Skip to main content

Selecting Admixtures to Achieve Application-Required Rheology

  • Conference paper
  • First Online:
Design, Production and Placement of Self-Consolidating Concrete

Part of the book series: RILEM Bookseries ((RILEM,volume 1))

  • 2399 Accesses

Abstract

SCC can encompass a wide range of concrete rheology. Previous research has shown the importance of specific rheological characteristics for application requirements such as reduced formwork pressure, increased static and dynamic segregation resistance, and increased pumpability. The required rheological characteristics for different applications are discussed in terms of yield stress, plastic viscosity, and thixotropy. Micromortar rheology measurements were conducted with four different high-range water reducers (HRWR) and two different water/cement ratios to demonstrate potential differences in rheology due to HRWR selection. The results indicated that HRWR selection can significantly impact micromortar rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallevik, O. (2005), Why Is SCC Different from Country to Country?, Proceedings of SCC 2005, ACBM, Chicago, IL.

    Google Scholar 

  2. Koehler, E.P. and Fowler, D.W. (2007), ICAR Mixture Proportioning Procedure for SCC. International Center for Aggregates Research (Report 108-1F), Austin, TX.

    Google Scholar 

  3. Mikanovic, N. and Jolicoeur, C. (2008), Influence of Superplasticizers on the Rheology and Stability of Limestone and Cement Pastes, Cement and Concrete Research, vol. 38, pp. 907–919.

    Article  Google Scholar 

  4. Jeknavorian, A.J., Koehler, E.P., Geary, D. and Malone, J. (2008), Concrete Rheology with High-Range Water Reducers With Extended Slump Flow Retention, Proceedings of SCC 2008, Chicago, IL.

    Google Scholar 

  5. Khayat, K.H. and Assaad, J. (2006), Effect of w/cm and High-Range Water-Reducing Admixture on Formwork Pressure and Thixotropy of Self-Consolidating Concrete, ACI Materials Journal, vol. 103, pp. 186–193.

    Google Scholar 

  6. Koehler, E.P. and Fowler, D.W. (2008), Static and Dynamic Yield Stress Measurements of SCC, Proceedings of SCC 2008, Chicago, IL.

    Google Scholar 

  7. Barnes, H.A. (1997), Thixotropy – A Review, Journal of Non-Newtonian Fluid Mechanics, vol. 70, pp. 1–33.

    Article  MathSciNet  Google Scholar 

  8. Tejeda-Dominguez, F. and Lange, D.A. (2005), Formwork Pressure of SCC for Tall Wall Field Applications. Journal of Transportation Research Record, vol. 1914, pp. 1–7.

    Article  Google Scholar 

  9. Khayat, K. and Assaad, J. (2005), Use of Rheological Properties of SCC to Predict Formwork Pressure, Proceedings of SCC 2005, Chicago, IL.

    Google Scholar 

  10. Koehler, E.P., Keller, L. and Gardner, N.J. (2007), Field Measurements of SCC Rheology and Formwork Pressures, Proceedings of the SCC 2007 Conference, Ghent, Belgium.

    Google Scholar 

  11. Roussel, N. (2006), A Thixotropy Model for Fresh Fluid Concretes: Theory, Validation and Applications. Cement and Concrete Research, vol. 36, pp. 1797–1806.

    Article  Google Scholar 

  12. Billberg, P. (2007), Form Pressure Generated by Self-Compacting Concrete — Influence of Thixotropy and Structural Behavior at Rest, Doctoral Thesis, Royal Institute of Technology, Stockholm.

    Google Scholar 

  13. Shen, L., Struble, L. and Lange, D. (2009), Modeling Dynamic Segregation Resistance of Self-Consolidating Concrete, ACI Materials Journal, vol. 106, pp. 375–380.

    Google Scholar 

  14. Shen, L., Struble, L. and Lange, D. (2009), Modeling Static Segregation Resistance of Self-Consolidating Concrete, ACI Materials Journal, vol. 106, pp. 367–374.

    Google Scholar 

  15. Saak, A.W., Jennings, H.M. and Shah, S.P. (2001), New Methodology for Designing Self-Compacting Concrete, ACI Materials Journal, vol. 98, pp. 429–439.

    Google Scholar 

  16. Koehler, E.P., Brooks, W., Mogan, E. and Neuwald, A. (2009), Application of Rheology Measurements to Enable and Ensure Concrete Performance, Proceedings of the NRMCA Concrete Technology Forum, Cincinnati, OH.

    Google Scholar 

  17. Feys, D., De Schutter, G. and Verhoeven, R. (2009), Rheology and Pumping of Self-Compacting Concrete, Proceedings of Tenth ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues, Seville, Spain.

    Google Scholar 

  18. Erdem, T.K., Khayat, K.H. and Yahia, A. (2009), Correlating Rheology of Self-Consolidating Concrete to Corresponding Concrete Equivalent Mortar. ACI Materials Journal, vol. 106, pp. 154–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 RILEM

About this paper

Cite this paper

Koehler, E., Jeknavorian, A., Klaus, S. (2010). Selecting Admixtures to Achieve Application-Required Rheology. In: Khayat, K., Feys, D. (eds) Design, Production and Placement of Self-Consolidating Concrete. RILEM Bookseries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9664-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9664-7_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9663-0

  • Online ISBN: 978-90-481-9664-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics