw, H. P., Leysen, J. E. (1987). Depolarization of chick ­myotubes triggers the appearance of (+)-[3H]PN 200-110-Binding Sites. Molecular Pharmacology, 32, 785–791.

    CAS  PubMed  Google Scholar 

  • Payne, A. M. & Delbono, O. (2004). Neurogenesis of excitation-contraction uncoupling in aging skeletal muscle. Exerc Sport Sci Rev, 32, 36–40.

    Article  PubMed  Google Scholar 

  • Payne, A. M., Zheng, Z., Gonzalez, E., Wang, Z. M., Messi, M. L., Delbono, O. (2004). External Ca2+-dependent excitation-contraction coupling in a population of ageing mouse skeletal muscle fibres. Journal of Physiology, 560(1), 137–157.

    Article  CAS  PubMed  Google Scholar 

  • Payne, A. M., Messi, M. L., Zheng, Z., Delbono, O. (2006). Motor neuron targeting of IGF-1 attenuates age-related external Ca2+-dependent skeletal muscle contraction in ­senescent mice. Journal of Physiology, 570, 283–294.

    CAS  PubMed  Google Scholar 

  • Payne, A. M., Messi, M. L., Zheng, Z., Delbono, O. (2007). Motor neuron targeting of IGF-1 attenuates age-related external Ca(2+)-dependent skeletal muscle contraction in ­senescent mice. Exp Gerontol, 42, 309–19.

    Article  CAS  PubMed  Google Scholar 

  • Payne, A. M., Jimenez-Moreno, R., Wang, Z. M., Messi, M. L., Delbono, O. (2009). Role of Ca2+, Membrane Excitability, and Ca2+ Stores in Failing Muscle Contraction with Aging. Experimental Gerontology, 44, 261–273.

    Article  CAS  PubMed  Google Scholar 

  • Pereon, Y., Navarro, J., Hamilton, M., Booth, F. W., Palade, P. (1997a). Chronic stimulation differentially modulates expression of mRNA for dihydropyridine receptor ­isoforms in rat fast twitch skeletal muscle. Biochemical Biophysical Research Communications, 235, 217–222.

    Article  CAS  Google Scholar 

  • Pereon, Y., Sorrentino, V., Dettbarn, C., Noireaud, J., Palade, P. (1997b). Dihydropyridine receptor and ryanodine receptor gene expression in long-term denervated rat muscles. Biochemical and Biophysical Research Communications, 240, 612–617.

    Article  CAS  PubMed  Google Scholar 

  • Personius, K. E. & Balice-Gordon, R. J. (2000). Activity-dependent editing of neuromuscular synaptic connections. Brain Res Bull, 53, 513–22.

    Article  CAS  PubMed  Google Scholar 

  • Pette, D. & Staron, R. S. (2001). Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol, 115, 359–72.

    CAS  PubMed  Google Scholar 

  • Powers, S. K. & Jackson, M. J. (2008). Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev., 88, 1243–1276.

    Article  CAS  PubMed  Google Scholar 

  • Pu, S. F., Zhuang, H. X., Marsh, D. J., Ishii, D. N. (1999). Time-dependent alteration of insulin-like growth factor gene expression during nerve regeneration in regions of muscle enriched with neuromuscular junctions. Brain Research. Molecular Brain Research, 63, 207–16.

    Article  CAS  PubMed  Google Scholar 

  • Rader, E. P. & Faulkner, J. A. (2006). Effect of aging on the recovery following contraction-induced injury in muscles of female mice. J Appl Physiol, 101, 887–892.

    Article  PubMed  Google Scholar 

  • Ray, A., Kyselovic, J., Leddy, J. J., Wigle, J., Jasmin, B. J., Tuana, B. S. (1995). Regulation of dihydropyridine and ryanodine receptor gene expression in skeletal muscle. Role of nerve, protein kinase C and cAMP pathways. The Journal of Biological Chemistry, 270, 25837–25844.

    Article  CAS  PubMed  Google Scholar 

  • Redfern, P., Lundh, H., Thesleff, S. (1970). Tetrodotoxin resistant action potentials in denervated rat skeletal muscle. Eur J Pharmacol, 11, 263–5.

    Article  CAS  PubMed  Google Scholar 

  • Renganathan, M., Sonntag, W. E., Delbono, O. (1997). L-type Ca2+ channel-insulin-like growth factor-1 receptor signaling impairment in aging rat skeletal muscle. Biochemical Biophysical Research Communications, 235, 784–9.

    Article  CAS  Google Scholar 

  • Renganathan, M., Messi, M. L., Delbono, O. (1998). Overexpression of IGF-1 ­exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. Journal of Biological Chemistry, 273, 28845–28851.

    Article  CAS  PubMed  Google Scholar 

  • Rind, H. B. & Von Bartheld, C. S. (2002). Target-derived cardiotrophin-1 and insulin-like growth factor-I promote neurite growth and survival of developing oculomotor neurons. Mol Cell Neurosci, 19, 58–71.

    Article  CAS  PubMed  Google Scholar 

  • Ryall, J., Schertzer, J., Lynch, G. (2008). Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology, 9, 213.

    Article  CAS  PubMed  Google Scholar 

  • Saborido, A., Molano, F., Moro, G., Megias, A. (1995). Regulation of dihydropyridine receptor levels in skeletal and cardiac muscle by exercise training. Pflugers Archives- European Journal of Physiology, 429, 364–369.

    Article  CAS  Google Scholar 

  • Salvatori, S., Damiani, E., Zorzato, F., Volpe, P., Pierobon, S., Quaglino, D., Salviati, G., Margreth, A. (1988). Denervation-induced proliferative changes of triads in rabbit skeletal muscle. Muscle Nerve, 11, 1246–1259.

    Article  CAS  Google Scholar 

  • Schinder, A. F. & Poo, M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci, 23, 639–45.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, M. F. & Chandler, W. K. (1973). Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature, 242, 244–6.

    Article  CAS  PubMed  Google Scholar 

  • Shavlakadze, T., Winn, N., Rosenthal, N., Grounds, M. D. (2005). Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res, 15, 4–18.

    Article  CAS  PubMed  Google Scholar 

  • Shimuta, M., Komazaki, S., Nishi, M., Iino, M., Nakagawara, K., Takeshima, H. (1998). Structure and expression of mitsugumin29 gene. FEBS Lett, 431, 263–7.

    Article  CAS  PubMed  Google Scholar 

  • Straub, V. & Campbell, K. P. (1997). Muscular dystrophies and the dystrophin-glycoprotein complex. Curr Opin Neurol, 10, 168–75.

    Article  CAS  PubMed  Google Scholar 

  • Tabata, H., Ikegami, H., Kariya, K. (2000). A parallel comparison of age-related peripheral nerve changes in three different strains of mice. Exp Anim, 49, 295–9.

    Article  CAS  PubMed  Google Scholar 

  • Takeshima, H., Shimuta, M., Komazaki, S., Ohmi, K., Nishi, M., Iino, M., Miyata, A., Kangawa, K. (1998). Mitsugumin29, a novel synaptophysin family member from the triad junction in skeletal muscle. Biochem J, 331(Pt 1), 317–22.

    CAS  PubMed  Google Scholar 

  • Takeshima, H., Komazaki, S., Nishi, M., Iino, M., Kangawa, K. (2000). Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell, 6, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Treves, S., Feriotto, G., Moccagatta, L., Gambari, R., Zorzato, F. (2000). Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco(endo)plasmic reticulum membrane. J Biol Chem, 275, 39555–68.

    Article  CAS  PubMed  Google Scholar 

  • Treves, S., Vukcevic, M., Maj, M., Thurnheer, R., Mosca, B. Zorzato, F. (2009) Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles. J Physiol, 587, 3071–3079.

    Google Scholar 

  • Trimmer, J. S., Cooperman, S. S., Tomiko, S. A., Zhou, J. Y., Crean, S. M., Boyle, M. B., Kallen, R. G., Sheng Z. H., Barchi, R. L., Sigworth, F. J., Goodman, R. H., Agnew, W. S., Mandel, G. (1989). Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron, 3, 33–49.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, B. S., Marsh, D. R., Hamilton, M. T., Booth, F. W. (1995). Strength and aerobic training attenuate muscle wasting and improve resistance to the development of disability with aging. J Gerontol A Biol Sci Med Sci, 50 Spec No, 113–9.

    CAS  PubMed  Google Scholar 

  • Urbancheck, M. G., Picken, E. B., Kalliainen, L. K., Kuzon, W. M. (2001). Specific force deficit in skeletal muscles of old rats is partially explained by the existence of denervated muscle fibers. Journal of Gerontology: Biological Sciences, 56A, B191–B198.

    Google Scholar 

  • Verdu, E., Ceballos, D., Vilches, J. J., Navarro, X. (2000). Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst, 5, 191–208.

    Article  CAS  PubMed  Google Scholar 

  • Vergani, L., Di Giulio, A. M., Losa, M., Rossoni, G., Muller, E. E., Gorio, A. (1998). Systemic administration of insulin-like growth factor decreases motor neuron cell death and promotes muscle reinnervation. Journal of Neuroscience Research, 54, 840–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Berninger, B., Poo, M. (1998). Localized synaptic actions of neurotrophin-4. J Neurosci, 18, 4985–92.

    CAS  PubMed  Google Scholar 

  • Wang, Z.-M., Messi, M. L., Delbono, O. (2000). L-type Ca2+ channel charge movement and intracellular Ca2+ in skeletal muscle fibers from aging mice. Biophysical Journal, 78, 1947–1954.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.-M., Messi, M. L., Delbono, O. (2002). Sustained overexpression of IGF-1 prevents age-dependent decrease in charge movement and intracellular calcium in mouse skeletal muscle. Biophysical Journal, 82, 1338–1344.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. M., Zheng, Z., Messi, M. L., Delbono, O. (2005). Extension and magnitude of denervation in skeletal muscle from ageing mice. J Physiol, 565, 757–64.

    Article  CAS  PubMed  Google Scholar 

  • Weindruch, R. (1995). Interventions based on the possibility that oxidative stress contributes to sarcopenia. J Gerontol A Biol Sci Med Sci, 50, 157–61.

    PubMed  Google Scholar 

  • White, M. M., Chen, L. Q., Kleinfield, R., Kallen, R. G., Barchi, R. L. (1991). SkM2, a Na+ channel cDNA clone from denervated skeletal muscle, encodes a tetrodotoxin-insensitive Na+ channel. Mol Pharmacol, 39, 604–8.

    CAS  PubMed  Google Scholar 

  • Winograd, C. H., Gerety, M. B., Chung, M., Goldstein, M. K., Dominguez, F. J., Vallone, R. (1991). Screening for frailty: criteria and prefictors of outcomes. Journal of the American Geriatrics Society, 39, 778–784.

    CAS  PubMed  Google Scholar 

  • Yang, J. S., Sladky, J. T., Kallen, R. G., Barchi, R. L. (1991). TTX-sensitive and TTX-insensitive sodium channel mRNA transcripts are independently regulated in adult ­skeletal muscle after denervation. Neuron, 7, 421–7.

    Article  CAS  PubMed  Google Scholar 

  • Yazawa, M., Ferrante, C., Feng, J., Mio, K., Ogura, T., Zhang, M., Lin, P. H., Pan, Z., Komazaki, S., Kato, K., Nishi, M., Zhao, X., Weisleder, N., Sato, C., Ma, J., Takeshima, H. (2007). TRIC channels are essential for Ca2+ handling in intracellular stores. Nature, 448, 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Ye, P., Xing, Y., Dai, Z., D’ercole, J. (1996). In vivo actions of insulin-like growth factor-I (IGF-1) on cerebellum development in transgenic mice: evidence that IGF-1 increases ­proliferation of granule cells progenitors. Developmental Brain Research, 95, 44–54.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Goto, N., Suzuki, M., Ke, M. (1996). Age-related reductions in number and size of anterior horn cells at C6 level of the human spinal cord. Okajimas Folia Anatomica Japonica, 73, 171–7.

    CAS  PubMed  Google Scholar 

  • Zheng, Z., Messi, M. L., Delbono, O. (2001). Age-dependent IGF-1 regulation of gene transcription of Ca2+ channels in skeletal muscle. Mechanisms of Aging and Development, 122, 373–384.

    Article  CAS  Google Scholar 

  • Zheng, Z., Wang, Z.-M., Delbono, O. (2002). Charge movement and transcription ­regulation of L-type calcium channel alpha-1S in skeletal muscle cells. Journal of Physiology, 540, 397–409.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Results reported in this article were obtained with the support of the National Institutes of Health/National Institute on Aging (AG15820, AG13934, and AG033385) and Muscular Dystrophy Association of America’s grants to Osvaldo Delbono and the Wake Forest University Claude D. Pepper Older Americans Independence Center (P30-AG21332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Delbono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Delbono, O. (2011). Excitation-Contraction Coupling Regulation in Aging Skeletal Muscle. In: Lynch, G. (eds) Sarcopenia – Age-Related Muscle Wasting and Weakness. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9713-2_6

Download citation

Publish with us

Policies and ethics