Skip to main content

Effect of Rheology of SCC on Bond Strength of Ribbed Reinforcement Bars

  • Conference paper
  • First Online:
Design, Production and Placement of Self-Consolidating Concrete

Part of the book series: RILEM Bookseries ((RILEM,volume 1))

Abstract

SCC can have very different rheological properties depending on the application and local mix design traditions. By definition, SCC should encapsulate the reinforcement bars to ensure proper bond strength, however, variations in bond strength may at least theoretically occur dependent on the rheological properties and the flow characteristics history near the individual bar. Especially, the bond strength may be questioned for SCC with a slump flow in the range 500-580 mm which is often used to obtain good control of flowing concrete as well as high segregation resistance. This paper presents the results of an experimental program investigating the relationship between the rheological parameters yield stress and plastic viscosity and bond strength of reinforcement bars. A reference conventional slump concrete requiring vibration to consolidate and several SCCs of equivalent strength class but with varying rheological parameters as measured by the 4CRheometer were prepared. Batches of 250 liters were cast into a formwork containing 12 mm diameter ribbed reinforcement bars fixed horizontally. The distance of SCC flow in the formwork was 2.5 m. Bond and compressive strengths were tested after 7 days of curing. The results indicate that the bond strength is not significantly influenced by the rheological properties of SCC and that the bond strength corresponds to that of conventional concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonebi, M., Zhu, W. and Gibbs, J. (2001), Bond of reinforcement in self-compacting concrete, Concrete, vol. 35, n. 7, pp. 26–28.

    Google Scholar 

  2. Chan, Y., W., Chen, Y.S. and Liu, Y.S. (2003), Development of bond strength of reinforcement steel in self-compacting concrete, ACI Structural Journal, vol. 100, n. 4, pp. 490–498.

    Google Scholar 

  3. Khayat, K.H. (1998), Use of viscosity modifying admixture to reduce topbar effect of anchored bars cast with fluid concrete, ACI Materials Journal, vol. 95, n. 2, pp. 158–167.

    Google Scholar 

  4. Khayat, K.H. and Mitchell, D. (2009), Self-consolidating concrete for precast, prestressed concrete bridge elements, National Corporative Highway Research Program, Report 628.

    Google Scholar 

  5. Desnerck, P., De Schutter, G. and Taerwe, L. (2008), Bond strength of reinforcing bars in self-compacting concrete: Experimental determination, The 3rd North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago.

    Google Scholar 

  6. Cattaneo, S., Muciaccia, G. and Rosati, G. (2008), Bond strength in limestone Self-Compacting Concrete, The 3rd North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago.

    Google Scholar 

  7. Filho, F., Debs, M. and Debs, A. (2008), Bond-slip behavior of self-compacting concrete and vibrated concrete using pull-out and beam tests, Materials and Structures, vol. 41, n. 6, pp. 1073–1089.

    Article  Google Scholar 

  8. Valcuende, M. and Parra, C. (2009), Bond behaviour of reinforcement in self-compacting concrete, Journal of Construction and Building materials, vol. 23, n. 1, pp. 162–170.

    Article  Google Scholar 

  9. Sherif, Y., Abudayyeh, O., Maurovich, M. and Zalt, A. (2008), Bond strength of Self consolidating concrete, The 3rd North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago.

    Google Scholar 

  10. Söylev, T.A. and Francois, R. (2006), Effects of bar-placement conditions on steel-concrete bond, Materials and Structures, vol. 39, n. 2, pp. 211–220.

    Article  Google Scholar 

  11. Thrane, L.N., Pade, C. and Nielsen, C.V. (2010), Determination of rheology of self-consolidating concrete using the 4C-Rheometer and how to make use of the results, Journal of ASTM International, vol. 7, n. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 RILEM

About this paper

Cite this paper

Thrane, L.N., Pade, C., Idzerda, C., Kaasgaard, M. (2010). Effect of Rheology of SCC on Bond Strength of Ribbed Reinforcement Bars. In: Khayat, K., Feys, D. (eds) Design, Production and Placement of Self-Consolidating Concrete. RILEM Bookseries, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9664-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9664-7_31

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9663-0

  • Online ISBN: 978-90-481-9664-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics