Skip to main content

Part of the book series: Cancer Growth and Progression ((CAGP,volume 13))

  • 1290 Accesses

Abstract

Nature has provided the oncologist with many valuable agents for cancer treatment, including the podophyllotoxin analogs etoposide, teniposide, and etopophos, the taxanes paclitaxel and docetaxel, and the camptothecin derivatives topotecan and irinotecan. The discovery, chemistry, and clinical applications of these compounds are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    CAS  PubMed  Google Scholar 

  2. Arcamone F, Cassinelli G. (1998) Biosynthetic anthracyclines. Curr Med Chem 5:391–419

    CAS  PubMed  Google Scholar 

  3. Arcamone F, Animati F, Capranico G, Lombardi P, Pratesi G, Manzini S et al (1997) New developments in antitumor anthracyclines. Pharmacol Ther 76:117–124

    CAS  PubMed  Google Scholar 

  4. Farber S, D’Angio G, Evans A, Mitus A. (2002) Part III. Clinical significance: clinical studies of actinomycin D with special reference to Wilms’ tumor in children. J Urol 168:2560–2562

    CAS  PubMed  Google Scholar 

  5. Sikic BI, Rozenciveig M, Carter SK (eds) (1985) Bleomycin chemotherapy. Academic, Orlando, FL

    Google Scholar 

  6. Crooke ST, Bradner WT (1976) Mitomycin C: a review. Cancer Treat Rev 3:121–139

    CAS  PubMed  Google Scholar 

  7. Cragg GM, Kingston DGI, Newman DJ (eds) (2005) Antitumor agents from natural sources. Taylor and Francis, London

    Google Scholar 

  8. Kelly MG, Hartwell JL (1954) The biological effects and the chemical composition of podophyllin. A Review. J Natl Cancer Inst 14:967–1010

    CAS  PubMed  Google Scholar 

  9. Kaplan IW (1942) Condylomata acuminate. New Orleans Med Surg J 94:388–395

    Google Scholar 

  10. Hartwell JL, Schrecker AW (1958) The chemistry of Podophyllum. Fortschr Chem Org Naturst 15:83–166

    CAS  PubMed  Google Scholar 

  11. Bohlin L, Rosén B (1996) Podophyllotoxin derivatives: drug discovery and development, Drug Discovery Today 8:343–351

    Google Scholar 

  12. Damayanthi Y, Lown JW (1998) Podophyllotoxins: current status and recent developments. Curr Med Chem 5:205–252

    CAS  PubMed  Google Scholar 

  13. Gordaliza M, Castro MA, Miguel Del Corral JM, San Feliciano A (2000) Antitumor properties of podophyllotoxin and related compounds. Curr Pharm Design 6:1811–1839

    CAS  Google Scholar 

  14. Jardine I (1980) Podophyllotoxins. In: Cassady JM, Douros JD (eds) Anticancer agents based on natural product models. Academic, New York, pp 319–351

    Google Scholar 

  15. Lee K-H, Xiao Z (2005) The podophyllotoxins and analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, New York

    Google Scholar 

  16. Keller-Juslén C, Kuhn M, Von Warburg A, Stahelin H (1971) Synthesis and antimitotic activity of glycosidic lignan derivatives related to podophyllin. J Med Chem 14:936–940

    PubMed  Google Scholar 

  17. Doyle TW (1984) The chemistry of etoposide. In: Issell BF, Muggia FM, Carter SK (eds) Etoposide (VP16). Current status and new developments. Academic, New York, pp 15–32

    Google Scholar 

  18. Meresse P, Dechaux E, Monneret C, Bertounesque E (2004) Etoposide: discovery and medicinal chemistry. Curr Med Chem 11:2443–2466

    CAS  PubMed  Google Scholar 

  19. Saulnier MG, Langley DR, Kadow JF, Senter PD, Knipe JO, Jay O et al (1994) Synthesis of etoposide phosphate, BMY-40481: a water-soluble clinically active prodrug of etoposide. Bioorg Med Chem Lett 4:2567–2572

    CAS  Google Scholar 

  20. Grieder A, Maurer R, Stahelin H (1974) Effect of an epipodophyllotoxin derivative (VP16–213) on macromolecular synthesis and mitosis in mastocytoma cells in vitro. Cancer Res 34:1788–1793

    CAS  PubMed  Google Scholar 

  21. Krishan A, Paika K, Frei E III (1975) Cytofluorometric studies on the action of podophyllotoxin and epipodophyllotoxins (VM26:VP16–213) on the cell cycle traverse of human lymphoblasts. J. Cell Biol 66:521–530

    CAS  Google Scholar 

  22. Dombernowsky P, Nissen NI (1973) Schedule dependency of the anti-leukaemic activity of the podophyllotoxin derivative VP16–213 (NSC 141540) in L1210 Leukaemia. Acta Path Microbial Scand 81:715–724

    CAS  Google Scholar 

  23. Rose WC, Bradner WT (1984) In vivo experimental antitumor activity of etoposide. In: Issell BF, Muggia FM, Carter SK (eds) Etoposide (VP-16). Current status and new developments. Academic, New York, pp 33–47

    Google Scholar 

  24. Jardine I, Strife RJ, Kozlowski J (1982) Synthesis, 470-MHz H-NMR spectra, and activity of delactonized derivatives of the anticancer drug etoposide. J Med Chem 25:1077–1081

    CAS  PubMed  Google Scholar 

  25. Cortese F, Bhattacharyya B, Wolff J (1977) Podophyllotoxin as a probe for the colchicine binding site of tubulin. J Biol Chem 252:1134–1140

    CAS  PubMed  Google Scholar 

  26. Wozniak AJ, Ross WE (1983) DNA damage as a basis for 4-demethylepipodophyllotoxicity. Cancer Res 43: 120–124

    CAS  PubMed  Google Scholar 

  27. Loike JB, Horwitz SB, Grollman AP (1976) Effect of podophyllotoxin and VP-16 on microtubule assembly in vitro and nucleoside transport in HeLa cells. Biochemistry 15:5435–5442

    CAS  PubMed  Google Scholar 

  28. Roberts D, Hilliard S, Peck C (1980) Sedimentation of DNA from L1210 cells after treatment with 4-demethylepipodophyllotoxin-9-(4,6-O-2-thenylidene-β-D-glucopyramoside) of 1-β-D-arabinofuranosylcytosine or both drugs. Cancer Res 40:4225–4231

    CAS  PubMed  Google Scholar 

  29. Ross W, Rowe T, Glisson B, Yalowich J, Liu L (1984) Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res 44:5857–5860

    CAS  PubMed  Google Scholar 

  30. Berger JM, Wang JC (1996) Recent developments in DNA topoisomerase II structure and mechanism. Curr Opin Struct Biol 6:84–90

    CAS  PubMed  Google Scholar 

  31. Allen LM, Marcks C, Creaven PJ (1976) 4-Demethyl-epipodophyllic acid-9-(4,6-O-ethylidene-β-D-glucopyranoside), major urinary metabolite of VP-16–213 in man. Proc Am Assoc Cancer Res 17:6–6

    Google Scholar 

  32. Strife RJ, Jardine I, Colvin M (1980) Analysis of the anticancer drugs VP16–213 and VM26 and their metabolites by high performance liquid chromatography. J Chromatogr 182:211–220

    CAS  PubMed  Google Scholar 

  33. Canetta R, Hilgard P, Florentine S, Bendogni P, Lenaz L (1982) Current development of podophyllotoxins. Cancer Chemother Pharmacol 7:93–98

    CAS  PubMed  Google Scholar 

  34. Cavalli F. (1982) VP16–213 (Etoposide). A critical review of its activity. Cancer Chemother Pharmacol 7:81–85

    CAS  PubMed  Google Scholar 

  35. Creaven PJ (1982) The clinical pharmacology of VM26 and VP16–213. A brief overview. Cancer Chemother Pharmacol 7:133–140

    CAS  PubMed  Google Scholar 

  36. Issell BF (1982) The podophyllotoxin derivatives VP16–213 and VM26. Cancer Chemother Pharmacol 7:73–80

    CAS  PubMed  Google Scholar 

  37. Issell BF, Muggia FM, Carter SK (eds) (1984) Etoposide (VP-16). Current status and new developments. Academic, New York

    Google Scholar 

  38. Loike JD (1982) VP16–213 and podophyllotoxin. A study on the relationship between chemical structure and biological activity. Cancer Chemother Pharmacol 7: 103–111

    CAS  PubMed  Google Scholar 

  39. Macbeth FR (1982) VM26: phase I and II studies. Cancer Chemother Pharmacol 7:87–91

    CAS  PubMed  Google Scholar 

  40. Creaven PJ (1984) The clinical pharmacology of etoposide (VP-16) in adults. In: Issell BF, Muggia FM, Carter SK (eds) Etoposide (VP16). Current status and new developments. Academic, New York, pp 103–115

    Google Scholar 

  41. Evans WF, Sinkule JA, Hutson PR, Hayeo FA, Rivera G (1984) The clinical pharmacology of etoposide (VP16–213) in children with cancer. In: Issell BF, Muggia FM, Carter SK (eds) Etoposide (VP16). Current status and new developments. Academic, New York, pp 117–125

    Google Scholar 

  42. Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521

    CAS  PubMed  Google Scholar 

  43. Johnson DH, Hainsworth JD, Hande KR, Grfeco FA (1991) Current status of etoposide in the management of small cell lung cancer. Cancer 67:231–244

    CAS  PubMed  Google Scholar 

  44. Vogelzang NJ, Raghavan D, Kennedy BJ (1982) VP-16–214 (Etoposide). The mandrakie root from Issyk-Kul. Am J Med 72:136–144

    CAS  PubMed  Google Scholar 

  45. Laubenstein LJ, Krigel RL, Odajnyk CM, Hymes KB, Friedman-Kien A, Wernz JC et al (1984) Treatment of epidemic Kaposi’s sarcoma with etoposide or a combination of doxorubicin, bleomycin, and vinblastine. J Clin Oncol 2:1115–1120

    CAS  PubMed  Google Scholar 

  46. Fleming RA, Miller AA, Stewart CF (1989) Etoposide: an update. Clin Pharmacy 8:274–292

    CAS  Google Scholar 

  47. Ayres DC, Loike JD (1990) Lignans. Chemical, biological and clinical properties. University Press, Cambridge, p 113

    Google Scholar 

  48. Rivera G, Dahl GV, Bowman WP, Avery TL, Wood A, Aur RJ (1980) VM26 and cytosine arabinoside combination chemotherapy for initial induction failures in childhood lymphocytic leukemia. Cancer 46:1727–1730

    CAS  PubMed  Google Scholar 

  49. Saito H, Yoshikawa H, Nishimura Y, Kondo S, Takeuchi T, Umezawa H (1986) Studies on lignan lactone antitumor agents. II. Synthesis of N-alkylamino- and 2,6-dideoxy-2-aminoglycosidic lignan variants related to podophyllotoxin. Chem Pharm Bull 34:3741–3746

    CAS  PubMed  Google Scholar 

  50. Wang ZQ, Kuo YH, Schnur D, Bowen JP, Liu SY, Han FS (1990) Antitumor agents 113. New 4β-arylamino derivatives of 4-O-demethylepipodophyllotoxin and related compounds as potent inhibitors of human DNA topoisomerase II. J Med Chem 33:2660–2666

    CAS  PubMed  Google Scholar 

  51. Liu JM, Chen LT, Chao YL, Anna FY, Wu CW, Liu TS, Shiah HS, Chang JY, Chen JD, Wu HW, Lin WC, Lan C, Whang-Peng, J (2002) Phase II and pharmacokinetic study of GL331 in previously treated Chinese gastric cancer patients, Cancer Chemother Pharmacol 49:425–428

    CAS  PubMed  Google Scholar 

  52. Terada T, Fujimoto K, Nomura M, Yamashita J, Wierzba K, Yamazaki R (1993) Antitumor agents 3. Synthesis and biological activity of 4β-alkyl derivatives containing hydroxyl, amino, and amido groups of 4-O-demethyl-4-deoxypodophyllotoxin as antitumor agents. J Med Chem 36:1689–1699

    CAS  PubMed  Google Scholar 

  53. Byl JAW, Cline SD, Utsugi T, Kounai T, Yamada Y, Osheroff N (2001) DNA topoisomerase II as the target for the anticancer drug TOP-53: mechanistic basis for drug action, Biochemistry 40:712–718

    CAS  PubMed  Google Scholar 

  54. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    CAS  PubMed  Google Scholar 

  55. Brown DT (2003) Preclinical and clinical studies of the taxanes. In: Itokawa H, Lee K.-H. (eds) Taxus: the genus taxus. Taylor and Francis, London, pp 387–435

    Google Scholar 

  56. Guénard D, Gueritte-Voegelein F, Potier P (1993) Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc Chem Res 26:160–167

    Google Scholar 

  57. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    CAS  PubMed  Google Scholar 

  58. Itokawa H (2003) Introduction. In: Itokawa H, Lee K-H (eds) Taxus: the genus taxus. Taylor and Francis, London, p 1

    Google Scholar 

  59. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    CAS  PubMed  Google Scholar 

  60. Goodman J, Walsh V (2001) The story of taxol; nature and politics in the pursuit of an anticancer drug. University Press, Cambridge, pp 1–282

    Google Scholar 

  61. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565

    CAS  PubMed  Google Scholar 

  62. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10:123–130

    CAS  PubMed  Google Scholar 

  63. Jordan MA, Toso RJ, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations, Proc Natl Acad Sci 90:9552–9556

    CAS  PubMed  Google Scholar 

  64. Long BH, Fairchild CR (1994) Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res 54:4355–4361

    CAS  PubMed  Google Scholar 

  65. Horwitz SB, Lothstein L, Manfredi JJ, Mellado W. Parness J, Roy SN et al (1986) Taxol: mechanisms of action and resistance. Ann NY Acad Sci 466:733–744

    CAS  PubMed  Google Scholar 

  66. Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13:134–136

    CAS  PubMed  Google Scholar 

  67. Carboni JM, Singh C, Tepper MA (1993) Taxol and lipopolysaccharide activation of a murine macrophage cell line and induction of similar tyrosine phosphoproteins. J Natl Cancer Inst Monogr 15:95–101

    PubMed  Google Scholar 

  68. Haldar S, Chintapalli J, Croce CM (1996) Paclitaxel Induces Bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 56:1253–1255

    CAS  PubMed  Google Scholar 

  69. Blagosklonny MV, Giannakakou P, El-Deiry WS, Kingston DGI, Higgs PI, Neckers L et al (1997) Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 57:130–135

    CAS  PubMed  Google Scholar 

  70. Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Wallace BA, Makowski L (1999) Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 285:197–203

    CAS  PubMed  Google Scholar 

  71. Blagosklonny MV, Fojo T (1999) Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer 83:151–156

    CAS  PubMed  Google Scholar 

  72. Abal M, Andreu JM, Barasoain I (2003) Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets 3:193–203

    CAS  PubMed  Google Scholar 

  73. Schrevel J, Sinou V, Grellier P, Frappier F, Guenard D, Potier P (1994) Interactions between docetaxel (Taxotere) and Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 91:8472–6476

    CAS  PubMed  Google Scholar 

  74. Pouvelle B, Farley PJ, Long CA, Taraschi TF (1994) Taxol arrests the development of blood-stage Plasmodium falciparum in vitro and Plasmodium chabaudi adami in malaria-infected mice. J Clin Invest 94:413–417

    CAS  PubMed  Google Scholar 

  75. Michaelis ML, Ranciat N, Chen Y, Bechtel M, Ragan R, Hepperle M et al (1998) Protection against β-amyloid toxicity in primary neurons by paclitaxel (taxol). J Neurochem 70:1623–1627

    CAS  PubMed  Google Scholar 

  76. Nogales E, Wolf SG, Downing KH (1997) Visualizing the secondary structure of tubulin: three-dimensional map at 4 Å. J Struct Biol 118:119–127

    CAS  PubMed  Google Scholar 

  77. Nogales E, Wolf SG, Downing KH (1998) Structure of the αβ tubulin dimer by electron crystallography. Nature 391:199–203

    CAS  PubMed  Google Scholar 

  78. Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96:79–88

    CAS  PubMed  Google Scholar 

  79. Rao S, Krauss NE, Heerding JM, Swindell CS, Ringel I, Orr GA et al (1994) 3'-(p-azidobenzamido)taxol photolabels the N-terminal 31 amino acids of β-tubulin. J Biol Chem 269:3132–3134

    CAS  PubMed  Google Scholar 

  80. Rao S, Orr GA, Chaudhary AG, Kingston DGI, Horwitz SB (1995) Characterization of the taxol binding site on the microtubule. J Biol Chem 270:20235–20238

    CAS  PubMed  Google Scholar 

  81. Dasgupta D, Park H, Harriman GCB, Georg GI, Himes RH (1994) Synthesis of a photoaffinity taxol analogue and its use in labeling tubulin. J Med Chem 37:2976–2980

    CAS  PubMed  Google Scholar 

  82. Loeb C, Combeau C, Ehret-Sabatier L, Breton-Gilet A, Faucher D, Rousseau B et al (1997) [3H](azidophenyl)ureido taxoid photolabels peptide amino acids 281–304 of β-tubulin. Biochemistry 36:3820–3825

    CAS  PubMed  Google Scholar 

  83. Snyder JP, Nettles JH, Cornett B, Downing KH, Nogales E. (2001) The binding conformation of taxol in beta tubulin: a model based on the electron crystallographic density. Proc Natl Acad Sci USA 98:5312–5316

    CAS  PubMed  Google Scholar 

  84. Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of β-tubulin at 3.5 a resolution. J Mol Biol 313:1045–1057

    CAS  PubMed  Google Scholar 

  85. Dubois J, Guenard D, Gueritte-Voegelein F, Guedira N, Potier P, Gillet B et al (1993) Conformation of taxotere and analogues determined by nmr spectroscopy and molecular modeling studies. Tetrahedron 49:6533–6544

    CAS  Google Scholar 

  86. Williams HJ, Scott AI, Dieden RA, Swindell CS, Chirlian LE, Francl MM et al (1993) NMR and molecular modeling study of the conformations of taxol and of its side chain methylester in aqueous and non-aqueous solution. Tetrahedron 49:6545–6560

    CAS  Google Scholar 

  87. Cachau RE, Gussio R, Beutler JA, Chmurny GN, Hilton BD, Muschick GM et al (1994) Solution structure of taxol determined using a novel feedback-scaling procedure for non-restrained molecular dynamics. Supercomputer Applications High Performance Computing 8:24–34

    Google Scholar 

  88. Vander Velde DG, Georg GI, Grunewald GL, Gunn CW, Mitscher LA (1993) “Hydrophobic collapse” of taxol and taxotere solution conformations in mixtures of water and organic solvent. J Am Chem Soc 115:11650–11651

    CAS  Google Scholar 

  89. Paloma LG, Guy RK, Wrasidlo W, Nicolaou KC (1994) Conformation of a water-soluble derivative of taxol in water by 2D-NMR spectroscopy. Chem Biol 1:107–112

    Google Scholar 

  90. Ojima I, Kuduk SD, Chakravarty S, Ourevitch M, Begue J-P (1997) A novel approach to the study of solution structures and dynamic behavior of paclitaxel and docetaxel using fluorine-containing analogs as probes. J Am Chem Soc 119:5519–5527

    CAS  Google Scholar 

  91. Snyder JP, Nevins N, Cicero DO, Jansen J (2000) The conformations of taxol in chloroform. J Am Chem Soc 122:724–725

    CAS  Google Scholar 

  92. Ojima I, Inoue T, Chakravarty S (1999) Enantiopure fluorine-containing taxoids: potent anticancer agents and versatile probes for biomedical problems. J Fluorine Chem 97:3–10

    CAS  Google Scholar 

  93. Li Y, Poliks B, Cegelski L, Poliks M, Gryczynski Z, Piszczek G et al (2000) Conformation of microtubule-bound paclitaxel determined by fluorescence spectroscopy and REDOR NMR. Biochemistry 39:281–291

    CAS  PubMed  Google Scholar 

  94. He L, Jagtap PG, Kingston DGI, Shen H.-J Orr GA, Horwitz SB (2000) A common pharmacophore for taxol and the epothilones based on the biological activity of a taxane molecule lacking a C-13 side chain. Biochemistry 39:3972–3978

    CAS  PubMed  Google Scholar 

  95. Ganesh T, Guza RC, Bane S, Ravindra R, Shanker N, Lakdawala AS et al (2004) The bioactive Taxol conformation of β-tubulin: experimental evidence from highly active constrained analogs. Proc Natl Acad Sci USA 101:10006–10011

    CAS  PubMed  Google Scholar 

  96. Borzilleri RM, Bite GD (2009) Case History: Discovery of ixabepilone (Ixempra™), a first-in-class epothilone analog for treatment of metastatic breast cancer. Ann Rep Med Chem 301–322

    CAS  Google Scholar 

  97. Altmann K-H (2001) Microtubule-stabilizing agents: a growing class of important anticancer drugs. Curr Opin Chem Biol 5:424–431

    CAS  PubMed  Google Scholar 

  98. Myles DC (2002) Emerging microtubule stabilizing agents for cancer chemotherapy. Ann Rep Med Chem 37:125–132

    CAS  Google Scholar 

  99. Jimenez-Barbero J, Amat-Guerri F, Snyder JP (2002) The solid state, solution and tubulin-bound conformations of agents that promote microtubule stabilization. Curr Med Chem-Anti-Cancer Agents 2:91–122

    CAS  Google Scholar 

  100. Georg GI, Harriman GCB, Vander Velde DG, Boge TC, Cheruvallath ZS, Datta A et al (1995) Medicinal chemistry of paclitaxel. In: Georg GI, Chen, TT, Ojima I, Vyas DM (eds) Taxane anticancer agents: basic science and current status. American Chemical Society, Washington, DC, pp 217–232

    Google Scholar 

  101. Nicolaou KC, Dai W-M, Guy RK (1994) Chemistry and biology of taxol. Angew Chem Int Ed Engl 33:15–44

    Google Scholar 

  102. Vyas DM, Kadow JF (1995) Paclitaxel: a unique tubulin interacting anticancer agent. In: Ellis GP, Luscombe DK (eds) Progress in medicinal chemistry. Elsevier Science B.V., Amsterdam, pp 289–337

    Google Scholar 

  103. Guénard D, Gueritte-Voegelein F, Lavelle F (1995) Taxoids: a new class of antimitotic compounds. Curr Pharm Design 1:95–112

    Google Scholar 

  104. Kingston DGI (2001) Taxol, a molecule for all seasons. Chem Commun 867–880

    Google Scholar 

  105. Kingston DGI, Jagtap PG, Yuan H, Samala L (2002) The chemistry of taxol and related taxoids. Prog Chem Org Nat Prod 84:53–225

    CAS  Google Scholar 

  106. Wang X, Itokawa H, Lee K-H (2003) Structure-activity relationships of taxoids. In: Itokawa H, Lee K-H (eds) Taxus: the genus taxus. Taylor and Francis, London, pp 298–386

    Google Scholar 

  107. Cragg GM, Newman DJ (2004) A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 67:232–244

    CAS  PubMed  Google Scholar 

  108. Ali S, Ahmad, I, Peters A, Masters G, Minchey S, Janoff A et al (2001) Hydrolyzable hydrophobic taxanes: synthesis and anti-cancer activities. Anti-Cancer Drugs 12:117–128

    CAS  PubMed  Google Scholar 

  109. Altstadt TJ, Fairchild CR, Golik J, Johston KA, Kadow JF, Lee FY et al (2001) Synthesis and antitumor activity of novel C-7 paclitaxel ethers: discovery of BMS-184476. J Med Chem 44:4577–4583

    CAS  PubMed  Google Scholar 

  110. Ojima I, Geney R (2003) 109881(Aventis). Curr Opin Invest Drugs 4:737–740

    CAS  Google Scholar 

  111. Chen S-H (2002) Discovery of a novel C-4 modified 2nd generation paclitaxel analog BMS-188797. Frontiers Biotechnol Pharmaceut 3:157–171

    CAS  Google Scholar 

  112. Cisternino S, Bourasset F, Archimbaud Y, Semiond D, Sanderink G, Scherrmann J-M (2003) Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of P-glycoprotein at the blood-brain barrier in mice and rats. Br J Pharmacol 138:1367–1375

    CAS  PubMed  Google Scholar 

  113. Ojima I, Geney R, Ungureanu IM, Li D (2002) Medicinal chemistry and chemical biology of new generation taxane antitumor agents. Life 53:269–274

    CAS  PubMed  Google Scholar 

  114. Sampath D, Discafani CM, Loganzo F, Beyer C, Liu H, Xingzhi T et al (2003) MAC-321:a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mole Cancer Ther 2:873–874

    CAS  Google Scholar 

  115. Shionoya M, Jimbo T, Kitagawa M, Soga T, Tohgo A (2003) DJ-927:a novel oral taxane, overcomes P-glycoprotein-mediated multidrug resistance in vitro and in vivo. Cancer Sci 94:459–466

    CAS  PubMed  Google Scholar 

  116. Cabral F, Wible L, Brenner S, Brinkley BR (1983) Taxol-requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly. J Cell Biol 97:30–39

    CAS  PubMed  Google Scholar 

  117. Monzo M, Rosell R, Sanchez JJ, Lee JS, O’Brate A, Gonzalez-Larriba JL et al (1999) Paclitaxel resistance in nonsmall-cell lung cancer associated with beta-tubulin gene mutations. J Clin Oncol 17:1786–1793

    CAS  PubMed  Google Scholar 

  118. Webster L, Linsenmeyer M, Millward M, Morton C, Bishop J, Woodcock D (1993) Measurement of cremophor EL following taxol: plasma levels sufficient to reverse drug exclusion mediated by the multi-drug phenotype. J Natl Cancer Inst 85:1685–1690

    CAS  PubMed  Google Scholar 

  119. Liebmann J, Cook JA, Mitchell JB (1993) Cremophor EL, solvent for paclitaxel, and toxicity. Lancet 342:1428

    CAS  PubMed  Google Scholar 

  120. Lin S, Ojima I (2000) Recent strategies in the development of taxane anticancer drugs. Exp Opin Ther Patents 10:1–21

    Google Scholar 

  121. Garber K. (2004) Improved paclitaxel formulation hints at new chemotherapy approach. J Nat Cancer Inst 96:90–91

    PubMed  Google Scholar 

  122. Harris JW, Katki A, Anderson LW, Chmurny GN, Paukstelis JV, Collins JM (1994) Isolation, structural determination, and biological activity of 6a-hydroxytaxol, the principal human metabolite of taxol. J Med Chem 37:706–709

    CAS  PubMed  Google Scholar 

  123. Rowinsky EK, Wright M, Monsarrat B, Lesser GJ, Donehower RC (1993) Taxol: pharmacology, metabolism and clinical implications. Cancer Surv 17 (Pharmacokinetics Cancer Chemother), 283–304

    CAS  PubMed  Google Scholar 

  124. Vuilhorgne M, Gaillard C, Sanderink GJ, Royer I, Monsarrat B, Dubois J et al (1995) Metabolism of taxoid drugs. In: Georg GI, Chen TT, Ojima I, Vyas DM (eds) Taxane anticancer agents: basic science and current status. American Chemical Society, Washington, DC, pp 98–110

    Google Scholar 

  125. Mekhail T, Markman M (2002) Paclitaxel in cancer therapy. Exp Opin Pharmacother 3:755–766

    CAS  Google Scholar 

  126. Levin M (2001) The role of taxanes in breast cancer treatment. Drugs Today 37:57–65

    CAS  PubMed  Google Scholar 

  127. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Ann Rev Med 48:353–374

    CAS  PubMed  Google Scholar 

  128. Kris MG, Manegold C (2001) Docetaxel (taxotere) in the treatment of non-small cell lung cancer: an international update. Sem Oncol 28:1–3

    CAS  Google Scholar 

  129. Michaud LB, Valero V, Hortobagyi G (2000) Risks and benefits of taxanes in breast and ovarian cancer. Drug Safety 23:401–428

    CAS  PubMed  Google Scholar 

  130. Calderoni A, Cerny T. (2001) Taxanes in lung cancer: a review with focus on the European experience. Critical Rev Oncol/Hematol 38:105–127

    CAS  Google Scholar 

  131. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK (1989) Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 111:273–279

    CAS  PubMed  Google Scholar 

  132. Eisenhauer EA, Vermorken JB (1998) The taxoids: comparative clinical pharmacology and therapeutic potential. Drugs 55:5–30

    CAS  PubMed  Google Scholar 

  133. Piccart MJ, Bertelsen K, James K, Cassidy J, Mangioni C, Simonsen E et al (2000) Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst 92:699–708

    CAS  PubMed  Google Scholar 

  134. Michaud LB, Valero V, Hortobagyi G (2000) Risks and benefits of taxanes in breast and ovarian cancer. Drug Safety 23:401–428

    CAS  PubMed  Google Scholar 

  135. Mekhail T, Markman M (2002) Paclitaxel in cancer therapy. Exp Opin Pharmacother 3:755–766

    CAS  Google Scholar 

  136. Hudis C (2003) The use of taxanes in early breast cancer. EJC Suppl 1:1–10

    CAS  Google Scholar 

  137. Nowak AK, Wilcken NRC, Stockler MR, Hamilton A, Ghersi D (2004) Systematic revierw of taxane-containing versus non-taxane-containing regimens for adjuvant and neoadjuvant treatment of early breast cancer. Lancet Oncol 5:372–380

    CAS  PubMed  Google Scholar 

  138. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Ann Rev Med 48:353–374

    CAS  PubMed  Google Scholar 

  139. Ramalingam S, Belani CP (2004) Paclitaxel for non-small cell lung cancer. Exp Opin Pharmacother 5:1771–1780

    CAS  Google Scholar 

  140. Cai J, Zheng T, Masood R, Smith DL, Hinton DR, Kim CN et al (2000) Paclitaxel induces apoptosis in AIDS-related Kaposi’s Sarcoma cells. Saracoma 4:37–45

    CAS  Google Scholar 

  141. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminate. J Am Chem Soc 88:3888–3890

    CAS  Google Scholar 

  142. Moertel CG, Schutt AJ, Reitmemeier RJ, Hahn RG (1972) Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep 56:95–101

    CAS  PubMed  Google Scholar 

  143. Hsiang Y.-H Hertzberg, R, Hecht S, Liu F (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    CAS  PubMed  Google Scholar 

  144. Gallo RC, Whang-Peng J, Adamson RH (1971) Studies on the antitumor activity, mechanism of action, and cell cycle effects of camptothecin. J Natl Cancer Inst 46:789–795

    CAS  PubMed  Google Scholar 

  145. Pommier Y, Pourquier P, Urasaki Y, Wu J, Laco GS (1999) Topoisomerase I inhibitors: selectivity and cellular resistance. Drug Resistance Updates 2:307–318

    CAS  PubMed  Google Scholar 

  146. Nitiss J, Wang JC (1988) DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci USA 85:7501–7505

    CAS  PubMed  Google Scholar 

  147. Husain I, Mohler JL, Seigler HF, Bestermann JM (1994) Elevation of topoisomerase I messenger RNA, protein, and catalytic activity in human tumors: demonstration of tumor-type specificity and implications for cancer chemotherapy. Cancer Res 54:539–546

    CAS  PubMed  Google Scholar 

  148. Siddoo-Atwal C, Haas AL, Rosin MP (1996) Elevation of interferon beta-inducible proteins in ataxia telangiectasia cells. Cancer Res 56:443–447

    CAS  PubMed  Google Scholar 

  149. Kretzschmar M, Meisterernst M, Roeder RG (1993) Identification of human DNA topoisomerase I as a cofactor for activator-dependent transcription by RNA polymerase II. Proc Natl Acad Sci USA 90:11508–11512

    CAS  PubMed  Google Scholar 

  150. Yeh YC, Liu HF, Ellis CA, Lu AL (1994) Mammalian topoisomerase I has base mismatch nicking activity. J Biol Chem 269:15498–15504

    CAS  PubMed  Google Scholar 

  151. Rossi F, Labourier E, Forne T, Divita G, Derancourt J, Riou JF et al (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381:80–82

    CAS  PubMed  Google Scholar 

  152. Hoki Y, Fujimori A, Pommier Y. (1997) Differential cytotoxicity of clinically important camptothecin derivatives in P-glycoprotein-overexpressing cell lines. Cancer Chemother Pharmacol 40:433–438

    CAS  PubMed  Google Scholar 

  153. Sugimoto Y, Tsukahara S, Oh-Hara T, Isoe T, Tsuruo T (1990) Decreased expression of DNA topoisomerase I in camptothecin-resistant cell lines as determined by monoclonal antibody. Cancer Res 50:6925–6930

    CAS  PubMed  Google Scholar 

  154. Eng WK, McCabe FL, Tan KB, Mattern MR, Hofmann GA, Woessner RD et al (1990) Development of stable camptothecin-resistant subline of P388 leukemia with reduced topoisomerase I content. Mol Pharmacol 38:471–480

    CAS  PubMed  Google Scholar 

  155. Kaufmann SH, Gore SD, Letendre L, Svingen PA, Kottke T, Buckwalter CA et al (1996) Factors affecting topotecan sensitivity in human leukemia samples. Ann NY Acad Sci 803:128–142

    CAS  PubMed  Google Scholar 

  156. Rubin E, Pantazis P, Bharti A, Toppmeyer D, Giovanella B, Kufe D (1994) Identification of amutant human topoisomerase I with intact catalytic activity and resistance to 9-nitrocanmptothecin. J Biol Chem 269:2433–2439

    CAS  PubMed  Google Scholar 

  157. Woessner RD, Eng WK, Hofmann GA, Rieman DJ, McCabe FL, Hertzberg RP et al (1992) Camptothecin hyper-resistant P388 cells: drug-dependent reduction in topoisomerase I content. Oncol Res 4:481–488

    CAS  PubMed  Google Scholar 

  158. Garcia-Carbonero R, Supko JG (2002) Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 8:641–661

    CAS  PubMed  Google Scholar 

  159. Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749

    CAS  PubMed  Google Scholar 

  160. Stork G, Schultz AG (1971) The total synthesis of dl-camptothecin. J Am Chem Soc 93:4074–4075

    CAS  PubMed  Google Scholar 

  161. Jew S-S, Kim G, Kim H-J, Roh E-Y, Park H (1996) Synthesis and antitumor activity of camptothotecin analogues. Korean J Med Chem 6:263–282

    CAS  Google Scholar 

  162. Thomas CJ, Rahier NJ, Hecht SM (2004) Camptothecin: current perspectives. Bioorg Med Chem 12:1585–1604

    CAS  PubMed  Google Scholar 

  163. Ejima A, Teresawa H, Sugimori M, Tagawa H (1990) Antitumour agents. Part 2. Asymmetric synthesis of (S)-camptothecin. J Chem Soc Perkin Trans 1:27–31

    Google Scholar 

  164. Comins DL, Nolan JM (2001) A practical six-step synthesis of (S)-camptothecin. Org Lett 3:4255–4257

    CAS  PubMed  Google Scholar 

  165. Tagami K, Nakazawa N, Sano S, Nagao Y (2000) Asymmetric synthesis of (+)-camptothecin and (+)-7-ethyl-10-methoxycamptothecin. Heterocycles 53:771–776

    CAS  Google Scholar 

  166. Bennasar M.-L Zulaica E, Juan C, Alonso Y, Bosch J (2002) Addition of ester enolates to N-alkyl-2- fluoropyridinium salts: total synthesis of (±)-20-deoxycamptothecin and (+)-camptothecin. J Org Chem 67:7465–7474

    PubMed  Google Scholar 

  167. Ciufolini MA, Roschangar F. (2000) Practical synthesis of (20 S)-(+)-camptothecin: the progenitor of a promising group of anticancer agents. Targets Heterocyclic Systems 4:25–55

    CAS  Google Scholar 

  168. Imura A, Itoh M, Miyadera A (1998) Enantioselective synthesis of 20(S)-camptothecin using an enzyme-catalyzed resolution. Tetrahedron: Asymmetry 9:2285–2291

    CAS  Google Scholar 

  169. Fang FG, Xie S, Lowery MW (1994) Catalytic enantioselective synthesis of 20(S)-camptothecin: a practical application of the sharpless asymmetric dihydroxylation reaction. J Org Chem 59:6142–6143

    CAS  Google Scholar 

  170. Jew S-S, Ok K, Kim H, Kim MG, Kim JM, Hah JM et al (1995) Enantioselective synthesis of 20(S)-camptothecin using sharpless catalytic asymmetric dihydroxylation. Tetrahedron: Asymmetry 6:1245–1248

    CAS  Google Scholar 

  171. Blagg BSJ, Boger DL (2002) Total synthesis of (+)-camptothecin. Tetrahedron 58:6343–6349

    CAS  Google Scholar 

  172. Curran DP, Josien H, Bom D, Gabarda AE, Du W (2000) The cascade radical annulation approach to new analogues of camptothecins. Combinatorial synthesis of silatecans and homosilatecans. Ann NY Acad Sci 922:112–121

    CAS  PubMed  Google Scholar 

  173. Yabu K, Masumoto S, Kanai M, Curran DP, Shibasaki M (2002) Studies toward practical synthesis of (20S)-camptothecin family through catalytic enantioselective cyanosilylation of ketones: improved catalyst efficiency by ligand-tuning. Tetrahedron Lett 43:2923–2926

    CAS  Google Scholar 

  174. Sawada, S, Okajima S, Aiyama R, Nokata K, Furuta T, Yokokura T et al (1991) Synthesis and antitumor activity of 20(S)-camptothecin derivatives: carbamate-linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin. Chem Pharm Bull 39:1446–1454

    CAS  PubMed  Google Scholar 

  175. Kingsbury WD, Boehm JC, Jakas DR, Holden KG, Hecht SM, Gallagher G et al (1991) Synthesis of water-soluble (aminoalkyl)camptothecin analogs: inhibition of topoisomerase I and antitumor activity. J Med Chem 34:98–107

    CAS  PubMed  Google Scholar 

  176. Thomas CJ, Rahier NJ, Hecht SM (2004) Camptothecin: current perspectives. Bioorg Med Chem 12:1585–1604

    CAS  PubMed  Google Scholar 

  177. Meng L, Liao Z, Pommier Y (2003) Non-camptothecin DNA topoisomerase I inhibitors in cancer therapy. Curr Top Med Chem 3:305–320

    CAS  PubMed  Google Scholar 

  178. Ten Bokkel Huinink W, Lane SR, Ross GA (2004) Long-term survival in a phase III, randomized study of topotecan versus paclitaxel in advanced epithelial ovarian carcinoma. Ann Oncol 15:100–103

    PubMed  Google Scholar 

  179. Abigerges D, Chabot GG, Armand JP, Herait P, Gouyette A, Gandia G (1995) Phase I and pharmacologic studies of the camptothecin analog irinotecan administered every 3 weeks in cancer patients. J Clin Oncol 13:210–221

    CAS  PubMed  Google Scholar 

  180. Sparreboom A, de Jonge MJ, Punt CJ, Nooter K, Loos WJ, Porro MG et al (1998) Pharmacokinetics and bioavailability of oral 9-aminocamptothecin capsules in adult patients with solid tumors. Clin Cancer Res 4:1915–1919

    CAS  PubMed  Google Scholar 

  181. Kim D-K, Lee N (2002) Recent advances in topoisomerase I-targeting agents, camptothecin analogues. Mini Rev Med Chem 2:611–619

    CAS  PubMed  Google Scholar 

  182. Luzzio MJ, Besterman JM, Emerson DL, Evans MG, Lackey K, Leitner PL et al (1995) Synthesis and antitumor activity of novel water soluble derivatives of camptothecin as specific inhibitors of topoisomerase I. J Med Chem 38:395–401

    CAS  PubMed  Google Scholar 

  183. MacKenzie MJ, Hirte HW, Siu LL, Gelmon K, Ptaszynski M, Fisher B, Eisenhauer E (2004) A phase I study of OSI-211 and cisplatin as intravenous infusions given on days 1:2 and 3 every 3 weeks in patients with solid cancers. Ann Oncol 15:665–670

    CAS  PubMed  Google Scholar 

  184. van Hattum AH, Pinedo HM, Schluper HMM, Erkelens CAM, Tohgo A, Boven E (2002) The activity profile of the hexacyclic camptothecin derivative DX-8951f in experimental human colon cancer and ovarian cancer. Biochem Pharm 64:1267–1277

    PubMed  Google Scholar 

  185. Dallavalle S, Ferrari A, Biasotti B, Merlini L, Penco S, Gallo G et al (2002) Novel 7-oxyiminomethyl derivatives of camptothecin with potent in vitro and in vivo antitumor activity. J Med Chem 44:3264–3274

    Google Scholar 

  186. Ulukan H, Swaan PW (2002) Camptothecins. A review of their chemotherapeutic potential. Drugs 62:2039–2057

    CAS  PubMed  Google Scholar 

  187. Dallavalle S, Merfini, L, Penco S, Zunino F (2002) Perspectives in camptothecin development. Exp Opin Ther Patents 12:837–844

    CAS  Google Scholar 

  188. Bailly C (2003) Homocamptothecins: potent topoisomerase I inhibitors and promising anticancer drugs, Critical Rev Oncol/Hematol 45:91–108

    Google Scholar 

  189. Shao R-G, Cao C-X, Shimizu T, O’Connor P, Kohn KW, Pommier Y (1997) Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-O1) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 57:4029–4035

    CAS  PubMed  Google Scholar 

  190. Pommier Y. (2004) Camptothecins and topoisomerase I: a foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs: importance of DNA replication, repair, and cell cycle checkpoints. Curr Med Chem Anticancer Agents 4:429–434

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author’s work on paclitaxel mentioned in Section 1.3 was supported by the National Cancer Institute (grants CA-55131 and CA-69571), and this support is gratefully acknowledged. The author is also grateful to Dr. S. M. Hecht (University of Virginia) for advice and assistance in the preparation of Section 1.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G.I. Kingston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kingston, D.G. (2011). Plant-Derived Natural Products as Anticancer Agents. In: Minev, B. (eds) Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures. Cancer Growth and Progression, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9704-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9704-0_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9703-3

  • Online ISBN: 978-90-481-9704-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics