Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1157 Accesses

Abstract

The proposed time-interleaved ADC [1] has been fabricated in a 0.18 μm one-poly six-metal CMOS process. The chip samples are packaged in 68-pin Ceramic Quad Flat-Pack (CQFP) packages. The successful measurement of a several-hundred MHz ADC is not a trivial task, and a special attention is necessary in the Printed-Circuit Board (PCB) design as well as the measurement setup that must ensure signal integrity. This chapter will present the design of the PCB with the consideration of high-frequency performance, and the testing setup in order to validate the design. The measurement results of the ADC will be exposed and a comparison with state-of-the-art low-voltage ADCs is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.-W. Sin, U. Seng-Pan, R.P. Martins, A 1.2-V 10-bit 60–360MS/s time-interleaved pipelined ADC in 0.18um CMOS with minimized supply headroom. IET Proc. Circuit. Device. Syst. 4(1), 1–13 (Jan 2010)

    Article  Google Scholar 

  2. H.W. Ott, Noise Reduction Techniques in Electronic Systems (Wiley, New York, 1998)

    Google Scholar 

  3. M.K. Armstrong, PCB design techniques for lowest-cost EMC compliance: Part 1. Electron. Comm. Eng. J. 11, 185–194 (Aug 1999)

    Article  Google Scholar 

  4. M.K. Armstrong, PCB design techniques for lowest-cost EMC compliance: Part 1. Electron. Comm. Eng. J., pp. 218–226 (Oct 1999)

    Google Scholar 

  5. M. Montrose, EMC and the Printed Circuit Board: Design, Theory, and Layout Made Simple (IEEE Press, New York, 1999)

    Google Scholar 

  6. K. Fowler, Grounding and shielding, Part 1 – Noise. in IEEE Instru. Meas. Mag., pp. 41–44 (June 2000)

    Google Scholar 

  7. K. Fowler, Grounding and shielding, Part 2 – Grounding and return. in IEEE Instru. Meas. Mag., pp. 45–48 (June 2000)

    Google Scholar 

  8. Texas Instrument, The Bypass Capacitor in High-Speed Environments, Application note (Nov 1996)

    Google Scholar 

  9. T.H. Hubing, J.L. Drewniak, T.P. Van Doren, D.M. Hockanson, Power bus decoupling on multilayer printed circuit boards. in IEEE T. Electromagn. C. 37, 155–166 (May 1995)

    Article  Google Scholar 

  10. J. Chen, M. Xu, T.H. Hubing, J.L. Drewniak, T.P. Van Doren, R.E. DuBroff, Experimental evaluation of power bus decoupling on a 4-layer printed circuit board, in Proceedings of International Symposium on Electromagnetic Compatibility, vol. 1 (2000)

    Google Scholar 

  11. J.K. Im, B. Choi, H. Kim, W. Ryu, Y.H. Yun, S.H. Ham, S.H. Kim, Y.H. Lee, J.H. Kim, Separated role of on-chip and on-PCB decoupling capacitors for reduction of radiated emission on printed circuit board. Proc. Int. Symp. Electromagn. C. 1, 531–536 (2001)

    Google Scholar 

  12. U. Seng-Pan, R.P. Martins, J.E. Franca, Design of Multirate Switched-Capacitor Circuits for Very High-Frequency Analog Front-End Filtering (Springer, New York, 2005)

    Google Scholar 

  13. S.K. Gupta, M.A. Inerfield, J. Wang, A 1-GS/s 11-bit ADC with 55-dB SNDR, 250-mW power realized by a high bandwidth scalable time-interleaved architecture. in IEEE J. Solid St. Circ. 41(12), 2650–2657 (Dec 2006)

    Article  Google Scholar 

  14. J. Doernberg, H. Lee, D. Hodges, Full-speed testing of A/D converters. in IEEE J Solid St. Circ. 19, 820–827 (Dec 1984)

    Article  Google Scholar 

  15. J. Li, G. Ahn, D. Chang, U. Moon, A 0.9-V 12-mW 5-MSPS algorithmic ADC with 77-dB SFDR. in IEEE J. Solid St. Circ. 40(4), 960–969 (April 2005)

    Article  Google Scholar 

  16. P.Y. Wu, V.S.L. Cheung, H.C. Luong, in IEEE J. Solid St. Circ. 42(4), 730–738 (April 2007)

    Article  Google Scholar 

  17. J. Li, U. Moon, A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique. in IEEE J. Solid St. Circ. 39(9), 1468–1476 (Sept 2004)

    Article  Google Scholar 

  18. S. Limotyrakis et al., A 150MS/s 8b 71mW time-interleaved ADC in 0.18μm CMOS, in Digest of Technical Papers of IEEE International Solid-State Circuits Conference (ISSCC) (Feb 2004), pp. 258–259

    Google Scholar 

  19. R. Taft, C. Menkus, M.R. Tursi, O. Hidri, V. Pons, A 1.8V 1.6GS/s 8b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency. in IEEE J. Solid St. Circ. 39(12), 2107–2115 (Dec 2004)

    Article  Google Scholar 

  20. I. Ahmed, D. Johns, A 50 MS/s (35 mW) to 1 kS/s (15 μW) power scalable 10b pipelined ADC with minimal bias current variation, in Digest of Technical Papers of IEEE International Solid-State Circuits Conference (ISSCC) (Feb 2005), pp. 280–281, 598

    Google Scholar 

  21. H.C. Kim, D.K. Jeong, W. Kim, A 30mW 8b 200MS/s pipelined CMOS ADC using a switched-opamp technique, in Digest of Technical Papers of IEEE International Solid-State Circuits Conference (ISSCC) (Feb 2005), pp. 284–285

    Google Scholar 

  22. K.E. Sankary, M. Sawan, 10-b 100-MS/s two-channel time-interleaved pipelined ADC, in Proceedings of 2006 Custom Integrated Circuits Conference (CICC) (Sept 2006), pp. 217–220

    Google Scholar 

  23. J. Goes, J.C. Vital, J.E. Franca, Systematic Design for Optimization of Pipelined ADCs (Kluwer, Boston, MA, 2001)

    Google Scholar 

  24. Y. Chiu, P.R. Gray, B. Nikolic, A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR. in IEEE J. Solid St. Circ. 39(12), 2139–2151 (Dec 2004)

    Article  Google Scholar 

  25. K. Honda, M. Furuta, S. Kawahito, in IEEE J. Solid St. Circ. 42(4), 757–765 (April 2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai-Weng Sin .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sin, SW., U, SP., Martins, R.P. (2010). Experimental Results. In: Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9710-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9710-1_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9709-5

  • Online ISBN: 978-90-481-9710-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics