Skip to main content

Age-Related Changes in the Molecular Regulation of Skeletal Muscle Mass

  • Chapter
  • First Online:
  • 1909 Accesses

Abstract

Maintaining skeletal muscle mass and function throughout the entire lifespan is a prerequisite for good health and independent living. While skeletal muscle has an amazing ability for self-renewal and regeneration, its capacity to perform these tasks declines with age. The age-related loss in skeletal muscle mass and function, known as sarcopenia, is a major contributor to the increase in falls and fractures in the elderly. As such, it impacts dramatically upon the quality of life and independence of our aged community and places considerable stain on healthcare systems. At present there are no treatments which stop sarcopenia. Considerable research has focused on identifying the molecular signals which regulate skeletal muscle protein synthesis, degradation and regeneration and how these signals may be perturbed during the ageing process. Regulation of signalling hormones including growth hormone (GH) and insulin-like growth factor -1 (IGF-1), as well as the Akt (protein kinase B) and serum response factor (SRF) signalling pathways have been implicated in age-related changes in muscle protein synthesis and degradation. These factors, as well as those governing muscle stem cell renewal, are presently considered as potential therapeutic targets to combat age-related muscle wasting. This chapter will provide an overview of the age-related regulation of these molecular targets in skeletal muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen, D. L., Sartorius, C. A., Sycuro, L. K., Leinwand, L. A. (2001). Different pathways regulate expression of the skeletal myosin heavy chain genes. The Journal of Biological Chemistry, 276, 43524–43533.

    Article  CAS  PubMed  Google Scholar 

  • Amirouche, A., Durieux, A. C., Banzet, S., Koulmann, N., Bonnefoy, R., Mouret, C., Bigard, X., Peinnequin, A., Freyssenet, D. (2009). Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology, 150, 286–294.

    Article  CAS  PubMed  Google Scholar 

  • Arai, A., Spencer, J. A., Olson, E. N. (2002). STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. The Journal of Biological Chemistry, 277, 24453–24459.

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas, S., Matsuno, K., Fortini, M. E. (1995). Notch signaling. Science, 268, 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas, S., Rand, M. D., Lake, R. J. (1999). Notch signaling: Cell fate control and signal integration in development. Science, 284, 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Baumann, A. P., Ibebunjo, C., Grasser, W. A., Paralkar, V. M. (2003). Myostatin expression in age and denervation-induced skeletal muscle atrophy. Journal of Musculoskeletal & Neuronal Interactions, 3, 8–16.

    CAS  Google Scholar 

  • Bodine, S. C., Latres, E., Baumhueter, S., Lai, V. K., Nunez, L., Clarke, B. A., Poueymirou, W. T., Panaro, F. J., Na, E., Dharmarajan, K., Pan, Z. Q., Valenzuela, D. M., Dechiara, T. M., Stitt, T. N., Yancopoulos, G. D., Glass, D. J. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294, 1704–1708.

    Article  CAS  PubMed  Google Scholar 

  • Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J., Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology, 3, 1014–1019.

    Article  CAS  PubMed  Google Scholar 

  • Brack, A. S. & Rando, T. A. (2007). Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Reviews, 3, 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Brack, A. S., Bildsoe, H., Hughes, S. M. (2005). Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. Journal of Cell Science, 118, 4813–4821.

    Article  CAS  PubMed  Google Scholar 

  • Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Carson, J. A., Schwartz, R. J., Booth, F. W. (1996). SRF and TEF–1 control of chicken skeletal alpha-actin gene during slow-muscle hypertrophy. The American Journal of Physiology, 270, C1624–C1633.

    CAS  PubMed  Google Scholar 

  • Charvet, C., Houbron, C., Parlakian, A., Giordani, J., Lahoute, C., Bertrand, A., Sotiropoulos, A., Renou, l., Schmitt, A., Melki, J., Li, Z., Daegelen, D., Tuil, D. (2006). New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways. Molecular and Cellular Biology, 26, 6664–6674.

    Article  CAS  PubMed  Google Scholar 

  • Christov, C., Chretien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F. J., Bassaglia, Y., Shinin, V., Tajbakhsh, S., Chazaud, B., Gherardi, R. K. (2007). Muscle satellite cells and endothelial cells: Close neighbors and privileged partners. Molecular Biology of the Cell, 18, 1397–1409.

    Article  CAS  PubMed  Google Scholar 

  • Clavel, S., Coldefy, A. S., Kurkdjian, E., Salles, J., Margaritis, I., Derijard, B. (2006). Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mechanisms of Ageing and Development, 127, 794–801.

    Article  CAS  PubMed  Google Scholar 

  • Conboy, I. M. & Rando, T. A. (2002). The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Developmental Cell, 3, 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Conboy, I. M., Conboy, M. J., Smythe, G. M., Rando, T. A. (2003). Notch-mediated restoration of regenerative potential to aged muscle. Science, 302, 1575–1577.

    Article  CAS  PubMed  Google Scholar 

  • Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433, 760–764.

    Article  CAS  PubMed  Google Scholar 

  • Corpas, E., Harman, S. M., Blackman, M. R. (1993). Human growth hormone and human aging. Endocrine Reviews, 14, 20–39.

    CAS  PubMed  Google Scholar 

  • Cuthbertson, D., Smith, K., Babraj, J., Leese, G., Waddell, T., Atherton, P., Wackerhage, H., Taylor, P. M., Rennie, M. J. (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. The Faseb Journal, 19, 422–424.

    CAS  PubMed  Google Scholar 

  • Datta, S. R., Brunet, A., Greenberg, M. E. (1999). Cellular survival: A play in three Akts. Genes & Development, 13, 2905–2927.

    Article  CAS  Google Scholar 

  • Dedkov, E. I., Borisov, A. B., Wernig, A., Carlson, B. M. (2003). Aging of skeletal muscle does not affect the response of satellite cells to denervation. The Journal of Histochemistry and Cytochemistry, 51, 853–863.

    CAS  PubMed  Google Scholar 

  • Dreyer, H. C., Blanco, C. E., Sattler, F. R., Schroeder, E. T., Wiswell, R. A. (2006). Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle & Nerve, 33, 242–253.

    Article  Google Scholar 

  • Edstrom, E., Altun, M., Hagglund, M., Ulfhake, B. (2006). Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 61, 663–674.

    Google Scholar 

  • Emanuelli, B., Peraldi, P., Filloux, C., Chavey, C., Freidinger, K., Hilton, D. J., Hotamisligil, G. S., Van Obberghen, E. (2001). SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. The Journal of Biological Chemistry, 276, 47944–47949.

    CAS  PubMed  Google Scholar 

  • Frost, R. A., Nystrom, G. J., Lang, C. H. (2003). Tumor necrosis factor-alpha decreases insulin-like growth factor-I messenger ribonucleic acid expression in C2C12 myoblasts via a Jun N-terminal kinase pathway. Endocrinology, 144, 1770–1779.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, M. C. & Schultz, E. (1983). Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle & Nerve, 6, 574–580.

    Article  CAS  Google Scholar 

  • Glass, D. J. (2003). Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nature Cell Biology, 5, 87–90.

    Article  CAS  PubMed  Google Scholar 

  • Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. The International Journal of Biochemistry & Cell Biology, 37, 1974–1984.

    CAS  Google Scholar 

  • Gomes, M. D., Lecker, S. H., Jagoe, R. T., Navon, A., Goldberg, A. L. (2001). Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proceedings of the National Academy of Sciences of the United States of America, 98, 14440–14445.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Cadavid, N. F., Taylor, W. E., Yarasheski, K., Sinha-Hikim, I., MA, K., Ezzat, S., Shen, R., Lalani, R., Asa, S., Mamita, M., Nair, G., Arver, S., Bhasin, S. (1998). Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proceedings of the National Academy of Sciences of the United States of America, 95, 14938–14943.

    Article  CAS  PubMed  Google Scholar 

  • Greiwe, J. S., Cheng, B., Rubin, D. C., Yarasheski, K. E., Semenkovich, C. F. (2001). Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. The FASEB Journal, 15, 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Grobet, L., Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset, R., Georges, M. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17, 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, F. & Adams, G. R. (2006). Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. Journal of Applied Physiology, 100, 1188–1203.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, J. A., Lindberg, K., Hilton, D. J., Nielsen, J. H., Billestrup, N. (1999). Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Molecular Endocrinology, 13, 1832–1843.

    Article  CAS  PubMed  Google Scholar 

  • Hawke, T. J. & Garry, D. J. (2001). Myogenic satellite cells: Physiology to molecular biology. Journal of Applied Physiology, 91, 534–551.

    CAS  PubMed  Google Scholar 

  • Herrington, J. & Carter-Su, C. (2001). Signaling pathways activated by the growth hormone receptor. Trends in Endocrinology and Metabolism, 12, 252–257.

    Article  CAS  PubMed  Google Scholar 

  • Hornberger, T. A., Stuppard, R., Conley, K. E., Fedele, M. J., Fiorotto, M. L., Chin, E. R., Esser, K. A. (2004). Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. The Biochemical Journal, 380, 795–804.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson, L. S., Fabian, J. R., Kimball, S. R. (1999). Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle. The International Journal of Biochemistry & Cell Biology, 31, 191–200.

    Article  CAS  Google Scholar 

  • Kadi, F., Charifi, N., Denis, C., Lexell, J. (2004). Satellite cells and myonuclei in young and elderly women and men. Muscle & Nerve, 29, 120–127.

    Article  Google Scholar 

  • Kadi, F., Charifi, N., Denis, C., Lexell, J., Andersen, J. L., Schjerling, P., Olsen, S., Kjaer, M. (2005). The behaviour of satellite cells in response to exercise: What have we learned from human studies? Pflugers Archives, 451, 319–327.

    Article  CAS  Google Scholar 

  • Katsanos, C. S., Kobayashi, H., Sheffield-Moore, M., Aarsland, A., Wolfe, R. R. (2005). Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. The American Journal of Clinical Nutrition, 82, 1065–1073.

    CAS  PubMed  Google Scholar 

  • Kawada, S., Tachi, C., Ishii, N. (2001). Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. Journal of Muscle Research and Cell Motility, 22, 627–633.

    Article  CAS  PubMed  Google Scholar 

  • Kimball, S. R., O’malley, J. P., Anthony, J. C., Crozier, S. J., Jefferson, L. S. (2004). Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: Sarcopenia despite elevated protein synthesis. American Journal of Physiology. Endocrinology and Metabolism, 287, E772–E780.

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara, K., Barrientos, T., Pipes, G. C., LI, S., Olson, E. N. (2005). Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Molecular and Cellular Biology, 25, 3173–3181.

    Article  CAS  PubMed  Google Scholar 

  • Lahoute, C., Sotiropoulos, A., Favier, M., Guillet-Deniau, I., Charvet, C., Ferry, A., Butler-Browne, G., Metzger, D., Tuil, D., Daegelen, D. (2008). Premature aging in skeletal muscle lacking serum response factor. PLoS ONE, 3, e3910.

    Article  PubMed  CAS  Google Scholar 

  • Lamon, S., Wallace, M. A., Leger, B., Russell, A. P. (2009). Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. Journal de Physiologie, 587, 1795–1803.

    Article  CAS  Google Scholar 

  • Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., Kambadur, R. (2002). Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. The Journal of Biological Chemistry, 277, 49831–49840.

    Article  CAS  PubMed  Google Scholar 

  • Latres, E., Amini, A. R., Amini, A. A., Griffiths, J., Martin, F. J., Wei, Y., Lin, H. C., Yancopoulos, G. D., Glass, D. J. (2005). Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. The Journal of Biological Chemistry, 280, 2737–2744.

    Article  CAS  PubMed  Google Scholar 

  • Lecker, S. H., Solomon, V., Mitch, W. E., Goldberg, A. L. (1999). Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. The Journal of Nutrition, 129, 227S–237S.

    CAS  PubMed  Google Scholar 

  • Leger, B., Derave, W., De Bock, K., Hespel, P., Russell, A. P. (2008). Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Research, 11, 163–175B.

    Article  PubMed  CAS  Google Scholar 

  • Lexell, J. (1995). Human aging, muscle mass, and fiber type composition. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 50 Spec No, 11–16.

    CAS  Google Scholar 

  • Liu, W., Thomas, S. G., Asa, S. L., Gonzalez-Cadavid, N., Bhasin, S., Ezzat, S. (2003). Myostatin is a skeletal muscle target of growth hormone anabolic action. The Journal of Clinical Endocrinology and Metabolism, 88, 5490–5496.

    Article  CAS  PubMed  Google Scholar 

  • Lupu, F., Terwilliger, J. D., Lee, K., Segre, G. V., Efstratiadis, A. (2001). Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Developmental Biology, 229, 141–162.

    Article  CAS  PubMed  Google Scholar 

  • Mahadeva, H., Brooks, G., Lodwick, D., Chong, N. W., Samani, N. J. (2002). ms1, a novel stress-responsive, muscle-specific gene that is up-regulated in the early stages of pressure overload-induced left ventricular hypertrophy. FEBS Letters, 521, 100–104.

    Article  CAS  PubMed  Google Scholar 

  • Mahoney, J., Sager, M., Dunham, N. C., Johnson, J. (1994). Risk of falls after hospital discharge. Journal of the American Geriatrics Society, 42, 269–274.

    CAS  PubMed  Google Scholar 

  • McFarlane, C., Plummer, E., Thomas, M., Hennebry, A., Ashby, M., Ling, N., Smith, H., Sharma, M., Kambadur, R. (2006). Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. The Journal of Cell Physiology, 209(2), 501–514.

    Article  CAS  Google Scholar 

  • McPherron, A. C., Lawler, A. M., Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387, 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Miralles, F., Posern, G., Zaromytidou, A. I., Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator Mal. Cell, 113, 329–342.

    Article  CAS  PubMed  Google Scholar 

  • Morissette, M., Cook, S., Buranasombati, C., Rosenberg, M., Rosenzweig, A. (2009). Myostatin inhibits IGF-I induced myotube hypertrophy through Akt. American Journal of Physiology. Cell Physiology, 297(5), 1124–1132.

    Article  CAS  Google Scholar 

  • Morissette, M. R., Stricker, J. C., Rosenberg, M. A., Buranasombati, C., Levitan, E. B., Mittleman, M. A., Rosenzweig, A. (2009). Effects of myostatin deletion in aging mice. Aging Cell, 8, 573–583.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, T., Oyama, K., Kishioka, Y., Wakamatsu, J., Hattori, A. (2007). Spatiotemporal expression of decorin and myostatin during rat skeletal muscle development. Biochemical and Biophysical Research Communications, 361, 896–902.

    Article  CAS  PubMed  Google Scholar 

  • Nnodim, J. O. (2000). Satellite cell numbers in senile rat levator ani muscle. Mechanisms of Ageing and Development, 112, 99–111.

    Article  CAS  PubMed  Google Scholar 

  • Pallafacchina, G., Calabria, E., Serrano, A. L., Kalhovde, J. M., Schiaffino, S. (2002). A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proceedings of the National Academy of Sciences of the United States of America, 99, 9213–9218.

    Article  CAS  PubMed  Google Scholar 

  • Petrella, J. K., Kim, J. S., Cross, J. M., Kosek, D. J., Bamman, M. M. (2006). Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. American Journal of Physiology. Endocrinology and Metabolism, 291, E937–E946.

    Article  CAS  PubMed  Google Scholar 

  • Ram, P. A. & Waxman, D. J. (1999). SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. The Journal of Biological Chemistry, 274, 35553–35561.

    Article  CAS  PubMed  Google Scholar 

  • Raue, U., Slivka, D., Jemiolo, B., Hollon, C., Trappe, S. (2006). Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. Journal of Applied Physiology, 101, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Raue, U., Slivka, D., Jemiolo, B., Hollon, C., Trappe, S. (2007). Proteolytic gene expression differs at rest and after resistance exercise between young and old women. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 62, 1407–1412.

    Google Scholar 

  • Renault, V., Thornell, L. E., Eriksson, P. O., Butler-Browne, G., Mouly, V. (2002). Regenerative potential of human skeletal muscle during aging. Aging Cell, 1, 132–139.

    Article  CAS  PubMed  Google Scholar 

  • Rennie, M. J., Selby, A., Atherton, P., Smith, K., Kumar, V., Glover, E. L., Philips, S. M. (2009). Facts, noise and wishful thinking: Muscle protein turnover in aging and human disuse atrophy. Scandinavian Journal of Medicine & Science in Sports, 20(1), 5–9.

    Google Scholar 

  • Rhoads, R. E. (1999). Signal transduction pathways that regulate eukaryotic protein synthesis. The Journal of Biological Chemistry, 274, 30337–30340.

    Article  CAS  PubMed  Google Scholar 

  • Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D., Glass, D. J. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology, 3, 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  • Roth, S. M., Martel, G. F., Ivey, F. M., Lemmer, J. T., Metter, E. J., Hurley, B. F., Rogers, M. A. (2000). Skeletal muscle satellite cell populations in healthy young and older men and women. The Anatomical Record, 260, 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Russell, A. P. (2009). The molecular regulation of skeletal muscle mass. Clinical and Experimental Pharmacology & Physiology, 37(3), 378–384.

    Article  CAS  Google Scholar 

  • Ryan, N. A., Zwetsloot, K. A., Westerkamp, L. M., Hickner, R. C., Pofahl, W. E., Gavin, T. P. (2006). Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. Journal of Applied Physiology, 100, 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Sajko, S., Kubinova, L., Cvetko, E., Kreft, M., Wernig, A., Erzen, I. (2004). Frequency of M-cadherin-stained satellite cells declines in human muscles during aging. The Journal of Histochemistry and Cytochemistry, 52, 179–185.

    CAS  PubMed  Google Scholar 

  • Sakuma, K., Akiho, M., Nakashima, H., Akima, H., Yasuhara, M. (2008). Age-related reductions in expression of serum response factor and myocardin-related transcription factor A in mouse skeletal muscles. Biochimica et Biophysica Acta, 1782, 453–461.

    CAS  PubMed  Google Scholar 

  • Sandri, M., Sandri, C., Gilbert, A., Skurk, C., Calabria, E., Picard, A., Walsh, K., Schiaffino, S., Lecker, S. H., Goldberg, A. L. (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 117, 399–412.

    Article  CAS  PubMed  Google Scholar 

  • Sandri, M., Lin, J., Handschin, C., Yang, W., Arany, Z. P., Lecker, S. H., Goldberg, A. L., Spiegelman, B. M. (2006). PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 103, 16260–16265.

    Article  CAS  PubMed  Google Scholar 

  • Schafer, R., Zweyer, M., Knauf, U., Mundegar, R. R., Wernig, A. (2005). The ontogeny of soleus muscles in mdx and wild type mice. Neuromuscular Disorders, 15, 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J. F., Lee, S. J. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. The New England Journal of Medicine, 350, 2682–2688.

    Article  CAS  PubMed  Google Scholar 

  • Shefer, G., Vande Mark, D. P., Richardson, J. B., Yablonka-Reuveni, Z. (2006). Satellite-cell pool size does matter: Defining the myogenic potency of aging skeletal muscle. Developmental Biology, 294, 50–66.

    Article  CAS  PubMed  Google Scholar 

  • Snijders, T., Verdijk, L. B., Van Loon, L. J. (2009). The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Research Reviews, 8(4), 328–338.

    Article  PubMed  Google Scholar 

  • Sotiropoulos, A., Gineitis, D., Copeland, J., Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell, 98, 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., Gonzalez, M., Yancopoulos, G. D., Glass, D. J. (2004). The Igf-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting Foxo transcription factors. Molecular Cell, 14, 395–403.

    Article  CAS  PubMed  Google Scholar 

  • Sun, K., Battle, M. A., Misra, R. P., Duncan, S. A. (2009). Hepatocyte expression of serum response factor is essential for liver function, hepatocyte proliferation and survival, and postnatal body growth in mice. Hepatology, 49, 1645–1654.

    Article  CAS  PubMed  Google Scholar 

  • Supakar, P. C. & Roy, A. K. (1996). Role of transcription factors in the age-dependent regulation of the androgen receptor gene in rat liver. Biological Signals, 5, 170–179.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., Kambadur, R. (2000). Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. The Journal of Biological Chemistry, 275, 40235–40243.

    Article  CAS  PubMed  Google Scholar 

  • Tollet-Egnell, P., Flores-Morales, A., Stavreus-Evers, A., Sahlin, L., Norstedt, G. (1999). Growth hormone regulation of SOCS-2, SOCS-3, and CIS messenger ribonucleic acid expression in the rat. Endocrinology, 140, 3693–3704.

    Article  CAS  PubMed  Google Scholar 

  • Verdijk, L. B., Koopman, R., Schaart, G., Meijer, K., Savelberg, H. H., Van Loon, L. J. (2007). Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. American Journal of Physiology. Endocrinology and Metabolism, 292, E151–E157.

    Article  CAS  PubMed  Google Scholar 

  • Verney, J., Kadi, F., Charifi, N., Feasson, L., Saafi, M. A., Castells, J., Piehl-Aulin, K., Denis, C. (2008). Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle & Nerve, 38, 1147–1154.

    Article  Google Scholar 

  • Vivanco, I. & Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase Akt pathway in human cancer. Nature Reviews. Cancer, 2, 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Volpi, E., Sheffield-Moore, M., Rasmussen, B. B., Wolfe, R. R. (2001). Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA, 286, 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  • Welle, S. (2002). Cellular and molecular basis of age-related sarcopenia. Canadian Journal of Applied Physiology, 27, 19–41.

    CAS  PubMed  Google Scholar 

  • Welle, S., Bhatt, K., Shah, B., Thornton, C. (2002). Insulin-like growth factor-1 and myostatin mRNA expression in muscle: Comparison between 62–77 and 21–31 yr old men. Experimental Gerontology, 37, 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Welle, S., Brooks, A. I., Delehanty, J. M., Needler, N., Thornton, C. A. (2003). Gene expression profile of aging in human muscle. Physiological Genomics, 14, 149–159.

    CAS  PubMed  Google Scholar 

  • Welsh, G. I., Stokes, C. M., Wang, X., Sakaue, H., Ogawa, W., Kasuga, M., Proud, C. G. (1997). Activation of translation initiation factor eIF2B by insulin requires phosphatidyl inositol 3-kinase. Febs Letters, 410, 418–422.

    Article  CAS  PubMed  Google Scholar 

  • Whitman, S. A., Wacker, M. J., Richmond, S. R., Godard, M. P. (2005). Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflugers Archives, 450, 437–446.

    Article  CAS  Google Scholar 

  • Wilkes, E. A., Selby, A. L., Atherton, P. J., Patel, R., Rankin, D., Smith, K., Rennie, M. J. (2009). Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related ­sarcopenia. The American Journal of Clinical Nutrition, 90(5), 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  • Woelfle, J. & Rotwein, P. (2004). In vivo regulation of growth hormone-stimulated gene transcription by STAT5b. American Journal of Physiology. Endocrinology and Metabolism, 286, E393–E401.

    Article  CAS  PubMed  Google Scholar 

  • Zadik, Z., Chalew, S. A., Mccarter, R. J., JR Meistas, M., Kowarski, A. A. (1985). The­ influence of age on the 24-hour integrated concentration of growth hormone in normal individuals. The Journal of Clinical Endocrinology and Metabolism, 60, 513–516.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron P. Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Russell, A.P., Lèger, B. (2011). Age-Related Changes in the Molecular Regulation of Skeletal Muscle Mass. In: Lynch, G. (eds) Sarcopenia – Age-Related Muscle Wasting and Weakness. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9713-2_10

Download citation

Publish with us

Policies and ethics