Skip to main content

Part of the book series: Cancer Growth and Progression ((CAGP,volume 13))

Abstract

Though its antitumor activity was discovered four decades ago, cis-diamminedichloroplatinum (II) (cisplatin) continues to be widely used for the treatment of many solid tumor types. When combined with other cytotoxic drugs or some of the newer “targeted” agents, significant improvements in response and survival rates have been observed in cancers of the ovary, lung, bladder and head and neck. Its most remarkable contribution, however, has been in the treatment of testicular cancer. Prior to the introduction of cisplatin to the clinic, testicular tumors were treated with a combination of vinblastine, adriamycin and bleomycin resulting in response rates of approximately 50%. Treatment with cisplatin-based therapy now cures the majority of testicular cancer patients presenting with advanced stage disease. The extraordinary antitumor activity observed with cisplatin in early clinical trials prompted further investigations into understanding its mechanism of action and developing less toxic analogs with different cytotoxicity profiles. These efforts have resulted in the development of two more platinum complexes, carboplatin and oxaliplatin, which are approved for clinical use. In this chapter, we will provide a review of the attributes of the platinum drugs including their chemistry, clinical pharmacology, mechanism of action, and mechanisms of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenberg B, VanCamp L, Trosko J, Mansour V (1969) Platinum compounds: a new class of potent antitumor agents, Nature 222:385–386

    CAS  PubMed  Google Scholar 

  2. Rosenberg B (1999) Platinum complexes for the treatment of cancer: why the search goes on. In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Verlag Helvetica Chimica Acta, Zurich, pp 3–27

    Google Scholar 

  3. Cvitkovic E, Spaulding J, Bethune V, Martin J, Whitmore W (1977) Improvement of cis-dichlorodiammineplatinum (NSC 119875): therapeutic index in an animal model. Cancer 39:1357–1361

    CAS  PubMed  Google Scholar 

  4. Hayes D, Cvitkovic E, Golbey R, Scheiner E, Helson L, Krakoff I (1977) High dose cis-platinum diammine dichloride: amelioration of renal toxicity by mannitol diuresis. Cancer 39:1372–1381

    CAS  PubMed  Google Scholar 

  5. O’Dwyer P, Stevenson J, Johnson S (1999) Clinical status of cisplatin, carboplatin and other platinum-based antitumor drugs. In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Verlag Helvetica Chimica Acta, Zurich, pp 31–69

    Google Scholar 

  6. Harrap K (1985) Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat Rev 12:A21–A33

    Google Scholar 

  7. Harrap K (1995) Initiatives with platinum- and quinazoline-based antitumor molecules – Fourteenth Bruce F. Cain memorial award lecture. Cancer Res 55:2761–2768

    CAS  PubMed  Google Scholar 

  8. Calvert A, Newell D, Gumbrell L, O’Reilly S, Burnell M, Boxall F, Siddik Z, Judson I, Gore M, Wiltshaw E (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7:1748–1756

    CAS  PubMed  Google Scholar 

  9. Egorin M, Echo DV, Olman E, Whitaker M, Forrest A, Aisner J (1985) Prospective validation of a pharmacologically based dosing scheme for the cis-diamminedichloroplatinum(II) analog diamminecyclobutanedicarboxylatoplatinum. Cancer Res 45:6502–6506

    CAS  PubMed  Google Scholar 

  10. Connors T, Jones M, Ross W, Braddock P, Khokhar A, Tobe M (1972) New platinum complexes with anti-tumour activity. Chem Biol Interact 5:415–424

    CAS  PubMed  Google Scholar 

  11. Burchenal J, Kalaker K, Dew K, Lokyst L (1979) Rationale for development of platinum analogs. Cancer Treat Rep 63:1493–1498

    CAS  PubMed  Google Scholar 

  12. Kidani Y, Inagaki K, Tsukagoshi S (1976) Examination of antitumor activities of platinum complexes of 1,2-diaminocyclohexane isomers and their related complexes. Gann 67:921–922

    CAS  PubMed  Google Scholar 

  13. Burchenal J, Irani G, Kern K, Lokys L, Turkevich J (1980) 1,2-Diaminocyclohexane platinum derivatives of potential clinical value. Rec Res Cancer Res 74:146–155

    CAS  Google Scholar 

  14. Rixe O, Ortuzar W, Alvarez M, Parker R, Paull K, Fojo R (1996) Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the national cancer institute’s anticancer drug screen panel. Biochem Pharmacol 52:1855–1865

    CAS  PubMed  Google Scholar 

  15. Schilder RJ, LaCreta FP, Perez RP, Johnson SW, Brennan JM, Rogatko A, Nash S, McAleer C, Hamilton TC, Roby D et al (1994) Phase I and pharmacokinetic study of ormaplatin (tetraplatin, NSC 363812) administered on a day 1 and day 8 schedule. Cancer Res 54:709–717

    CAS  PubMed  Google Scholar 

  16. Chaney SG, Wyrick S, Till GK (1990) In vitro biotransformations of tetrachloro(d,l-trans)-1,2-diaminocyclohexaneplatinum(IV) (tetraplatin) in rat plasma. Cancer Res 50:4539–4545

    CAS  PubMed  Google Scholar 

  17. Petros WP, Chaney SG, Smith DC, Fangmeier J, Sakata M, Brown TD, Trump DL (1994) Pharmacokinetic and biotransformation studies of ormaplatin in conjunction with a phase I clinical trial. Cancer Chemother Pharmacol 33:347–354

    CAS  PubMed  Google Scholar 

  18. Shord SS, Bernard SA, Lindley C, Blodgett A, Mehta V, Churchel MA, Poole M, Pescatore SL, Luo FR, Chaney SG (2002) Oxaliplatin biotransformation and pharmacokinetics: a pilot study to determine the possible relationship to neurotoxicity. Anticancer Res 22:2301–2309

    CAS  PubMed  Google Scholar 

  19. Mathe G, Kidani Y, Triana K, Brienza S, Ribaud P, Goldschmidt E, Ecstein E, Despax R, Musset M, Misset JL (1986) A phase I trial of trans-l-diaminocyclohexane oxalato-platinum (l-OHP). Biomed Pharmacother 40:372–376

    CAS  PubMed  Google Scholar 

  20. Extra J, Espie M, Calvo F, Ferme C, Mignot L, Marty M (1990) Phase I study of oxaliplatin in patients with advanced cancer. Cancer Chemother Pharmacol 25:299–303

    CAS  PubMed  Google Scholar 

  21. Cvitkovic E, Bekradda M (1999) Oxaliplatin: a new therapeutic option in colorectal cancer. Semin Oncol 26:647–662

    CAS  PubMed  Google Scholar 

  22. Hubbard K, Pazdur R, Ajani J, Braud E, Blaustein A, King M, Llenado-Lee M, Winn R, Levin B, Abbruzzese J (1992) Phase II evaluation of iproplatin in patients with advanced gastric and pancreatic cancer. Am J Clin Oncol 15:524–527

    CAS  PubMed  Google Scholar 

  23. Murphy D, Lind M, Prendiville J, Renninson J, Smith D, Thompson G, Ranson M, Crowther B (1992) Phase I/II study of intraperitoneal iproplatin in patients with minimal residual disease following platinum-based systemic therapy for epithelial ovarian carcinoma. Eur J Cancer 28A:870–872

    CAS  PubMed  Google Scholar 

  24. Kelland L (1999) The development of orally active platinum drugs. In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Verlag Helvetica Chimica Acta, Zurich, pp 497–521

    Google Scholar 

  25. Fokkema E, Bauer J, Uges D, Weil C, Smith I (1999) Phase II study of oral platinum drug JM216 as first-line treatment in patients with small-cell lung cancer. J Clin Oncol 17:3822–3827

    CAS  PubMed  Google Scholar 

  26. Judson I, Cerny T, Epelbaum R, Dunlop D, Smyth J, Schaefer B, Roelvink M, Kaplan S, Hanauske A (1997) Phase II trial of the oral platinum complex JM216 in non-small-cell lung cancer: an EORTC early clinical studies group investigation. Ann Oncol 8:604–606

    CAS  PubMed  Google Scholar 

  27. Latif T, Wood L, Connell C, Smith DC, Vaughn D, Lebwohl D, Peereboom D (2005) Phase II study of oral bis (aceto) ammine dichloro (cyclohexamine) platinum (IV) (JM-216, BMS-182751) given daily × 5 in hormone refractory prostate cancer (HRPC). Invest New Drugs 23:79–84

    CAS  PubMed  Google Scholar 

  28. Sternberg CN, Whelan P, Hetherington J, Paluchowska B, Slee PH, Vekemans K, Van Erps P, Theodore C, Koriakine O, Oliver T, Lebwohl D, Debois M, Zurlo A, Collette L (2005) Genitourinary Tract Group of the EORTC. Phase III trial of satraplatin, an oral platinum plus prednisone vs. prednisone alone in patients with hormone-refractory prostate cancer. Oncology 68:2–9

    CAS  PubMed  Google Scholar 

  29. Holford J, Sharp S, Murrer B, Abrams M, Kelland L (1998) In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473. Br J Cancer 77:366–373

    CAS  PubMed  Google Scholar 

  30. Raynaud F, Boxall F, Goddard P, Valenti M, Jones M, Murrer B, Abrams M, Kelland L (1997) cis-Amminedichloro(2-methylpyridine) platinum(II) (AMD473), a novel sterically hindered platinum complex: in vivo activity, toxicology, and pharmacokinetics in mice. Clin Cancer Res 3:2063–2074

    CAS  PubMed  Google Scholar 

  31. Beale P, Judson I, O’Donnell A, Trigo J, Rees C, Raynaud F, Turner A, Simmons L, Etterley L (2003) A Phase I clinical and pharmacological study of cis-diamminedichloro(2-methylpyridine) platinum II (AMD473). Br J Cancer 88:1128–1134

    CAS  PubMed  Google Scholar 

  32. Gelmon KA, Stewart D, Chi KN, Chia S, Cripps C, Huan S, Janke S, Ayers D, Fry D, Shabbits JA, Walsh W, McIntosh L, Seymour LK (2004) A phase I study of AMD473 and docetaxel given once every 3 weeks in patients with advanced refractory cancer: a national cancer institute of Canada-clinical trials group trial, IND 131. Ann Oncol 15:1115–1122

    CAS  PubMed  Google Scholar 

  33. Twelves C, Reck M, Anthoney A, Gatzemeier U, Kaye S (2003) A phase I study of ZD0473 combined with paclitaxel for the treatment of solid malignancies. Cancer Chemother Pharmacol 52:277–281

    CAS  PubMed  Google Scholar 

  34. Flaherty K, Stevenson J, Redlinger M, Algazy K, Giantonio B, O’Dwyer P (2004) A phase I, dose-escalation trial of ZD0473, a novel platinum analog, in combination with gemcitabine. Cancer Chemother Pharmacol 53:404–408

    CAS  PubMed  Google Scholar 

  35. Gore ME, Atkinson RJ, Thomas H, Cure H, Rischin D, Beale P, Bougnoux P, Dirix L, Smit WM (2002) A phase II trial of ZD0473 in platinum-pretreated ovarian cancer. Eur J Cancer 38:2416–2420

    CAS  PubMed  Google Scholar 

  36. Gelmon KA, Vandenberg TA, Panasci L, Norris B, Crump M, Douglas L, Walsh W, Matthews SJ, Seymour LK (2003) A phase II study of ZD0473 given as a short infusion every 3 weeks to patients with advanced or metastatic breast cancer: a national cancer institute of Canada clinical trials group trial, IND 129. Ann Oncol 14:543–548

    CAS  PubMed  Google Scholar 

  37. Farrell N, Qu Y, Bierbach U, Valsecchi M, Menta E (1999) Structure-activity relationships within di- and trinuclear platinum phase-I clinical anticancer agents. In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Verlag Helvetica Chimica Acta, Zurich

    Google Scholar 

  38. Sessa C, Capri G, Gianni L, Peccatori F, Grasselli G, Bauer J, Zucchetti M, Vigano L, Gatti A, Minoia C, Liati P, Van den Bosch S, Bernareggi A, Camboni G, Marsoni S (2000) Clinical and pharmacological phase I study with accelerated titration design of a daily times five schedule of BBR3464, a novel cationic triplatinum complex. Ann Oncol 11:977–983

    CAS  PubMed  Google Scholar 

  39. Jodrell DI, Evans TR, Steward W, Cameron D, Prendiville J, Aschele C, Noberasco C, Lind M, Carmichael J, Dobbs N, Camboni G, Gatti B, De Braud F (2004) Phase II studies of BBR3464, a novel tri-nuclear platinum complex, in patients with gastric or gastro-oesophageal adenocarcinoma. Eur J Cancer 40:1872–1877

    CAS  PubMed  Google Scholar 

  40. Fojo T, Farrell N, Ortuzar W, Tanimura H, Weinstein J, Myers, TG (2005) Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations. Crit Rev Oncol/Hematol 53:25–34

    Google Scholar 

  41. DeConti R, Toftness B, Lange R, Creasey W (1973) Clinical and pharmacological studies with cis-diamminedichloroplatinum (II). Cancer Res 33:1310–1315

    CAS  PubMed  Google Scholar 

  42. Himmelstein K, Patton T, Belt R, Taylor S, Repta A, Sternson L (1981) Clinical kinetics on intact cisplatin and some related species. Clin Pharmacol Ther 29:658–664

    CAS  PubMed  Google Scholar 

  43. Casper E, Kelsen D, Alcock N, Young C (1979) Platinum concentrations in bile and plasma following rapid and 6-hour infusions of cis-dichlorodiammineplatinum(II). Cancer Treat Rep 63:2023–2025

    CAS  PubMed  Google Scholar 

  44. Duffull S, Robinson B (1997) Clinical pharmacokinetics and dose optimisation of carboplatin. Clin Pharmacokinet 33:161–183

    CAS  PubMed  Google Scholar 

  45. VanderVijgh W (1991) Clinical pharmacokinetics of carboplatin. Clin Pharmacokinet 21:242–261

    CAS  Google Scholar 

  46. Graham, MA, Lockwood, GF, Greenslade D, Brienza S, Bayssas M, Gamelin E (2000) Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res 6:1205–1218

    CAS  PubMed  Google Scholar 

  47. Extra J, Marty M, Brienza S, Misset J (1998) Pharmacokinetics and safety profile of oxaliplatin. Semin Oncol 25:13–22

    CAS  PubMed  Google Scholar 

  48. Belt R, Himmelstein K, Patton T, Bannister S, Sternson L, Repta A (1979) Pharmacokinetics of non-protein-bound platinum species following administration of cis-dichlorodiammineplatinum(II). Cancer Treat Rep 63:1515–1521

    CAS  PubMed  Google Scholar 

  49. Vermorken J, Vijgh WVD, Klein I, Hart A, Gall H, Pinedo H (1984) Pharmacokinetics of free and total platinum species after short-term infusion of cisplatin. Cancer Treat Rep 68:505–513

    CAS  PubMed  Google Scholar 

  50. Gormley P, Bull J, LeRoy A, Cysyk R (1979) Kinetics of cis-dichlorodiammineplatinum. Clin Pharmacol Ther 25:351–357

    CAS  PubMed  Google Scholar 

  51. Harland S, Newell D, Siddik Z, Chadwick R, Calvert A, Harrap K (1984) Pharmacokinetics of cis-diammine-1,1-cyclobutane dicarboxylate platinum(II) in patients with normal and impaired renal function. Cancer Res 44:1693–1697

    CAS  PubMed  Google Scholar 

  52. Gamelin E, Bouil A, Boisdron-Celle M, Turcant A, Cailleux A, Krikorian A, Brienza S, Cvitkovic E, Robert J, Larra F, Allain P (1997) Cumulative pharmacokinetic study of oxaliplatin, administered every three weeks, combined with 5-fluorouracil in colorectal cancer patients. Clin Cancer Res 3:891–899

    CAS  PubMed  Google Scholar 

  53. Evans B, Raju K, Calvert A, Harland S, Wiltshaw E (1983) Phase II study of JM8, a new platinum analog, in advanced ovarian carcinoma. Cancer Treat Rep 67:997–1000

    CAS  PubMed  Google Scholar 

  54. De Gramont A, Banzi M, Navarro M, Tabernero J, Hickish T, Bridgewater J, Rivera F, Figer A, Fountzilas G, Andre T (2003) Oxaliplatin/5-FU/LV in adjuvant colon cancer: results of the international randomized mosaic trial. Proc Am Soc Clin Oncol 22:253

    Google Scholar 

  55. Harder H, Rosenberg B (1970) Inhibitory effects of anti-tumor platinum compounds on DNA, RNA and protein syntheses in mammalian cells in virtro. Int J Cancer 6:207–216

    CAS  PubMed  Google Scholar 

  56. Howle J, Gale G (1970) Cis-dichlorodiammineplatinum (II). Persistent and selective inhibition of deoxyribonucleic acid synthesis in vivo. Biochem Pharmacol 19:2757–2762

    CAS  PubMed  Google Scholar 

  57. Reslova S (1971) The induction of lysogenic strains of Escherichia coli by cis-dichloro-diammineplatinum (II). Chem Biol Interact 4:66–70

    CAS  PubMed  Google Scholar 

  58. Poll EHA, Abrahams PJ, Arwert F, Eriksson AW (1984) Host cell reactivation of cis-diamminedichloroplatinum (II)-treated SV40 DNA in normal human, Fanconi anaemia and xeroderma pigmentosum fibroblasts. Mutation Res 132:181–187

    CAS  PubMed  Google Scholar 

  59. Fraval HNA, Rawlings CJ, Roberts JJ (1978) Increased sensitivity of UV-repair deficient human cells to DNA bound platinum products which unlike thymine dimers are not recognized by an endonuclease extracted from Micrococcus luteus. Mutation Res 51:121–132

    CAS  PubMed  Google Scholar 

  60. Eastman A (1987) The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther 34:155–166

    CAS  PubMed  Google Scholar 

  61. Blommaert F, van Kijk-Knijnenburg H, Dijt F, den Engelse L, Baan R, Berends F, Fichtinger-Schepman A (1995) Formation of DNA adducts by the anticancer drug carboplatin: different nucleotide sequence preferences in vitro and in cells. Biochemistry 34:8474–8480

    CAS  PubMed  Google Scholar 

  62. Saris C, van de Vaart P, Rietbroek R, Blommaert F (1996) In vitro formation of DNA adducts by cisplatin, lobaplatin and oxaliplatin in calf thymus DNA in solution and in cultured cells. Carcinogenesis 17:2763–2769

    CAS  PubMed  Google Scholar 

  63. Toney J, Donahue B, Kellett P, Bruhn S, Essigmann J, Lippard S (1989) Isolation of cDNAs encoding a human protein that binds selectively to DNA modified by the anticancer drug cis-diamminedichloroplatinum. Proc Natl Acad Sci USA 86:8328–8332

    CAS  PubMed  Google Scholar 

  64. Bruhn S, Pil P, Essigmann J, Housman D, Lippard S (1989) Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin. Proc Natl Acad Sci USA 89:2307–2311

    Google Scholar 

  65. Hughes EN, Engelsberg BN, Billings PC (1992) Purification of nuclear proteins that bind to cisplatin-damaged DNA. Identity with high mobility group proteins 1 and 2. J Biol Chem 267:13520–13527

    CAS  PubMed  Google Scholar 

  66. Mello J, Acharya S, Fishel R, Essigmann J (1996) The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem Biol 3:579–589

    CAS  PubMed  Google Scholar 

  67. Fink D, Zheng H, Nebel S, Norris P, Aebi S, Lin T-P, Nehme A, Christen R, Haas M, MacLeod C, Howell S (1997) In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res 57:1841–1845

    CAS  PubMed  Google Scholar 

  68. Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehme A, Christen R, Howell S (1996) The role of DNA mismatch repair in platinum drug resistance. Cancer Res 56:4881–4886

    CAS  PubMed  Google Scholar 

  69. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis or resistance. Oncogene 22:7265–7279

    CAS  PubMed  Google Scholar 

  70. Luo Y, Lin FT, Lin WC (2004) ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol Cell Biol 24:6430–6444

    CAS  PubMed  Google Scholar 

  71. Fan S, Smith ML, Rivet DJ, Duba D, Zhan Q, Kohn KW, Fornace AJ Jr, O’Connor PM (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 55:1649–1654

    CAS  PubMed  Google Scholar 

  72. Hawkins DS, Demers GW, Galloway DA (1996) Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res 56:892–898

    CAS  PubMed  Google Scholar 

  73. Evans D, Dive C (1993) Effects of cisplatin on the induction of apoptosis in proliferating hepatoma cells and nonproliferating immature thymocytes. Cancer Res 53:2133–2139

    CAS  PubMed  Google Scholar 

  74. Sorenson C, Eastman A (1988) Mechansim of cis-diamminedichloroplatinum (II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks. Cancer Res 48:4484–4488

    CAS  PubMed  Google Scholar 

  75. Sorenson C, Barry M, Eastman A (1990) Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. J Natl Cancer Inst 82:749–755

    CAS  PubMed  Google Scholar 

  76. Bunch R, Eastman A (1997) 7-Hydroxystaurosporine (UCN-01) causes redistribution of proliferating cell nuclear antigen and abrogates cisplatin-induced S-phase arrest in Chinese hamster ovary cells. Cell Growth Differ 8:779–788

    CAS  PubMed  Google Scholar 

  77. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    CAS  PubMed  Google Scholar 

  78. Kondo K, Yamasaki S, Sugie T, Teratani N, Kan T, Imamura M, Shimada Y (2006) Cisplatin-dependent upregulation of death receptors 4 and 5 augments induction of apoptosis by TNF-related apoptosis-inducing ligand against esophageal squamous cell carcinoma. Int J Cancer 118:230–242

    Google Scholar 

  79. Fulda S, Los M, Friesen C, Debatin KM (1998) Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int J Cancer 76:105–114

    CAS  PubMed  Google Scholar 

  80. Brozovic A, Fritz G, Christmann M, Zisowsky J, Jaehde U, Osmak M, Kaina B (2004) Long-term activation of SAPK/JNK, p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int J Cancer 112:974–985

    CAS  PubMed  Google Scholar 

  81. Devarajan P, Savoca M, Castaneda MP, Park MS, Esteban-Cruciani N, Kalinec G, Kalinec F (2002) Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear Res 174:45–54

    CAS  PubMed  Google Scholar 

  82. Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865

    CAS  PubMed  Google Scholar 

  83. Lacour S, Micheau O, Hammann A, Drouineaud V, Tschopp J, Solary E, Dimanche-Boitrel MT (2003) Chemotherapy enhances TNF-related apoptosis-inducing ligand DISC assembly in HT29 human colon cancer cells. Oncogene 22:1807–1816

    CAS  PubMed  Google Scholar 

  84. Blanc C, Deveraux QL, Krajewski S, Janicke RU, Porter AG, Reed JC, Jaggi R, Marti A (2000) Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 60:4386–4390

    CAS  PubMed  Google Scholar 

  85. Kojima H, Endo K, Moriyama H, Tanaka Y, Alnemri ES, Slapak CA, Teicher B, Kufe D, Datta R (1998) Abrogation of mitochondrial cytochrome c release and caspase-3 activation in acquired multidrug resistance. J Biol Chem 273:16647–16650

    CAS  PubMed  Google Scholar 

  86. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    CAS  PubMed  Google Scholar 

  87. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957

    CAS  PubMed  Google Scholar 

  88. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    CAS  PubMed  Google Scholar 

  89. Verrier F, Deniaud A, Lebras M, Metivier D, Kroemer G, Mignotte B, Jan G, Brenner C (2004) Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene 23:8049–8064

    CAS  PubMed  Google Scholar 

  90. Murata T, Haisa M, Uetsuka H, Nobuhisa T, Ookawa T, Tabuchi Y, Shirakawa Y, Yamatsuji T, Matsuoka J, Nishiyama M, Tanaka N, Naomoto Y (2004) Molecular mechanism of chemoresistance to cisplatin in ovarian cancer cell lines. Int J Mol Med 13:865–868

    CAS  PubMed  Google Scholar 

  91. Sheikh-Hamad D, Cacini W, Buckley AR, Isaac J, Truong LD, Tsao CC, Kishore BK (2004) Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Arch Toxicol 78:147–155

    CAS  PubMed  Google Scholar 

  92. Nachmias B, Ashhab Y, Ben-Yehuda D (2004) The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol 14:231–243

    CAS  PubMed  Google Scholar 

  93. Li J, Feng Q, Kim JM, Schneiderman D, Liston P, Li M, Vanderhyden B, Faught W, Fung MF, Senterman M, Korneluk RG, Tsang BK (2001) Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 142:370–380

    CAS  PubMed  Google Scholar 

  94. Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, Wang HG, Tsang BK, Cheng JQ (2004) Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem 279:5405–5412

    CAS  PubMed  Google Scholar 

  95. Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67:1171–1175

    CAS  PubMed  Google Scholar 

  96. Safaei R, Howell SB (2005) Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit Rev Oncol Hematol 53:13–23

    PubMed  Google Scholar 

  97. Naredi P, Heath DD, Enns RE, Howell SB (1995) Cross-resistance between cisplatin, antimony potassium tartrate, and arsenite in human tumor cells. J Clin Invest 95:1193–1198

    CAS  PubMed  Google Scholar 

  98. Katano K, Kondo A, Safaei R, Holzer A, Samimi G, Mishima M, Kuo YM, Rochdi M, Howell SB (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565

    CAS  PubMed  Google Scholar 

  99. Song IS, Savaraj N, Siddik ZH, Liu P, Wei Y, Wu CJ, Kuo MT (2004) Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther 3:1543–1549

    CAS  PubMed  Google Scholar 

  100. Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154–1159

    CAS  PubMed  Google Scholar 

  101. Komatsu M, Sumizawa T, Mutoh M, Chen, ZS, Terada K, Furukawa T, Yang XL, Gao H, Miura N, Sugiyama T, Akiyama S (2000) Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. 60:1312–1316

    CAS  Google Scholar 

  102. Katano K, Safaei R, Samimi G, Holzer A, Rochdi M, Howell SB (2003) The copper export pump ATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells. Mol Pharmacol 64:466–473

    CAS  PubMed  Google Scholar 

  103. Katano K, Kondo A, Safaei R, Holzer A, Samimi G, Mishima M, Kuo, YM, Rochdi M, Howell SB Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565

    Google Scholar 

  104. Samimi G, Varki, NM, Wilczynski S, Safaei R, Alberts, DS, Howell, SB Increase in the expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin Cancer Res 9:5853–5859

    Google Scholar 

  105. Borst P, Kool M, Evers R (1997) Do cMOAT (MRP2), other MRP homologues, and LRP play a role in MDR? Semin Cancer Biol 8:205–213

    CAS  PubMed  Google Scholar 

  106. Taniguchi K, Wada M, Kohno K, Nakamura T, Kawabe T, Kawakami M, Kagotani K, Okumura K, Akiyama S, Kuwano M (1996) A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res 56:4124–4129

    CAS  PubMed  Google Scholar 

  107. Koike K, Kawabe T, Tanaka T, Toh S, Uchiumi T, Wada M, Akiyama S, Ono M, Kuwano M (1997) A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhances drug sensitivity in human hepatic cancer cells. Cancer Res 57:5475–5479

    CAS  PubMed  Google Scholar 

  108. Kool M, de Haas M, Scheffer G, Scheper R, van Eijk M, Juijn J, Baas F, Borst P (1997) Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57:3537–3547

    CAS  PubMed  Google Scholar 

  109. Arts H, Katsaros D, Vries ED, Massobrio M, Genta F, Danese S, Arisio R, Scheper R, Kool M, Scheffer G, Willemse P, Zee AVD, Suurmeijer A (1999) Drug resistance-associated markers P-glycoprotein, multidrug resistance-associated protein 1, multidrug resistance-associated protein 2, and lung resistance protein as prognostic factors in ovarian carcinoma. Clin Cancer Res 5:2798–2805

    CAS  PubMed  Google Scholar 

  110. Yoh K, Ishii G, Yokose T, Minegishi Y, Tsuta K, Goto K, Nishiwaki Y, Kodama T, Suga M, Ochiai A (2004) Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 10:1691–1697

    CAS  PubMed  Google Scholar 

  111. Ishikawa T, Ali-Osman F (1993) Glutathione-associated cis-diamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells. J Biol Chem 268:20116–20125

    CAS  PubMed  Google Scholar 

  112. Mistry P, Loh S, Kelland L, Harrap K (1993) Effect of buthionine sulfoximine on PtII and PtIV drug accumulation and the formation of glutathione conjugates in human ovarian carcinoma cell lines. Int J Cancer 55:848–856

    CAS  PubMed  Google Scholar 

  113. Eastman A (1987) Cross-linking of glutathione to DNA by cancer chemotherapeutic platinum coordination complexes. Chem Biol Interact 61:241–248

    CAS  PubMed  Google Scholar 

  114. Godwin A, Meister A, O’Dwyer P, Huang C, Hamilton T, Anderson M (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase in glutathione synthesis, Proc Natl Acad Sci USA 89:3070–3074

    CAS  PubMed  Google Scholar 

  115. Hosking LK, Whelan RDH, Shellard SA, Bedford P, Hill BT (1990) An evaluation of the role of glutathione and its associated enzymes in the expression of differential sensitivities to antitumor agents shown by a range of human tumour cell lines. Biochem Pharmacol 40:1833–1842

    CAS  PubMed  Google Scholar 

  116. Mistry P, Kelland L, Abel G, Sidhar S, Harrap K (1991) The relationships between glutathione, glutathione-S-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines. Br J Cancer 64:215–220

    CAS  PubMed  Google Scholar 

  117. Britten RA, Green JA, Broughton C, Browning PGW, White R, Warenius HM (1991) The relationship between nuclear glutathione levels and resistance to melphalan in human ovarian tumour cells. Biochem Pharmacol 41:647–649

    CAS  PubMed  Google Scholar 

  118. Hamilton T, Winker M, Louie K, Batist G, Behrens B, Tsuruo T, Grotzinger K, McKoy W, Young R, Ozols R (1985) Augmentation of adriamycin, melphalan and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian cancer cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem Pharmacol 34:2583–2586

    CAS  PubMed  Google Scholar 

  119. Smith E, Brock AP (1988) An in vitro study comparing the cytotoxicity of three platinum complexes with regard to the effect of thiol depletion. Br J Cancer 57:548–552

    CAS  PubMed  Google Scholar 

  120. Daubeuf S, Leroy P, Paolicchi A, Pompella A, Wellman M, Galteau MM, Visvikis A (2002) Enhanced resistance of HeLa cells to cisplatin by overexpression of gamma-glutamyltransferase. Biochem Pharmacol 15:207–216

    Google Scholar 

  121. Pattanaik A, Bachowski G, Laib J, Lemkuil D, Shaw CR, Petering D, Hitchcock A, Saryan L (1992) Properties of the reaction of cis-dichlorodiammineplatinum(II) with metallothionein. J Biol Chem 267:16121–16128

    CAS  PubMed  Google Scholar 

  122. Kelley S, Basu A, Teicher B, Hacker M, Hamer D, Lazo J (1988) Overexpression of metallothionein confers resistance to anticancer drugs. Science 241:1813–1815

    CAS  PubMed  Google Scholar 

  123. Kondo Y, Woo ES, Michalska AE, Choo KHA, Lazo JS (1995) Metallothionein null cells have increased sensitivity to anticancer drugs. Cancer Res 55:2021–2023

    CAS  PubMed  Google Scholar 

  124. Kojima M, Kikkawa F, Oguchi H, Mizuno K, Maeda O, Tamakoshi K, Ishikawa H, Kawai M, Suganuma N, Tomoda Y (1994) Sensitisation of human ovarian carcinoma cells to cis-diamminedichloroplatinum (II) by amphotericin B in vitro and in vivo. Eur J Cancer 30A:773–778

    CAS  PubMed  Google Scholar 

  125. Siu L, Banerjee D, Khurana F, Pan X, Pflueger R, Tannock I, Moore M (1998) The prognostic role of p53, metallothionein, P-glycoprotein, and MIB-1 in muscle-invasive urothelial transitional cell carcinoma. Clin Cancer Res 4:559–565

    CAS  PubMed  Google Scholar 

  126. Wood D, Klein E, Fair W, Chaganti R (1993) Metallothionein gene expression in bladder cancer exposed to cisplatin. Mod Pathol 6:33–35

    PubMed  Google Scholar 

  127. Wrigley E, Verspaget HW, Jayson GC, McGown AT (2000) Metallothionein expression in epithelial ovarian cancer: effect of chemotherapy and prognostic significance. J Cancer Res Clin Oncol 126:717–721

    CAS  PubMed  Google Scholar 

  128. Koberle B, Grimaldi K, Sunters A, Hartley J, Kelland L, Masters J (1997) DNA repair capacity and cisplatin sensitivity of human testis tumour cells. Int J Cancer 70:551–555

    CAS  PubMed  Google Scholar 

  129. Johnson S, Perez R, Godwin A, Yeung A, Handel L, Ozols R, Hamilton T (1994) Role of platinum-DNA adduct formation and removal in cisplatin resistance in human ovarian cancer cell lines. Biochem Pharmacol 47:689–697

    CAS  PubMed  Google Scholar 

  130. Johnson S, Swiggard P, Handel L, Brennan J, Godwin A, Ozols R, Hamilton T (1994) Relationship between platinum-DNA adduct formation and removal and cisplatin cytotoxicity in cisplatin-sensitive and -resistant human ovarian cancer cells. Cancer Res 54:5911–5916

    CAS  PubMed  Google Scholar 

  131. Yen L, Woo A, Christopoulopoulos G, Batist G, Panasci L, Roy R, Mitra S, Alaoui-Jamali M (1995) Enhanced host cell reactivation capacity and expression of DNA repair genes in human breast cancer cells resistant to bi-functional alkylating agents. Mutat Res 337:179–189

    CAS  PubMed  Google Scholar 

  132. Ali-Osman F, Berger M, Rairkar A, and Stein D (1994) Enhanced repair of a cisplatin-damaged reporter chloramphenicol-O-acetyltransferase gene and altered activities of DNA polymerases α and β, and DNA ligase in cells of a human malignant glioma following in vivo cisplatin therapy. J Cell Biochem 54:11–19

    CAS  PubMed  Google Scholar 

  133. Eastman A, Schulte N (1988) Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Biochemistry 27:4730–4734

    CAS  PubMed  Google Scholar 

  134. Ferry K, Hamilton T, Johnson S (2000) Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem Pharmacol 60:1305–1313

    CAS  PubMed  Google Scholar 

  135. Dabholkar M, Vionnet J, Bostick-Bruton F, Yu J, Reed E (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 94:703–708

    CAS  PubMed  Google Scholar 

  136. Chu G, Chang E (1990) Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA. Proc Natl Acad Sci USA 87:3324–3328

    CAS  PubMed  Google Scholar 

  137. Mu D, Park C-H, Matsunaga T, Hsu D, Reardon J, Sancar A (1995) Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem 270:2415–2418

    CAS  PubMed  Google Scholar 

  138. Selvakumaran M, Piscarcik, DA, Bao R, Yeung AT, Hamilton TC (2003) Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res 63:1311–1316

    CAS  PubMed  Google Scholar 

  139. Chang IY, Kim MH, Kim HB, Lee Do Y, Kim SH, Kim HY, You HJ (2005) Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin. Biochem Biophys Res Commun 327:225–233

    CAS  PubMed  Google Scholar 

  140. Masuda H, Tanaka T, Matsuda H, Kusaba I (1990) Increased removal of DNA-bound platinum in a human ovarian cancer cell line resistant to cis-diamminedichloroplatinum (II). Cancer Res 50:1863–1866

    CAS  PubMed  Google Scholar 

  141. Katz E, Andrews P, Howell S (1990) The effect of DNA polymerase inhibitors on the cytotoxicity of cisplatin in human ovarian carcinoma cells. Cancer Comm 2:159–164

    CAS  Google Scholar 

  142. Dempke WCM, Shellard SA, Fichtinger-Schepman AMJ, Hill BT (1991) Lack of significant modulation of the formation and removal of platinum-DNA adducts by aphidicolin glycinate in two logarithmically-growing ovarian tumour cell lines in vitro. Carcinogenesis 12:525–528

    CAS  PubMed  Google Scholar 

  143. O’Dwyer P, Moyer J, Suffness M, Harrison S, Cysyk R, Hamilton T, Plowman J (1994) Antitumor activity and biochemical effects of aphidicolin glycinate (NSC 303812) alone and in combination with cisplatin in vivo. Cancer Res 54:724–729

    PubMed  Google Scholar 

  144. Johnson S, Laub P, Beesley J, Ozols R, Hamilton T (1997) Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Res 57:850–856

    CAS  PubMed  Google Scholar 

  145. Aebi S, Kurdi-Haidar B, Gordon R, Cenni B, Zheng H, Fink D, Christen R, Boland C, Koi M, Fishel R, Howell S (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res 56:3087–3090

    CAS  PubMed  Google Scholar 

  146. Duckett D, Drummond J, Murchie A, Reardon J, Sancar A, Lilley D, Modrich P (1996) Human MutSa recognizes damaged DNA base pairs containing 06-methylguanine, O4-methylthymine, or the cisplatin-d(GpG)adduct. Proc Natl Acad Sci USA 93:6443–6447

    CAS  PubMed  Google Scholar 

  147. Branch P, Masson M, Aquilina G, Bignami M, Karran P (2000) Spontaneous development of drug resistance: mismatch repair and p53 defects in resistance to cisplatin in human tumor cells. Oncogene 19:3138–3145

    CAS  PubMed  Google Scholar 

  148. Mamenta E, Poma E, Kaufmann W, Delmastro D, Grady H, Chaney S (1994) Enhanced replicative bypass of platinum-DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res 54:3500–3505

    CAS  PubMed  Google Scholar 

  149. Chancy, SG, Campbell, SL, Bassett E, Wu Y (2005) Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol 53:3–11

    Google Scholar 

  150. Zanke B, Boudreau K, Rubie E, Winnett E, Tibbles L, Zon L, Kyriakis J, Liu F-F, and Woodgett J (1996) The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 6:606–613

    CAS  PubMed  Google Scholar 

  151. Sanchez-Perez I, Murguia J, Perona R (1998) Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16:533–540

    CAS  PubMed  Google Scholar 

  152. Vasilevskaya I, O’Dwyer PJ (2003) Role of Jun and Jun kinase in resistance of cancer cells to therapy. Drug Resist Updates 6:147–156

    CAS  Google Scholar 

  153. Vasilevskaya IA, Rakitinam TV, O’Dwyer PJ (2004) Quantitative effects on c-jun N-terminal protein kinase signaling determine synergistic interaction of cisplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines. Mol Pharmacol 65:235–243

    CAS  PubMed  Google Scholar 

  154. Pan B, Yao K-S, Monia BP, Dean NM, McKay RA, Hamilton TC, O’Dwyer PJ (2002) Reversal of cisplatin resistance by a c-jun antisense oligodeoxynucleotide (ISIS 10582): evidence for the role of transcription factor overexpression in determining resistant phenotype. Biochem Pharmacol 63:1699–1707

    CAS  PubMed  Google Scholar 

  155. Hayakawa J, Ohmichi M, Kurachi H, Ikegami H, Kimura A, Matsuoka T, Jikihara H, Mercola D, Murata Y (1999) Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line. J Biol Chem 274:31648–31654

    CAS  PubMed  Google Scholar 

  156. Rakitina TV, Vasilevskaya IA, O’Dwyer PJ (2003) Additive interaction of oxaliplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines results from inhibition of nuclear factor kappaB signaling. Cancer Res 63:8600–8605

    CAS  PubMed  Google Scholar 

  157. Hayakawa J, Depatie C, Ohmichi M, Mercola D (2003) The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2 (ATF2)-dependent enhanced DNA repair. J Biol Chem 278:20582–20592

    CAS  PubMed  Google Scholar 

  158. Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81:151–157

    CAS  PubMed  Google Scholar 

  159. Minn A, Rudin C, Boise L, Thompson C (1995) Expression of Bcl-xL can confer a multidrug resistance phenotype. Blood 86:1903–1910

    CAS  PubMed  Google Scholar 

  160. Williams J, Lucas PC, Griffith KA, Choi M, Fogoros S, Hu YY, Liu JR (2005) Expression of Bcl-xL in ovarian carcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol 96:287–295

    CAS  PubMed  Google Scholar 

  161. Geisler JP, Geisler HE, Miller GA, Wiemann MC, Zhou Z, Crabtree W (2000) p53 and bcl-2 in epithelial ovarian carcinoma: their value as prognostic indicators at a median follow-up of 60 months. Gynecol Oncol 77:278–282

    CAS  PubMed  Google Scholar 

  162. Kupryjanczyk J, Szymanska T, Madry R, Timorek A, Stelmachow J, Karpinska G et al (2003) Evaluation of clinical significance of TP53, BCL-2, BAX and MEK1 expression in 229 ovarian carcinomas treated with platinum-based regimen. Br J Cancer 88:848–854

    CAS  PubMed  Google Scholar 

  163. Baekelandt M, Holm R, Nesland JM, Trope CG, Kristensen GB (2000) Expression of apoptosis-related proteins is an independent determinant of patient prognosis in advanced ovarian cancer. J Clin Oncol 18:3775–3781

    CAS  PubMed  Google Scholar 

  164. Baekelandt M, Kristensen GB, Nesland JM, Trope CG, Holm R (1999) Clinical significance of apoptosis-related factors p53, Mdm2, and Bcl-2 in advanced ovarian cancer. J Clin Oncol 17:2061

    CAS  PubMed  Google Scholar 

  165. Sagarra RA, Andrade LA, Martinez EZ, Pinto GA, Syrjanen KJ, Derchain SF (2002) P53 and Bcl-2 as prognostic predictors in epithelial ovarian cancer. Int J Gynecol Cancer 12:720–727

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Roberts, D., O’Dwyer, P.J., Johnson, S.W. (2011). Platinum Complexes for the Treatment of Cancer. In: Minev, B. (eds) Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures. Cancer Growth and Progression, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9704-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9704-0_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9703-3

  • Online ISBN: 978-90-481-9704-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics