Advertisement

Semantic Methods

  • Francesca PoggiolesiEmail author
Chapter
Part of the Trends in Logic book series (TREN, volume 32)

Abstract

As noted in Section 2.3, there are two types of methods for extending the ordinary sequent calculus: the first type modifies the structure of the classical sequent in a purely syntactic fashion (see the previous chapter); the second type enriches a classical sequent by adjoining semantic elements. This chapter will be entirely dedicated to the analysis of the calculi generated by means of this latter method.

References

  1. 19.
    L. Catach. Tableaux: A general theorem prover for modal logic. Journal of Automated Reasoning, 7:489–510, 1991.CrossRefGoogle Scholar
  2. 20.
    C. Cerrato. Cut-free modal sequents for normal modal logics. Notre Dame Journal of Formal Logic, 34:564–582, 1993.CrossRefGoogle Scholar
  3. 21.
    C. Cerrato. Modal sequents for normal modal logics. Mathematical Logic Quarterly, 39:231–240, 1993.CrossRefGoogle Scholar
  4. 22.
    C. Cerrato. Modal sequents. In H. Wansing, editor, Proof Theory of Modal Logic, pp. 141–166. Kluwer Academic Publisher, Dordrecht, 1996.Google Scholar
  5. 23.
    C. Cerrato. Modal tree-sequents. Mathematical Logic Quarterly, 42:197–210, 1996.CrossRefGoogle Scholar
  6. 38.
    M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht, 1983.Google Scholar
  7. 40.
    D. Gabbay. Labelled Deductive Systems: Volume 1. Foundations. Oxford University Press, Oxford, 1996.Google Scholar
  8. 43.
    J.-Y. Girard. Proof Theory and Logical Complexity, Volume 1. Bibliopolis, Napoli, 1987.Google Scholar
  9. 49.
    R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino, D. M. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pp. 297–396. Kluwer Academic Publisher, Dordrecht, 1999.Google Scholar
  10. 62.
    G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge, London-New York, 1996.CrossRefGoogle Scholar
  11. 67.
    S. Kanger. Provability in Logic. Almqvist and Wiskell, Stockholm, 1957.Google Scholar
  12. 72.
    S. Kripke. Semantical analysis of modal logic I: Normal modal propositional calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 11:3–16, 1968.CrossRefGoogle Scholar
  13. 73.
    H. Kushida and M. Okada. A proof-theoretic study of the correspondence of classical logic and modal logic. Journal of Symbolic Logic, 68:1403–1414, 2003.CrossRefGoogle Scholar
  14. 82.
    G. Mints. Indexed systems of sequents and cut-elimination. Journal of Philosophical Logic, 26:671–696, 1997.CrossRefGoogle Scholar
  15. 84.
    S. Negri. Contraction-free sequent calculi for geometric theories, with an application to Barr’s theorem. Archives of Mathematical Logic, 42:389–401, 2003.CrossRefGoogle Scholar
  16. 85.
    S. Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34:507–544, 2005.CrossRefGoogle Scholar
  17. 86.
    S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press, Cambridge, 2004.Google Scholar
  18. 87.
    A. Nerode. Some lectures on modal logic. In F. L. Bauer, editor, Logic, Algebra and Computation, pp. 281–334. NATO Science Series, Springer, Amsterdam, Berlin, Oxford, Tokyo, Washington DC, 1991.Google Scholar
  19. 88.
    H. Ohlbach. Semantic-based translation methods for modal logics. Journal of Logic and Computation, 1:691–746, 1991.CrossRefGoogle Scholar
  20. 91.
    E. Orlowska. Relational proof systems for modal logics. In H. Wansing, editor, Proof Theory of Modal Logic, pp. 55–77. Kluwer Academic Publisher, Dordrecht, 1996.Google Scholar
  21. 92.
    E. Orlowska. Relational interpretations of modal logics. In H. Andreka, D. Monk, and I. Nemeti, editors, Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai, pp. 443–471. North Holland, Amsterdam, 1998.Google Scholar
  22. 97.
    A. Pliuškevičiene. Cut-free calculus for modal logics containing the Barcan axiom. In M. Kracht, M. de Rijke, and H. Wansing, editors, Advances in Modal Logic ’96, pp. 157–172. CSLI Publications, Stanford, 1998.Google Scholar
  23. 98.
    A. Pliuškevičiene. Extended disjunction and existence properties for some predicate modal logics. Journal of the IGPL, 6:775–787, 1998.CrossRefGoogle Scholar
  24. 116.
    G. Restall. Comparing modal sequent systems. Unpublished manuscript, pp. 1–13, 2006.Google Scholar
  25. 130.
    A. Simpson. Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D. Thesis, School of Informatics, University of Edinburgh, Edinburgh, 1994.Google Scholar
  26. 141.
    L. Viganò. Labelled Non-Classical Logics. Kluwer, Boston-Dordrecht-London, 2000.Google Scholar
  27. 142.
    L. Viganò, D. Basin, and S. Matthews. Natural deduction for non-classical logics. Studia Logica, 60:119–160, 1998.CrossRefGoogle Scholar
  28. 143.
    L. Viganò, P. Mateus, A. Sernadas, and C. Sernadas. Modal sequent calculi labelled with truth values: Completeness, duality and analyticity. Logic Journal of IGPL, 12:227–274, 2004.CrossRefGoogle Scholar
  29. 144.
    L. Wallen. Automated Deductions in Non-classical Logics. MIT Press, Cambridge, Massachusetts, 1990.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.VRIJE UNIVERSITEIT BRUSSEL CLWF/LWBrusselsBelgium

Personalised recommendations