Skip to main content

Role of Myostatin in Skeletal Muscle Growth and Development: Implications for Sarcopenia

  • Chapter
  • First Online:
Sarcopenia – Age-Related Muscle Wasting and Weakness

Abstract

Myostatin is a secreted growth and differentiating factor that belongs to TGF-β super-family. Myostatin is expressed in skeletal muscle predominantly. Low levels of myostatin expression are seen in heart, adipose tissue and mammary gland. Naturally occurring mutations in bovine, ovine, canine and human myostatin gene or inactivation of the murine myostatin gene lead to an increase in muscle mass due to hyperplasia. Molecularly, myostatin has been shown to regulate muscle growth not only by controlling myoblast proliferation and differentiation during fetal myogenesis, but also by regulating satellite cell activation and self-renewal postnatally. Consistent with the molecular genetic studies, injection of several myostatin blockers including Follistatin, myostatin antibodies and the Prodomain of myostatin have all been independently shown to increase muscle regeneration and growth in muscular dystrophy mouse models of muscle wasting. Furthermore, prolonged absence of myostatin in mice has also been shown to reduce sarcopenic muscle loss, due to efficient satellite cell activation and regeneration of skeletal muscle in aged mice. Similarly, treatment of aged mice with Mstn-ant 1 also increased satellite cell activation and enhanced the efficiency of muscles to regenerate. Given that antagonism of myostatin leads to significant increase in postnatal muscle growth, we propose that myostatin antagonists have tremendous therapeutic value in alleviating sarcopenic muscle loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, D. L. & Unterman, T. G. (2007). Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. American Journal of Physiology. Cell Physiology, 292, C188–C199.

    Article  CAS  PubMed  Google Scholar 

  • Allen, R. E., Sheehan, S. M., Taylor, R. G., Kendall, T. L., Rice, G. M. (1995). Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. Journal of Cellular Physiology, 165, 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Alnaqeeb, M. A. & Goldspink, G. (1987). Changes in fibre type, number and diameter in developing and ageing skeletal muscle. Journal of Anatomy, 153, 31–45.

    CAS  PubMed  Google Scholar 

  • Amthor, H., Nicholas, G., Mckinnell, I., Kemp, C. F., Sharma, M., Kambadur, R., Patel, K. (2004). Follistatin complexes myostatin and antagonises myostatin-mediated inhibition of myogenesis. Developmental Biology, 270, 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Amthor, H., Otto, A., Macharia, R., Mckinnell, I., Patel, K. (2006). Myostatin imposes reversible quiescence on embryonic muscle precursors. Developmental Dynamics, 235, 672–680.

    Article  CAS  PubMed  Google Scholar 

  • Amthor, H., Otto, A., Vulin, A., Rochat, A., Dumonceaux, J., Garcia, L., Mouisel, E., Hourde, C., Macharia, R., Friedrichs, M., Relaix, F., Zammit, P. S., Matsakas, A., Patel, K., Partridge, T. (2009). Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proceedings of the National Academy of Sciences of the United States of America, 106, 7479–7484.

    Article  CAS  PubMed  Google Scholar 

  • Bakkar, N., Wackerhage, H., Guttridge, D. C. (2005). Myostatin and NF-κB regulate skeletal myogenesis through distinct signaling pathways. Signal Transduction, 5, 202–210.

    Article  CAS  Google Scholar 

  • Bartoli, M., Poupiot, J., Vulin, A., Fougerousse, F., Arandel, L., Daniele, N., Roudaut, C., Noulet, F., Garcia, L., Danos, O., Richard, I. (2007). Aav-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. Gene Therapy, 14, 733–740.

    Article  CAS  PubMed  Google Scholar 

  • Barton-Davis, E. R., Shoturma, D. I., Musaro, A., Rosenthal, N., Sweeney, H. L. (1998). Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proceedings of the National Academy of Sciences of the United States of America, 95, 15603–15607.

    Article  CAS  PubMed  Google Scholar 

  • Bass, J., Oldham, J., Sharma, M., Kambadur, R. (1999). Growth factors controlling muscle development. Domestic Animal Endocrinology, 17, 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, A. P., Ibebunjo, C., Grasser, W. A., Paralkar, V. M. (2003). Myostatin expression in age and denervation-induced skeletal muscle atrophy. Journal of Musculoskeletal & Neuronal Interactions, 3, 8–16.

    CAS  Google Scholar 

  • Benabdallah, B. F., Bouchentouf, M., Tremblay, J. P. (2005). Improved success of myoblast transplantation in mdx mice by blocking the myostatin signal. Transplantation, 79, 1696–1702.

    Article  CAS  PubMed  Google Scholar 

  • Berry, C., Thomas, M., Langley, B., Sharma, M., Kambadur, R. (2002). Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. American Journal of Physiology, 283, C135–C141.

    Google Scholar 

  • Bogdanovich, S., Krag, T. O., Barton, E. R., Morris, L. D., Whittemore, L. A., Ahima, R. S., Khurana, T. S. (2002). Functional improvement of dystrophic muscle by myostatin blockade. Nature, 420, 418–421.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanovich, S., Perkins, K. J., Krag, T. O., Whittemore, L. A., Khurana, T. S. (2005). Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. The FASEB Journal, 19, 543–549.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanovich, S., Mcnally, E. M., Khurana, T. S. (2007). Myostatin blockade improves function but not histopathology in a murine model of limb-girdle muscular dystrophy 2C. Muscle & Nerve, 37, 308–316.

    Article  CAS  Google Scholar 

  • Boman, I. A. & Vage, D. I. (2009). An insertion in the coding region of the myostatin (MSTN) gene affects carcass conformation and fatness in the Norwegian Spaelsau (Ovis aries). BMC Res Notes, 2, 98.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, C. J., Booth, F. W., Gordon, S. E. (1999). Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. The American Journal of Physiology, 277, R601–R606.

    CAS  PubMed  Google Scholar 

  • Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., Caiment, F., Elsen, J. M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C., Georges, M. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38, 813–818.

    Article  CAS  PubMed  Google Scholar 

  • Conboy, I. M., Conboy, M. J., Smythe, G. M., Rando, T. A. (2003). Notch-mediated restoration of regenerative potential to aged muscle. Science, 302, 1575–1577.

    Article  CAS  PubMed  Google Scholar 

  • Darin, N. & Tulinius, M. (2000). Neuromuscular disorders in childhood: A descriptive epidemiological study from western Sweden. Neuromuscular Disorders, 10, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Dasarathy, S., Dodig, M., Muc, S. M., Kalhan, S. C., Mccullough, A. J. (2004). Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat. American Journal of Physiology Gastrointestinal and Liver Physiology, 287(6), G1124–G1130.

    Article  CAS  PubMed  Google Scholar 

  • Durieux, A. C., Amirouche, A., Banzet, S., Koulmann, N., Bonnefoy, R., Pasdeloup, M., Mouret, C., Bigard, X., Peinnequin, A., Freyssenet, D. (2007). Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. Endocrinology, 148, 3140–3147.

    Article  CAS  PubMed  Google Scholar 

  • Emery, A. E. (1991). Population frequencies of inherited neuromuscular diseases – a world survey. Neuromuscular Disorders, 1, 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Fainsod, A., Deissler, K., Yelin, R., Marom, K., Epstein, M., Pillemer, G., Steinbeisser, H., Blum, M. (1997). The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mechanisms of Development, 63, 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Flanigan, K. M., Von Niederhausern, A., Dunn, D. M., Alder, J., Mendell, J. R., Weiss, R. B. (2003). Rapid direct sequence analysis of the dystrophin gene. American Journal of Human Genetics, 72, 931–939.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, D., Jackman, M., Bishop, A., Thomas, M., Kambadur, R., Sharma, M. (2006). Myostatin auto-regulates its expression by feedback loop through Smad7 dependent mechanism. Journal of Cellular Physiology, 206, 264–272.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, M. C. & Schultz, E. (1983). Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle & Nerve, 6, 574–580.

    Article  CAS  Google Scholar 

  • Gilson, H., Schakman, O., Kalista, S., Lause, P., Tsuchida, K., Thissen, J. P. (2009). Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. American Journal of Physiology. Endocrinology and Metabolism, 297, E157–E164.

    Article  CAS  PubMed  Google Scholar 

  • Girgenrath, S., Song, K., Whittemore, L. A. (2005). Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle & Nerve, 31, 34–40.

    Article  CAS  Google Scholar 

  • Gonzalez-Cadavid, N. F., Taylor, W. E., Yarasheski, K., Sinha-Hikim, I., Ma, K., Ezzat, S., Shen, R., Lalani, R., Asa, S., Mamita, M., Nair, G., Arver, S., Bhasin, S. (1998). Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proceedings of the National Academy of Sciences of the United States of America, 95, 14938–14943.

    Article  CAS  PubMed  Google Scholar 

  • Grimby, G., Danneskiold-Samsoe, B., Hvid, K., Saltin, B. (1982). Morphology and enzymatic capacity in arm and leg muscles in 78–81 year old men and women. Acta Physiologica Scandinavica, 115, 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Grobet, L., Poncelet, D., Royo, L. J., Brouwers, B., Pirottin, D., Michaux, C., Menissier, F., Zanotti, M., Dunner, S., Georges, M. (1998). Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome, 9, 210–213.

    Article  CAS  PubMed  Google Scholar 

  • Grobet, L., Pirottin, D., Farnir, F., Poncelet, D., Royo, L. J., Brouwers, B., Christians, E., Desmecht, D., Coignoul, F., Kahn, R., Georges, M. (2003). Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis, 35, 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., Elledge, S. J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin- dependent kinases. Cell, 75, 805–816.

    Article  CAS  PubMed  Google Scholar 

  • Hata, A., Lagna, G., Massague, J., Hemmati-Brivanlou, A. (1998). Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes & Development, 12, 186–197.

    Article  CAS  Google Scholar 

  • Hawke, T. J. & Garry, D. J. (2001). Myogenic satellite cells: Physiology to molecular biology. Journal of Applied Physiology, 91, 534–551.

    CAS  PubMed  Google Scholar 

  • Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y. Y., Grinnell, B. W., Richardson, M. A., Topper, J. N., Gimbrone, M. A., Jr, Wrana, J. L., Falb, D. (1997). The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell, 89, 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou, A., Kelly, O. G., Melton, D. A. (1994). Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell, 77, 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Hickson, R. C., Czerwinski, S. M., Wegrzyn, L. E. (1995). Glutamine prevents downregulation of myosin heavy chain synthesis and muscle atrophy from glucocorticoids. The American Journal of Physiology, 268, E730–E734.

    CAS  PubMed  Google Scholar 

  • Hickson, R. C., Wegrzyn, L. E., Osborne, D. F., Karl, I. E. (1996). Alanyl-glutamine prevents muscle atrophy and glutamine synthetase induction by glucocorticoids. The American Journal of Physiology, 271, R1165–R1172.

    CAS  PubMed  Google Scholar 

  • Hill, J. J., Davies, M. V., Pearson, A. A., Wang, J. H., Hewick, R. M., Wolfman, N. M., Qiu, Y. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. The Journal of Biological Chemistry, 277, 40735–40741.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J. J., Qiu, Y., Hewick, R. M., Wolfman, N. M. (2003). Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: A novel protein with protease inhibitor and follistatin domains. Molecular Endocrinology, 17, 1144–1154.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, E. P., Brown, R. H., JR, Kunkel, L. M. (1987). Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell, 51, 919–928.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, E. P., Fischbeck, K. H., Brown, R. H., Johnson, M., Medori, R., Loike, J. D., Harris, J. B., Waterston, R., Brooke, M., Specht, L. (1988). Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne’s or Becker’s muscular dystrophy. The New England Journal of Medicine, 318, 1363–1368.

    Article  CAS  PubMed  Google Scholar 

  • Hosoyama, T., Tachi, C., Yamanouchi, K., Nishihara, M. (2005). Long term adrenal insufficiency induces skeletal muscle atrophy and increases the serum levels of active form myostatin in rat serum. Zoology Science, 22, 229–236.

    Article  CAS  Google Scholar 

  • Jeanplong, F., Sharma, M., Somers, W. G., Bass, J. J., Kambadur, R. (2001). Genomic organization and neonatal expression of the bovine myostatin gene. Molecular and Cellular Biochemistry, 220, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • JI, S., Losinski, R. L., Cornelius, S. G., Frank, G. R., Willis, G. M., Gerrard, D. E., Depreux, F. F., Spurlock, M. E. (1998). Myostatin expression in porcine tissues: Tissue specificity and developmental and postnatal regulation. The American Journal of Physiology, 275, R1265–R1273.

    CAS  PubMed  Google Scholar 

  • Joulia-Ekaza, D. & Cabello, G. (2006). Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects. Experimental Cell Research, 312, 2401–2414.

    Article  PubMed  CAS  Google Scholar 

  • Kambadur, R., Sharma, M., Smith, T. P., Bass, J. J. (1997). Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 7, 910–916.

    CAS  PubMed  Google Scholar 

  • Kocamis, H., Kirkpatrick-Keller, D. C., Richter, J., Killefer, J. (1999). The ontogeny of myostatin, follistatin and activin-B mRNA expression during chicken embryonic development. Growth, Development, and Aging, 63, 143–150.

    CAS  PubMed  Google Scholar 

  • Koenig, M., Hoffman, E. P., Bertelson, C. J., Monaco, A. P., Feener, C., Kunkel, L. M. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell, 50, 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Koenig, M., Beggs, A. H., Moyer, M., Scherpf, S., Heindrich, K., Bettecken, T., Meng, G., Muller, C. R., Lindlof, M., Kaariainen, H. (1989). The molecular basis for Duchenne versus Becker muscular dystrophy: Correlation of severity with type of deletion. American Journal of Human Genetics, 45, 498–506.

    CAS  PubMed  Google Scholar 

  • Lalani, R., Bhasin, S., Byhower, F., Tarnuzzer, R., Grant, M., Shen, R., Asa, S., Ezzat, S., Gonzalez-Cadavid, N. F. (2000). Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. The Journal of Endocrinology, 167, 417–428.

    Article  CAS  PubMed  Google Scholar 

  • Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., Kambadur, R. (2002). Myostatin inhibits myoblast differentiation by down regulating MyoD expression. The Journal of Biological Chemistry, 18, 18.

    Google Scholar 

  • Langley, B., Thomas, M., Mcfarlane, C., Gilmour, S., Sharma, M., Kambadur, R. (2004). Myostatin inhibits rhabdomyosarcoma cell proliferation through an Rb-independent pathway. Oncogene, 23, 524–534.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, L., Biral, D., Campione, M., Schiaffino, S. (1993). An age-related type IIB to IIX myosin heavy chain switching in rat skeletal muscle. Acta Physiologica Scandinavica, 147, 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. J. & Mcpherron, A. C. (2001). Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences of the United States of America, 98, 9306–9311.

    Article  CAS  PubMed  Google Scholar 

  • Leger, B., Derave, W., de Bock, K., Hespel, P., Russell, A. P. (2008). Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Research, 11, 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z. F., Shelton, G. D., Engvall, E. (2005). Elimination of myostatin does not combat muscular dystrophy in dy mice but increases postnatal lethality. The American Journal of Pathology, 166, 491–497.

    CAS  PubMed  Google Scholar 

  • Liu, C. M., Yang, Z., Liu, C. W., Wang, R., Tien, P., Dale, R., Sun, L. Q. (2007). Effect of RNA oligonucleotide targeting Foxo-1 on muscle growth in normal and cancer cachexia mice. Cancer Gene Therapy, 14, 945–952.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C. M., Yang, Z., Liu, C. W., Wang, R., Tien, P., Dale, R., Sun, L. Q. (2008). Myostatin antisense RNA-mediated muscle growth in normal and cancer cachexia mice. Gene Therapy, 15, 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Ma, K., Mallidis, C., Bhasin, S., Mahabadi, V., Artaza, J., Gonzalez-Cadavid, N., Arias, J., Salehian, B. (2003). Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. American Journal of Physiology. Endocrinology and Metabolism, 285, E363–E371.

    CAS  PubMed  Google Scholar 

  • Magee, T. R., Artaza, J. N., Ferrini, M. G., Vernet, D., Zuniga, F. I., Cantini, L., Reisz-Porszasz, S., Rajfer, J., Gonzalez-Cadavid, N. F. (2006). Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass. The Journal of Gene Medicine, 8(9), 1171–1181.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, D. R., Criswell, D. S., Hamilton, M. T., Booth, F. W. (1997). Association of insulin-like growth factor mRNA expressions with muscle regeneration in young, adult, and old rats. The American Journal of Physiology, 273, R353–R358.

    CAS  PubMed  Google Scholar 

  • Matzuk, M. M., Lu, N., Vogel, H., Sellheyer, K., Roop, D. R., Bradley, A. (1995). Multiple defects and perinatal death in mice deficient in follistatin. Nature, 374, 360–363.

    Article  CAS  PubMed  Google Scholar 

  • Mccroskery, S., Thomas, M., Maxwell, L., Sharma, M., Kambadur, R. (2003). Myostatin negatively regulates satellite cell activation and self-renewal. The Journal of Cell Biology, 162, 1135–1147.

    Article  CAS  PubMed  Google Scholar 

  • McCroskery, S., Thomas, M., Platt, L., Hennebry, A., Nishimura, T., Mcleay, L., Sharma, M., Kambadur, R. (2005). Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. Journal of Cell Science, 118, 3531–3541.

    Article  CAS  PubMed  Google Scholar 

  • McFarland, D. C., Velleman, S. G., Pesall, J. E., Liu, C. (2006). Effect of myostatin on turkey myogenic satellite cells and embryonic myoblasts. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 144, 501–508.

    Article  CAS  Google Scholar 

  • McFarlane, C., Langley, B., Thomas, M., Hennebry, A., Plummer, E., Nicholas, G., Mcmahon, C., Sharma, M., Kambadur, R. (2005). Proteolytic processing of myostatin is auto-regulated during myogenesis. Developmental Biology, 283, 58–69.

    Article  CAS  PubMed  Google Scholar 

  • McFarlane, C., Plummer, E., Thomas, M., Hennebry, A., Ashby, M., Ling, N., Smith, H., Sharma, M., Kambadur, R. (2006). Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. Journal of Cellular Physiology, 209, 501–514.

    Article  CAS  PubMed  Google Scholar 

  • McFarlane, C., Hennebry, A., Thomas, M., Plummer, E., Ling, N., Sharma, M., Kambadur, R. (2008). Myostatin signals through Pax7 to regulate satellite cell self-renewal. Experimental Cell Research, 314, 317–329.

    Article  CAS  PubMed  Google Scholar 

  • McPherron, A. C. & Lee, S. (1996). The transforming growth factor-b superfamily. Growth Factors Cytokines Health Diseases, 1B, 357–393.

    Article  CAS  Google Scholar 

  • McPherron, A. C. & Lee, S. J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 94, 12457–12461.

    Article  CAS  PubMed  Google Scholar 

  • McPherron, A. C., Lawler, A. M., Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387, 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Mezzogiorno, A., Coletta, M., Zani, B. M., Cossu, G., Molinaro, M. (1993). Paracrine stimulation of senescent satellite cell proliferation by factors released by muscle or myotubes from young mice. Mechanisms of Ageing and Development, 70, 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Michel, U., Farnworth, P., Findlay, J. K. (1993). Follistatins: More than follicle-stimulating hormone suppressing proteins. Molecular and Cellular Endocrinology, 91, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Minetti, G. C., Colussi, C., Adami, R., Serra, C., Mozzetta, C., Parente, V., Fortuni, S., Straino, S., Sampaolesi, M., di Padova, M., Illi, B., Gallinari, P., Steinkuhler, C., Capogrossi, MC., Sartorelli, V., Bottinelli, R., Gaetano, C., Puri, P. L. (2006). Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Natural Medicines, 12, 1147–1150.

    Article  CAS  Google Scholar 

  • Mitchell, M. D., Osepchook, C. C., Leung, K. C., Mcmahon, C. D., Bass, J. J. (2006). Myostatin is a human placental product that regulates glucose uptake. The Journal of Clinical Endocrinology and Metabolism, 91, 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  • Miura, T., Kishioka, Y., Wakamatsu, J., Hattori, A., Hennebry, A., Berry, C. J., Sharma, M., Kambadur, R., Nishimura, T. (2006). Decorin binds myostatin and modulates its activity to muscle cells. Biochemical and Biophysical Research Communications, 340, 675–680.

    Article  CAS  PubMed  Google Scholar 

  • Morissette, M. R., Stricker, J. C., Rosenberg, M. A., Buranasombati, C., Levitan, E. B., Mittleman, M. A., Rosenzweig, A. (2009). Effects of myostatin deletion in aging mice. Aging Cell, 8, 573–583.

    Article  CAS  PubMed  Google Scholar 

  • Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G., Ostrander, E. A. (2007). A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 3, e79.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, A., Afrakhte, M., Moren, A., Nakayama, T., Christian, J. L., Heuchel, R., Itoh, S., Kawabata, M., Heldin, N. E., Heldin, C. H., Ten Dijke, P. (1997a). Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, 389, 631–635.

    Article  CAS  PubMed  Google Scholar 

  • Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Oeda, E., Tamaki, K., Hanai, J., Heldin, C. H., Miyazono, K., Ten Dijke, P. (1997b). Tgf-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. The EMBO Journal, 16, 5353–5362.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas, G., Thomas, M., Langley, B., Somers, W., Patel, K., Kemp, C. F., Sharma, M., Kambadur, R. (2002). Titin-cap associates with, and regulates secretion of, myostatin. Journal of Cellular Physiology, 193, 120–131.

    Article  CAS  PubMed  Google Scholar 

  • Nishi, M., Yasue, A., Nishimatu, S., Nohno, T., Yamaoka, T., Itakura, M., Moriyama, K., Ohuchi, H., Noji, S. (2002). A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochemical and Biophysical Research Communications, 293, 247–251.

    Article  CAS  PubMed  Google Scholar 

  • Nnodim, J. O. (2000). Satellite cell numbers in senile rat levator ani muscle. Mechanisms of Ageing and Development, 112, 99–111.

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa, Y., Hagiwara, H., Nakatani, M., Yasue, A., Moriyama, K., Murakami, T., Tsuchida, K., Noji, S., Sunada, Y. (2006). Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. Journal of Clinical Investigation, 116, 2924–2934.

    Article  CAS  PubMed  Google Scholar 

  • Oldham, J. M., Martyn, J. A., Sharma, M., Jeanplong, F., Kambadur, R., Bass, J. J. (2001). Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 280, R1488–R1493.

    CAS  PubMed  Google Scholar 

  • Olguin, H. C. & Olwin, B. B. (2004). Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: A potential mechanism for self-renewal. Developmental Biology, 275, 375–388.

    Article  CAS  PubMed  Google Scholar 

  • Peterlin, B., Zidar, J., Meznaric-Petrusa, M., Zupancic, N. (1997). Genetic epidemiology of Duchenne and Becker muscular dystrophy in Slovenia. Clinical Genetics, 51, 94–97.

    Article  CAS  PubMed  Google Scholar 

  • Philip, B., Lu, Z., Gao, Y. (2005). Regulation of GDF-8 signaling by the p38 MAPK. Cellular Signalling, 17, 365–375.

    Article  CAS  PubMed  Google Scholar 

  • Piek, E., Heldin, C. H., Ten Dijke, P. (1999). Specificity, diversity, and regulation in TGF-beta superfamily signaling. The FASEB Journal, 13, 2105–2124.

    CAS  PubMed  Google Scholar 

  • Raue, U., Slivka, D., Jemiolo, B., Hollon, C., Trappe, S. (2006). Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. Journal of Applied Physiology, 101, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Reardon, K. A., Davis, J., Kapsa, R. M., Choong, P., Byrne, E. (2001). Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle & Nerve, 24, 893–899.

    Article  CAS  Google Scholar 

  • Rebbapragada, A., Benchabane, H., Wrana, J. L., Celeste, A. J., Attisano, L. (2003). Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Molecular and Cellular Biology, 23, 7230–7242.

    Article  CAS  PubMed  Google Scholar 

  • Rios, R., Carneiro, I., Arce, V. M., Devesa, J. (2002). Myostatin is an inhibitor of myogenic differentiation. American Journal of Physiology. Cell Physiology, 282, C993–C999.

    CAS  PubMed  Google Scholar 

  • Saharinen, J., Hyytiainen, M., Taipale, J., Keski-Oja, J. (1999). Latent transforming growth factor-beta binding proteins (LTBPS) – structural extracellular matrix proteins for targeting TGF-beta action. Cytokine & Growth Factor Reviews, 10, 99–117.

    Article  CAS  Google Scholar 

  • Salehian, B., Mahabadi, V., Bilas, J., Taylor, W. E., MA, K. (2006). The effect of glutamine on prevention of glucocorticoid-induced skeletal muscle atrophy is associated with myostatin suppression. Metabolism, 55, 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  • Sartori, R., Milan, G., Patron, M., Mammucari, C., Blaauw, B., Abraham, R., Sandri, M. (2009). Smad2 and 3 transcription factors control muscle mass in adulthood. American Journal of Physiology. Cell Physiology, 296, C1248–C1257.

    Article  CAS  PubMed  Google Scholar 

  • Sazanov, A., Ewald, D., Buitkamp, J., Fries, R. (1999). A molecular marker for the chicken myostatin gene (GDF8) maps to 7p11. Animal Genetics, 30, 388–389.

    Article  CAS  PubMed  Google Scholar 

  • Schneyer, A., Tortoriello, D., Sidis, Y., Keutmann, H., Matsuzaki, T., Holmes, W. (2001). Follistatin-related protein (FSRP): A new member of the follistatin gene family. Molecular and Cellular Endocrinology, 180, 33–38.

    Article  CAS  PubMed  Google Scholar 

  • Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J. F., Lee, S. J. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. The New England Journal of Medicine, 350, 2682–2688.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, E. & Lipton, B. H. (1982). Skeletal muscle satellite cells: Changes in proliferation potential as a function of age. Mechanisms of Ageing and Development, 20, 377–383.

    Article  CAS  PubMed  Google Scholar 

  • Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell, 102, 777–786.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, M., Kambadur, R., Matthews, K. G., Somers, W. G., Devlin, G. P., Conaglen, J. V., Fowke, P. J., Bass, J. J. (1999). Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. Journal of Cellular Physiology, 180, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Shefer, G., Van de Mark, D. P., Richardson, J. B., Yablonka-Reuveni, Z. (2006). Satellite-cell pool size does matter: Defining the myogenic potency of aging skeletal muscle. Developmental Biology, 294, 50–66.

    Article  CAS  PubMed  Google Scholar 

  • Shelton, G. D. & Engvall, E. (2007). Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene. Neuromuscular Disorders, 17, 721–722.

    Article  PubMed  Google Scholar 

  • Shibli-Rahhal, A., Van Beek, M., Schlechte, J. A. (2006). Cushing’s syndrome. Clinics in Dermatology, 24, 260–265.

    Article  PubMed  Google Scholar 

  • Shyu, K. E., Lu, M. J., Wang, B. W., Sun, H. Y., Chang, H., (2006) Myostatin expression in ventricular myocardium in a rat model of volume-overload heart failure. European Journal of Clinical Investigation, 36, 713–719.

    Article  PubMed  Google Scholar 

  • Siciliano, G., Tessa, A., Renna, M., Manca, M. L., Mancuso, M., Murri, L. (1999). Epidemiology of dystrophinopathies in North-West Tuscany: A molecular genetics-based revisitation. Clinical Genetics, 56, 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Siriett, V., Platt, L., Salerno, M. S., Ling, N., Kambadur, R., Sharma, M. (2006). Prolonged absence of myostatin reduces sarcopenia. Journal of Cellular Physiology, 209, 866–873.

    Article  CAS  PubMed  Google Scholar 

  • Siriett, V., Salerno, M. S., Berry, C., Nicholas, G., Bower, R., Kambadur, R., Sharma, M. (2007). Antagonism of myostatin enhances muscle regeneration during sarcopenia. Molecular Therapy, 15, 1463–1470.

    Article  CAS  PubMed  Google Scholar 

  • Sironi, M., Cagliani, R., Comi, G. P., Pozzoli, U., Bardoni, A., Giorda, R., Bresolin, N. (2003). Trans-acting factors may cause dystrophin splicing misregulation in BMD skeletal muscles. FEBS Letters, 537, 30–34.

    Article  CAS  PubMed  Google Scholar 

  • Skipper, M. (2006). A lean feat – microRNAs and muscle mass. Nature Reviews. Genetics, 7, 491.

    Article  CAS  Google Scholar 

  • Snow, M. H. (1977). The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell and Tissue Research, 185, 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Souchelnytskyi, S., Tamaki, K., Engstrom, U., Wernstedt, C., Ten Dijke, P., Heldin, C. H. (1997). Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. The Journal of Biological Chemistry, 272, 28107–28115.

    Article  CAS  PubMed  Google Scholar 

  • Steelman, C. A., Recknor, J. C., Nettleton, D., Reecy, J. M. (2006). Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. The FASEB Journal, 20, 580–582.

    CAS  PubMed  Google Scholar 

  • Szabo, G., Dallmann, G., Muller, G., Patthy, L., Soller, M., Varga, L. (1998). A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mammalian Genome, 9, 671–672.

    Article  CAS  PubMed  Google Scholar 

  • Thies, R. S., Chen, T., Davies, M. V., Tomkinson, K. N., Pearson, A. A., Shakey, Q. A., Wolfman, N. M. (2001). GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors, 18, 251–259.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., Kambadur, R. (2000). Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. The Journal of Biological Chemistry, 275, 40235–40243.

    Article  CAS  PubMed  Google Scholar 

  • Tidball, J. G. (1995). Inflammatory cell response to acute muscle injury. Medicine and Science in Sports and Exercise, 27, 1022–1032.

    Article  CAS  PubMed  Google Scholar 

  • Trendelenburg, A. U., Meyer, A., Rohner, D., Boyle, J., Hatakeyama, S., Glass, D. J. (2009). Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. American Journal of Physiology. Cell Physiology, 296, C1258–C1270.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, B. S., Zhao, P., Pattison, J. S., Gordon, S. E., Granchelli, J. A., Madsen, R. W., Folk, L. C., Hoffman, E. P., Booth, F. W. (2002). Regenerated mdx mouse skeletal muscle shows differential mRNA expression. Journal of Applied Physiology, 93, 537–545.

    CAS  PubMed  Google Scholar 

  • Tsuchida, K., Arai, K. Y., Kuramoto, Y., Yamakawa, N., Hasegawa, Y., Sugino, H. (2000). Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. The Journal of Biological Chemistry, 275, 40788–40796.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida, K., Matsuzaki, T., Yamakawa, N., Liu, Z., Sugino, H. (2001). Intracellular and extracellular control of activin function by novel regulatory molecules. Molecular and Cellular Endocrinology, 180, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya, S., Okuno, Y., Tsujimoto, G. (2006). MicroRNA: Biogenetic and functional mechanisms and involvements in cell differentiation and cancer. Journal of Pharmacological Sciences, 101, 267–270.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Zhang, Q., Zhu, D. (2003). hsgt interacts with the N-terminal region of myostatin. Biochemical and Biophysical Research Communications, 311, 877–883.

    Article  CAS  PubMed  Google Scholar 

  • Watt, D. J., Morgan, J. E., Clifford, M. A., Partridge, T. A. (1987). The movement of muscle precursor cells between adjacent regenerating muscles in the mouse. Anatomy and Embryology (Berlin), 175, 527–536.

    Article  CAS  Google Scholar 

  • Watt, D. J., Karasinski, J., Moss, J., England, M. A. (1994). Migration of muscle cells. Nature, 368, 406–407.

    Article  CAS  PubMed  Google Scholar 

  • Wehling, M., Cai, B., Tidball, J. G. (2000). Modulation of myostatin expression during modified muscle use. The FASEB Journal, 14, 103–110.

    CAS  PubMed  Google Scholar 

  • Welle, S., Bhatt, K., Shah, B., Thornton, C. (2002). Insulin-like growth factor-1 and myostatin mRNA expression in muscle: Comparison between 62–77 and 21–31 yr old men. Experimental Gerontology, 37, 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Whittemore, L. A., Song, K., Li, X., Aghajanian, J., Davies, M., Girgenrath, S., Hill, J. J., Jalenak, M., Kelley, P., Knight, A., Maylor, R., O’hara, D., Pearson, A., Quazi, A., Ryerson, S., Tan, X. Y., Tomkinson, K. N., Veldman, G. M., Widom, A., Wright, J. F., Wudyka, S., Zhao, L., Wolfman, N. M. (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochemical and Biophysical Research Communications, 300, 965–971.

    Article  CAS  PubMed  Google Scholar 

  • Wolfman, N. M., Mcpherron, A. C., Pappano, W. N., Davies, M. V., Song, K., Tomkinson, K. N., Wright, J. F., Zhao, L., Sebald, S. M., Greenspan, D. S., Lee, S. J. (2003). Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proceedings of the National Academy of Sciences of the United States of America, 100, 15842–15846.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R., Beach, D. (1993). p21 is a universal inhibitor of cyclin kinases. Nature, 366, 701–704.

    Article  CAS  PubMed  Google Scholar 

  • Yablonka-Reuveni, Z., Seger, R., Rivera, A. J. (1999). Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. The Journal of Histochemistry and Cytochemistry, 47, 23–42.

    CAS  PubMed  Google Scholar 

  • Yang, J., Ratovitski, T., Brady, J. P., Solomon, M. B., Wells, K. D., Wall, R. J. (2001). Expression of myostatin pro domain results in muscular transgenic mice. Molecular Reproduction and Development, 60, 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Chen, Y., Zhang, Y., Wang, X., Yang, N., Zhu, D. (2006). Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression. Cancer Research, 66, 1320–1326.

    Article  CAS  PubMed  Google Scholar 

  • Yarasheski, K. E., Bhasin, S., Sinha-Hikim, I., Pak-Loduca, J., Gonzalez-Cadavid, N. F. (2002). Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. The Journal of Nutrition, Health & Aging, 6, 343–348.

    CAS  Google Scholar 

  • Zachwieja, J. J., Smith, S. R., Sinha-Hikim, I., Gonzalez-Cadavid, N., Bhasin, S. (1999). Plasma myostatin-immunoreactive protein is increased after prolonged bed rest with low-dose T3 administration. Journal of Gravitational Physiology, 6, 11–15.

    CAS  PubMed  Google Scholar 

  • Zammit, P. S., Golding, J. P., Nagata, Y., Hudon, V., Partridge, T. A., Beauchamp, J. R. (2004). Muscle satellite cells adopt divergent fates: A mechanism for self-renewal? The Journal of Cell Biology, 166, 347–357.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Musci, T., Derynck, R. (1997). The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Current Biology, 7, 270–276.

    Article  PubMed  Google Scholar 

  • Zhou, G. Q., Xie, H. Q., Zhang, S. Z., Yang, Z. M. (2006). Current understanding of dystrophin-related muscular dystrophy and therapeutic challenges ahead. Chinese Medical Journal (England), 119, 1381–1391.

    CAS  Google Scholar 

  • Zhu, X., Hadhazy, M., Wehling, M., Tidball, J. G., Mcnally, E. M. (2000). Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Letters, 474, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Topouzis, S., Liang, L. F., Stotish, R. L. (2004). Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine, 26, 262–272.

    Article  CAS  PubMed  Google Scholar 

  • Zimmers, T. A., Davies, M. V., Koniaris, L. G., Haynes, P., Esquela, A. F., Tomkinson, K. N., Mcpherron, A. C., Wolfman, N. M., Lee, S. J. (2002). Induction of cachexia in mice by systemically administered myostatin. Science, 296, 1486–1488.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kambadur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McFarlane, C., Sharma, M., Kambadur, R. (2011). Role of Myostatin in Skeletal Muscle Growth and Development: Implications for Sarcopenia. In: Lynch, G. (eds) Sarcopenia – Age-Related Muscle Wasting and Weakness. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9713-2_18

Download citation

Publish with us

Policies and ethics