Skip to main content

Part of the book series: Cancer Growth and Progression ((CAGP,volume 13))

Abstract

The periwinkle plant, Cantharanthus roseus G. Don (Vinca rosea Linn.) is endemic to the island of Madagascar, and has long been ascribed a wide assortment of medicinal properties ranging from the treatment of diabetes to wound healing. Of the over fifty alkaloids present in minute quantities within the plant, only two (vincristine and vinblastine) have been isolated, synthesized, and are widely used as chemotherapeutic agents [1, 2]. The antitumor activity of the vinca alkaloids was identified by two independent groups both investigating extracts of Vinca rosea for hypoglycemic activity in the late 1950s [2, 3]. Numerous other natural alkaloids were also investigated but not pursued due to severe toxicity [4]. Now the vinca alkaloids have become part of the standard of care for more than 30 years. A number of semisynthetic derivates have since been identified and tested. Two of these, vindesine and vinorelbine, are currently used in clinical practice. A third, vinflunine, is presently in phase III clinical trials [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cutts JH, Beer CT, Noble RL (1960) Biological properties of Vincaleukoblastine, an alkaloid in Vinca rosea Linn, with reference to its antitumor action. Cancer Res 20:1023–1031

    CAS  PubMed  Google Scholar 

  2. Johnson IS, Armstrong JG, Gorman M, Burnett JP Jr (1963) The Vinca alkaloids: a new class of oncolytic agents. Cancer Res 23:1390–1427

    CAS  PubMed  Google Scholar 

  3. Beer CT, Gallagher TF (1955) Excretion of estrogen metabolites by humans. I. The fate of small doses of estrone and estradiol-17beta. J Biol Chem 214(1):335–349

    CAS  PubMed  Google Scholar 

  4. Creasey W (1975) Vinca alkaloids and colchicine. In: Sartorelli AC, Johns DG (eds) Antineoplastic and immunosuppressive agents part II, vol 38. Springer, Berlin, pp 232–256

    Google Scholar 

  5. Bennouna J, Breton JL, Tourani JM, Ottensmeier C, O’Brien M, Kosmidis P et al (2006) Vinflunine – an active chemotherapy for treatment of advanced non-small-cell lung cancer previously treated with a platinum-based regimen: results of a phase II study. Br J Cancer 94(10):1383–1388

    CAS  PubMed  Google Scholar 

  6. Campone M, Cortes-Funes H, Vorobiof D, Martin M, Slabber CF, Ciruelos E et al (2006) Vinflunine: a new active drug for second-line treatment of advanced breast cancer. Results of a phase II and pharmacokinetic study in patients progressing after first-line anthracycline/taxane-based chemotherapy. Br J Cancer 95(9):1161–1166

    CAS  PubMed  Google Scholar 

  7. Na GC, Timasheff SN (1982) In vitro vinblastine-induced tubulin paracrystals. J Biol Chem 257(17):10387–10391

    CAS  PubMed  Google Scholar 

  8. Lobert S, Vulevic B, Correia JJ (1996) Interaction of vinca alkaloids with tubulin: a comparison of vinblastine, vincristine, and vinorelbine. Biochemistry 35(21):6806–6814

    CAS  PubMed  Google Scholar 

  9. Himes RH (1991) Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol Ther 51(2):257–267

    CAS  PubMed  Google Scholar 

  10. Luduena RF, Shooter EM, Wilson L (1977) Structure of the tubulin dimer. J Biol Chem 252(20):7006–7014

    CAS  PubMed  Google Scholar 

  11. Waterman-Storer CM, Salmon ED (1997) Microtubule dynamics: treadmilling comes around again. Curr Biol 7(6):R369–R372

    CAS  PubMed  Google Scholar 

  12. Mitchison TJ (1993) Localization of an exchangeable GTP binding site at the plus end of microtubules. Science 261(5124):1044–1047

    CAS  PubMed  Google Scholar 

  13. Chen W, Zhang D (2004) Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nat Cell Biol 6(3):227–231

    PubMed  Google Scholar 

  14. Singer WD, Himes RH (1992) Cellular uptake and tubulin binding properties of four Vinca alkaloids. Biochem Pharmacol 43(3):545–551

    CAS  PubMed  Google Scholar 

  15. Binet S, Chaineau E, Fellous A, Lataste H, Krikorian A, Couzinier JP et al (1990) Immunofluorescence study of the action of navelbine, vincristine and vinblastine on mitotic and axonal microtubules. Int J Cancer 46(2):262–266

    CAS  PubMed  Google Scholar 

  16. Tsukidate K, Yamamoto K, Snyder JW, Farber JL (1993) Microtubule antagonists activate programmed cell death (apoptosis) in cultured rat hepatocytes. Am J Pathol 143(3):918–925

    CAS  PubMed  Google Scholar 

  17. Harmon BV, Takano YS, Winterford CM, Potten CS (1992) Cell death induced by vincristine in the intestinal crypts of mice and in a human Burkitt’s lymphoma cell line. Cell Prolif 25(6):523–536

    CAS  PubMed  Google Scholar 

  18. Li G, Tang L, Zhou X, Tron V, Ho V (1998) Chemotherapy-induced apoptosis in melanoma cells is p53 dependent. Melanoma Res 8(1):17–23

    CAS  PubMed  Google Scholar 

  19. Yu K, Ravera CP, Chen YN, McMahon G (1997) Regulation of Myc-dependent apoptosis by p53, c-Jun N-terminal kinases/stress-activated protein kinases, and Mdm-2. Cell Growth Differ 8(7):731–742

    CAS  PubMed  Google Scholar 

  20. Fan S, Cherney B, Reinhold W, Rucker K, O’Connor PM (1998) Disruption of p53 function in immortalized human cells does not affect survival or apoptosis after taxol or vincristine treatment. Clin Cancer Res 4(4):1047–1054

    CAS  PubMed  Google Scholar 

  21. Cline MJ (1968) Effect of vincristine on synthesis of ribonucleic acid and protein in leukaemic leucocytes. Br J Haematol 14(1):21–29

    CAS  PubMed  Google Scholar 

  22. Watanabe K, West WL (1982) Calmodulin, activated cyclic nucleotide phosphodiesterase, microtubules, and vinca alkaloids. Fed Proc 41(7):2292–2299

    CAS  PubMed  Google Scholar 

  23. Chabner BA (1992) Mitotic inhibitors. Cancer Chemother Biol Response Modif 13:69–74

    CAS  PubMed  Google Scholar 

  24. Nachman J (1990) Therapy for childhood non-Hodgkin’s lymphomas, nonlymphoblastic type. Review of recent studies and current recommendations. Am J Pediatr Hematol Oncol 12(3):359–366

    CAS  PubMed  Google Scholar 

  25. Dimopoulos MA, Pouli A, Zervas K, Grigoraki V, Symeonidis A, Repoussis P et al (2003) Prospective randomized comparison of vincristine, doxorubicin and dexamethasone (VAD) administered as intravenous bolus injection and VAD with liposomal doxorubicin as first-line treatment in multiple myeloma. Ann Oncol 14(7):1039–1044

    CAS  PubMed  Google Scholar 

  26. Joel S (1996) The comparative clinical pharmacology of vincristine and vindesine: does vindesine offer any advantage in clinical use? Cancer Treat Rev 21(6):513–525

    CAS  PubMed  Google Scholar 

  27. Rowinsky EK, Donehower RC (1991) The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther 52(1):35–84

    CAS  PubMed  Google Scholar 

  28. Dancey J, Steward WP (1995) The role of vindesine in oncology –recommendations after 10 years’ experience. Anticancer Drugs 6(5):625–636

    CAS  PubMed  Google Scholar 

  29. Costa G, Hreshchyshyn MM, Holland JF (1962) Initial clinical studies with vincristine. Cancer Chemother Rep 24:39–44

    CAS  PubMed  Google Scholar 

  30. Peltier AC, Russell JW (2002) Recent advances in drug-induced neuropathies. Curr Opin Neurol 15(5):633–638

    PubMed  Google Scholar 

  31. Zeffren J, Yagoda A, Kelsen D, Winn R (1984) Phase I-II trial of a 5-day continuous infusion of vinblastine sulfate. Anticancer Res 4(6):411–413

    CAS  PubMed  Google Scholar 

  32. Cornwell MM, Tsuruo T, Gottesman MM, Pastan I (1987) ATP-binding properties of P glycoprotein from multidrug-resistant KB cells. Faseb J 1(1):51–54

    CAS  PubMed  Google Scholar 

  33. Inaba M, Fujikura R, Sakurai Y (1981) Active efflux common to vincristine and daunorubicin in vincristine-resistant P388 leukemia. Biochem Pharmacol 30(13):1863–1865

    CAS  PubMed  Google Scholar 

  34. Lautier D, Canitrot Y, Deeley RG, Cole SP (1996) Multidrug resistance mediated by the multidrug resistance protein (MRP) gene. Biochem Pharmacol 52(7):967–977

    CAS  PubMed  Google Scholar 

  35. Lockhart AC, Tirona RG, Kim RB (2003) Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol Cancer Ther 2(7):685–698

    CAS  PubMed  Google Scholar 

  36. Nooter K, Westerman AM, Flens MJ, Zaman GJ, Scheper RJ, van Wingerden KE et al (1995) Expression of the multidrug resistance-associated protein (MRP) gene in human cancers. Clin Cancer Res 1(11):1301–1310

    CAS  PubMed  Google Scholar 

  37. Sikic BI, Fisher GA, Lum BL, Halsey J, Beketic-Oreskovic L, Chen G (1997) Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 40 Suppl:S13–S19

    CAS  PubMed  Google Scholar 

  38. Greenberger LM, Williams SS, Horwitz SB (1987) Biosynthesis of heterogeneous forms of multidrug resistance-associated glycoproteins. J Biol Chem 262(28):13685–13689

    CAS  PubMed  Google Scholar 

  39. Hipfner DR, Mao Q, Qiu W, Leslie EM, Gao M, Deeley RG et al (1999) Monoclonal antibodies that inhibit the transport function of the 190-kDa multidrug resistance protein MRP. Localization of their epitopes to the nucleotide-binding domains of the protein. J Biol Chem 274(22):15420–15426

    CAS  PubMed  Google Scholar 

  40. Zaman GJ, Flens MJ, van Leusden MR, de Haas M, Mulder HS, Lankelma J et al (1994) The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA 91(19):8822–8826

    CAS  PubMed  Google Scholar 

  41. Kruh GD, Gaughan KT, Godwin A, Chan A (1995) Expression pattern of MRP in human tissues and adult solid tumor cell lines. J Natl Cancer Inst 87(16):1256–1258

    CAS  PubMed  Google Scholar 

  42. Bertrand Y, Capdeville R, Balduck N, Philippe N (1992) Cyclosporin A used to reverse drug resistance increases vincristine neurotoxicity. Am J Hematol 40(2):158–159

    CAS  PubMed  Google Scholar 

  43. List AF, Kopecky KJ, Willman CL, Head DR, Persons DL, Slovak ML et al (2001) Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 98(12):3212–3220

    CAS  PubMed  Google Scholar 

  44. Pinkerton CR (1996) Multidrug resistance reversal in childhood malignancies – potential for a real step forward? Eur J Cancer 32A(4):641–644

    CAS  PubMed  Google Scholar 

  45. Geyp M, Ireland CM, Pittman SM (1996) Resistance to apoptotic cell death in a drug resistant T cell leukaemia cell line. Leukemia 10(3):447–455

    CAS  PubMed  Google Scholar 

  46. Amos LA, Baker TS (1979) The three-dimensional structure of tubulin protofilaments. Nature 279(5714):607–612

    CAS  PubMed  Google Scholar 

  47. Rai SS, Wolff J (1998) Localization of critical histidyl residues required for vinblastine-induced tubulin polymerization and for microtubule assembly. J Biol Chem 273(47):31131–31137

    CAS  PubMed  Google Scholar 

  48. Hari M, Wang Y, Veeraraghavan S, Cabral F (2003) Mutations in alpha- and beta-tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine. Mol Cancer Ther 2(7):597–605

    CAS  PubMed  Google Scholar 

  49. Lee WC, Lin KY, Chen KD, Lai YK (1992) Induction of HSP70 is associated with vincristine resistance in heat-shocked 9L rat brain tumour cells. Br J Cancer 66(4):653–659

    CAS  PubMed  Google Scholar 

  50. Jia L, Allen PD, Macey MG, Grahn MF, Newland AC, Kelsey SM (1997) Mitochondrial electron transport chain activity, but not ATP synthesis, is required for drug-induced apoptosis in human leukaemic cells: a possible novel mechanism of regulating drug resistance. Br J Haematol 98(3):686–698

    CAS  PubMed  Google Scholar 

  51. Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL (1998) Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 18(6):3509–3517

    CAS  PubMed  Google Scholar 

  52. Simonian PL, Grillot DA, Nunez G (1997) Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 90(3):1208–1216

    CAS  PubMed  Google Scholar 

  53. Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA (1996) Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA 93(11): 5325–5328

    CAS  PubMed  Google Scholar 

  54. Sethi VS, Thimmaiah KN (1985) Structural studies on the degradation products of vincristine dihydrogen sulfate. Cancer Res 45(11 Pt 1):5386–5389

    CAS  PubMed  Google Scholar 

  55. Nelson RL, Dyke RW, Root MA (1980) Comparative pharmacokinetics of vindesine, vincristine and vinblastine in patients with cancer. Cancer Treat Rev 7(Suppl 1):17–24

    PubMed  Google Scholar 

  56. Rahmani R, Bruno R, Iliadis A, Favre R, Just S, Barbet J et al (1987) Clinical pharmacokinetics of the antitumor drug navelbine (5′-noranhydrovinblastine). Cancer Res 47(21):5796–5799

    CAS  PubMed  Google Scholar 

  57. Beck WT, Mueller TJ, Tanzer LR (1979) Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res 39(6 Pt 1):2070–2076

    CAS  PubMed  Google Scholar 

  58. Rowinsky EK, Noe DA, Trump DL, Winer EP, Lucas VS, Wargin WA et al (1994) Pharmacokinetic, bioavailability, and feasibility study of oral vinorelbine in patients with solid tumors. J Clin Oncol 12(9):1754–1763

    CAS  PubMed  Google Scholar 

  59. Bugat R, Variol P, Roche H, Fumoleau P, Robinet G, Senac I (2002) The effects of food on the pharmacokinetic profile of oral vinorelbine. Cancer Chemother Pharmacol 50(4):285–290

    CAS  PubMed  Google Scholar 

  60. van Tellingen O, Sips JH, Beijnen JH, Bult A, Nooijen WJ (1992) Pharmacology, bio-analysis and pharmacokinetics of the vinca alkaloids and semi-synthetic derivatives (review). Anticancer Res 12(5):1699–1715

    PubMed  Google Scholar 

  61. Urien S, Bree F, Breillout F, Bastian G, Krikorian A, Tillement JP (1993) Vinorelbine high-affinity binding to human platelets and lymphocytes: distribution in human blood. Cancer Chemother Pharmacol 32(3):231–234

    CAS  PubMed  Google Scholar 

  62. Fitos I, Visy J, Simonyi M (1991) Binding of vinca alkaloid analogues to human serum albumin and to alpha 1-acid glycoprotein. Biochem Pharmacol 41(3): 377–383

    CAS  PubMed  Google Scholar 

  63. Steele WH, Haughton DJ, Barber HE (1982) Binding of vinblastine to recrystallized human alpha 1-acid glycoprotein. Cancer Chemother Pharmacol 10(1):40–42

    CAS  PubMed  Google Scholar 

  64. Steele WH, King DJ, Barber HE, Hawksworth GM, Dawson AA, Petrie JC (1983) The protein binding of vinblastine in the serum of normal subjects and patients with Hodgkin’s disease. Eur J Clin Pharmacol 24(5):683–687

    CAS  PubMed  Google Scholar 

  65. Gout PW, Wijcik LL, Beer CT (1978) Differences between vinblastine and vincristine in distribution in the blood of rats and binding by platelets and malignant cells. Eur J Cancer 14(11):1167–1178

    CAS  PubMed  Google Scholar 

  66. El Dareer SM, White VM, Chen FP, Mellet LB, Hill DL (1977) Distribution and metabolism of vincristine in mice, rats, dogs, and monkeys. Cancer Treat Rep 61(7):1269–1277

    CAS  PubMed  Google Scholar 

  67. Castle MC, Margileth DA, Oliverio VT (1976) Distribution and excretion of (3H)vincristine in the rat and the dog. Cancer Res 36(10):3684–3689

    CAS  PubMed  Google Scholar 

  68. Culp HW, Daniels WD, McMahon RE (1977) Disposition and tissue levels of [3H]vindesine in rats. Cancer Res 37(9):3053–3056

    CAS  PubMed  Google Scholar 

  69. Rahmani R, Zhou XJ, Placidi M, Martin M, Cano JP (1990) In vivo and in vitro pharmacokinetics and metabolism of vincaalkaloids in rat. I. Vindesine (4-deacetyl-vinblastine 3-carboxyamide). Eur J Drug Metab Pharmacokinet 15(1):49–55

    CAS  PubMed  Google Scholar 

  70. Zhou XJ, Martin M, Placidi M, Cano JP, Rahmani R. (1990) In vivo and in vitro pharmacokinetics and metabolism of vincaalkaloids in rat. II. Vinblastine and vincristine. Eur J Drug Metab Pharmacokinet 15(4):323–332

    CAS  PubMed  Google Scholar 

  71. Leveque D, Quoix E, Dumont P, Massard G, Hentz JG, Charloux A et al (1993) Pulmonary distribution of vinorelbine in patients with non-small-cell lung cancer. Cancer Chemother Pharmacol 33(2):176–178

    CAS  PubMed  Google Scholar 

  72. Owellen RJ, Root MA, Hains FO (1977) Pharmacokinetics of vindesine and vincristine in humans. Cancer Res 37(8 Pt 1):2603–2607

    CAS  PubMed  Google Scholar 

  73. van Asperen J, Schinkel AH, Beijnen JH, Nooijen WJ, Borst P, van Tellingen O. (1996) Altered pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient Mice. J Natl Cancer Inst 88(14):994–999

    PubMed  Google Scholar 

  74. Zhou XJ, Placidi M, Rahmani R (1994) Uptake and metabolism of vinca alkaloids by freshly isolated human hepatocytes in suspension. Anticancer Res 14(3A):1017–1022

    CAS  PubMed  Google Scholar 

  75. Zhou-Pan XR, Seree E, Zhou XJ, Placidi M, Maurel P, Barra Y et al (1993) Involvement of human liver cytochrome P450 3A in vinblastine metabolism: drug interactions. Cancer Res 53(21):5121–5126

    CAS  PubMed  Google Scholar 

  76. Gidding CE, Kellie SJ, Kamps WA, de Graaf SS (1999) Vincristine revisited. Crit Rev Oncol Hematol 29(3):267–287

    CAS  PubMed  Google Scholar 

  77. Villikka K, Kivisto KT, Maenpaa H, Joensuu H, Neuvonen PJ (1999) Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 66(6):589–593

    CAS  PubMed  Google Scholar 

  78. Yao D, Ding S, Burchell B, Wolf CR, Friedberg T (2000) Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: implications for the development of drug resistance. J Pharmacol Exp Ther 294(1):387–395

    CAS  PubMed  Google Scholar 

  79. Gillies J, Hung KA, Fitzsimons E, Soutar R (1998) Severe vincristine toxicity in combination with itraconazole. Clin Lab Haematol 20(2):123–124

    CAS  PubMed  Google Scholar 

  80. Owellen RJ, Hartke CA, Hains FO (1977) Pharmacokinetics and metabolism of vinblastine in humans. Cancer Res 37(8 Pt 1):2597–2602

    CAS  PubMed  Google Scholar 

  81. Jehl F, Quoix E, Leveque D, Pauli G, Breillout F, Krikorian A et al (1991) Pharmacokinetic and preliminary metabolic fate of navelbine in humans as determined by high performance liquid chromatography. Cancer Res 51(8):2073–2076

    CAS  PubMed  Google Scholar 

  82. Budman DR (1997) Vinorelbine (Navelbine): a third-generation vinca alkaloid. Cancer Invest 15(5):475–490

    CAS  PubMed  Google Scholar 

  83. Bender RA, Castle MC, Margileth DA, Oliverio VT (1977) The pharmacokinetics of [3H]-vincristine in man. Clin Pharmacol Ther 22(4):430–435

    CAS  PubMed  Google Scholar 

  84. Krikorian A, Rahmani R, Bromet M, Bore P, Cano JP (1989) Pharmacokinetics and metabolism of Navelbine. Semin Oncol 16(2 Suppl 4):21–25

    CAS  PubMed  Google Scholar 

  85. Van den Berg HW, Desai ZR, Wilson R, Kennedy G, Bridges JM, Shanks RG (1982) The pharmacokinetics of vincristine in man: reduced drug clearance associated with raised serum alkaline phosphatase and dose-limited elimination. Cancer Chemother Pharmacol 8(2):215–219

    PubMed  Google Scholar 

  86. Bollini P, Riva R, Albani F, Ida N, Cacciari L, Bollini C et al (1983) Decreased phenytoin level during antineoplastic therapy: a case report. Epilepsia 24(1):75–78

    CAS  PubMed  Google Scholar 

  87. Chabner B, Longo DL (2006) Cancer chemotherapy and biotherapy: principles and practice, 4th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  88. Jackson DV Jr, McMahan RA, Pope EK, Case LD, Cooper MR, Kaplon MK et al (1986) Clinical trial of folinic acid to reduce vincristine neurotoxicity. Cancer Chemother Pharmacol 17(3):281–284

    PubMed  Google Scholar 

  89. Jackson DV Jr, Richards F 2nd, Spurr CL, Long TR, Rardin DA, Albertson DA et al (1984) Hepatic intra-arterial infusion of vincristine. Cancer Chemother Pharmacol 13(2):120–122

    PubMed  Google Scholar 

  90. Robieux I, Sorio R, Borsatti E, Cannizzaro R, Vitali V, Aita P et al (1996) Pharmacokinetics of vinorelbine in patients with liver metastases. Clin Pharmacol Ther 59(1):32–40

    CAS  PubMed  Google Scholar 

  91. Bradley WG, Lassman LP, Pearce GW, Walton JN (1970) The neuromyopathy of vincristine in man. Clinical, electrophysiological and pathological studies. J Neurol Sci 10(2):107–131

    CAS  PubMed  Google Scholar 

  92. Tatsuta T, Naito M, Oh-hara T, Sugawara I, Tsuruo T (1992) Functional involvement of P-glycoprotein in blood-brain barrier. J Biol Chem 267(28):20383–20391

    CAS  PubMed  Google Scholar 

  93. Kaplan RS, Wiernik PH (1982) Neurotoxicity of antineoplastic drugs. Semin Oncol 9(1):103–130

    CAS  PubMed  Google Scholar 

  94. Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249(1):9–17

    CAS  PubMed  Google Scholar 

  95. Legha SS (1986) Vincristine neurotoxicity. Pathophysiology and management. Med Toxicol 1(6):421–427

    CAS  PubMed  Google Scholar 

  96. Sharma RK (1988) Vincristine and gastrointestinal transit. Gastroenterology 95(5):1435–1436

    CAS  PubMed  Google Scholar 

  97. Gottlieb RJ, Cuttner J (1971) Vincristine-induced bladder atony. Cancer 28(3):674–675

    CAS  PubMed  Google Scholar 

  98. Hirvonen HE, Salmi TT, Heinonen E, Antila KJ, Valimaki IA (1989) Vincristine treatment of acute lymphoblastic leukemia induces transient autonomic cardioneuropathy. Cancer 64(4):801–805

    CAS  PubMed  Google Scholar 

  99. Subar M, Muggia FM (1986) Apparent myocardial ischemia associated with vinblastine administration. Cancer Treat Rep 70(5):690–691

    CAS  PubMed  Google Scholar 

  100. Desai ZR, Van den Berg HW, Bridges JM, Shanks RG (1982) Can severe vincristine neurotoxicity be prevented? Cancer Chemother Pharmacol 8(2):211–214

    CAS  PubMed  Google Scholar 

  101. Boyle FM, Wheeler HR, Shenfield GM (1996) Glutamate ameliorates experimental vincristine neuropathy. J Pharmacol Exp Ther 279(1):410–415

    CAS  PubMed  Google Scholar 

  102. Hellmann K, Hutchinson GE, Henry K (1987) Reduction of vincristine toxicity by Cronassial. Cancer Chemother Pharmacol 20(1):21–25

    CAS  PubMed  Google Scholar 

  103. Slyter H, Liwnicz B, Herrick MK, Mason R (1980) Fatal myeloencephalopathy caused by intrathecal vincristine. Neurology 30(8):867–871

    CAS  PubMed  Google Scholar 

  104. Bellone JD (1981) Treatment of vincristine extravasation. JAMA 245(4):343

    CAS  PubMed  Google Scholar 

  105. Fedeli L, Colozza M, Boschetti E, Sabalich I, Aristei C, Guerciolini R et al (1989) Pharmacokinetics of vincristine in cancer patients treated with nifedipine. Cancer 64(9):1805–1811

    CAS  PubMed  Google Scholar 

  106. Ballen KK, Weiss ST (1988) Fatal acute respiratory failure following vinblastine and mitomycin administration for breast cancer. Am J Med Sci 295(6):558–560

    CAS  PubMed  Google Scholar 

  107. Hohneker JA (1994) A summary of vinorelbine (Navelbine) safety data from North American clinical trials. Semin Oncol 21(5 Suppl 10):42–46; discussion 46–47

    CAS  PubMed  Google Scholar 

  108. Samuels BL, Mick R, Vogelzang NJ, Williams SF, Schilsky RL, Safa AR et al (1993) Modulation of vinblastine resistance with cyclosporine: a phase I study. Clin Pharmacol Ther 54(4):421–429

    CAS  PubMed  Google Scholar 

  109. Tobe SW, Siu LL, Jamal SA, Skorecki KL, Murphy GF, Warner E. (1995) Vinblastine and erythromycin: an unrecognized serious drug interaction. Cancer Chemother Pharmacol 35(3):188–190

    CAS  PubMed  Google Scholar 

  110. Thant M, Hawley RJ, Smith MT, Cohen MH, Minna JD, Bunn PA et al (1982) Possible enhancement of vincristine neuropathy by VP-16. Cancer 49(5):859–864

    CAS  PubMed  Google Scholar 

  111. Sathiapalan RK, El-Solh H (2001) Enhanced vincristine neurotoxicity from drug interactions: case report and review of literature. Pediatr Hematol Oncol 18(8):543–546

    CAS  PubMed  Google Scholar 

  112. Crom WR, de Graaf SS, Synold T, Uges DR, Bloemhof H, Rivera G et al (1994) Pharmacokinetics of vincristine in children and adolescents with acute lymphocytic leukemia. J Pediatr 125(4):642–649

    CAS  PubMed  Google Scholar 

  113. Chan JD (1998) Pharmacokinetic drug interactions of vinca alkaloids: summary of case reports. Pharmacotherapy 18(6):1304–1307

    CAS  PubMed  Google Scholar 

  114. Jarosinski PF, Moscow JA, Alexander MS, Lesko LJ, Balis FM, Poplack DG (1988) Altered phenytoin clearance during intensive chemotherapy for acute lymphoblastic leukemia. J Pediatr 112(6): 996–999

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Coufal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Coufal, N., Farnaes, L. (2011). The Vinca Alkaloids. In: Minev, B. (eds) Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures. Cancer Growth and Progression, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9704-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9704-0_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9703-3

  • Online ISBN: 978-90-481-9704-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics