Skip to main content

Biotechnologies Based on Silk

  • Chapter
  • First Online:
Insect Biotechnology

Part of the book series: Biologically-Inspired Systems ((BISY,volume 2))

Abstract

Natural silks are fibrous polymers built of several protein components. Commercial silk fibers are obtained from the cocoons of a handful of moth species by an ancient technology. The core proteins, which are responsible for filament formation in these silks, are called fibroins and the surface sticky proteins are sericins. Silk is still primarily used for textiles and related products but applications in cosmetics and medicine are of growing importance. Sericins have been commercialized as additives to tissue culture media and are being tested as scaffolds for tissue reconstruction. Modern transgenic technologies are used to obtain silk threads with new properties or to manufacture minor silk components. Controlled conversion of soluble proteins into filaments is the major problem in the development of recombinant silk fibers. Sericin-like recombinant proteins are promising for use in cosmetics, medicine, and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akai H (1997) Anti-bacteria function of natural silk materials. Int J Wild Silkmoth Silk 3:79–81

    Google Scholar 

  • Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM (2008) Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif 41:408–420

    Article  PubMed  CAS  Google Scholar 

  • Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM (2006) Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 10:770–777

    Article  PubMed  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  PubMed  CAS  Google Scholar 

  • Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141

    Article  PubMed  CAS  Google Scholar 

  • Bini E, Foo CW, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7:3139–3145

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T, Kaplan DL (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res 67:559–570

    Article  CAS  Google Scholar 

  • Couble P, Michaille JJ, Couble ML, Prudhomme JC (1987) Developmental switches of sericin mRNA splicing in individual cells of Bombyx mori silkgland. Dev Biol 124:431–440

    Article  PubMed  CAS  Google Scholar 

  • Dal Pra I, Chiarini A, Boschi A, Freddi G, Armato U (2006) Novel dermo-epidermal equivalents on silk fibroin-based formic acid-crosslinked three-dimensional nonwoven devices with prospective applications in human tissue engineering/regeneration/repair. Int J Mol Med 18:241–247

    PubMed  CAS  Google Scholar 

  • Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U (2005) De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 26:1987–1999

    Article  PubMed  CAS  Google Scholar 

  • Dash R, Acharya C, Bindu PC, Kundu SC (2008b) Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Reports 41:236–241

    PubMed  CAS  Google Scholar 

  • Dash R, Mandal M, Ghosh SK, Kundu SC (2008a) Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Mol Cell Biochem 311:111–119

    Article  PubMed  CAS  Google Scholar 

  • Fabiani C, Pizzichini M, Spadoni M, Zeddita G (1996) Treatment of waste water from silk degumming process for protein recovery and water reuse. Desalination 105:1–9

    Article  CAS  Google Scholar 

  • Fedič R, Žurovec M, Sehnal F (2002) The silk of Lepidoptera. J Insect Biotechnol Sericol 71:1–15

    Google Scholar 

  • Fujii H, Banno Y, Doira H, Kihara H, Kawaguchi Y (1998) Genetical stocks and mutations of Bombyx mori: important genetic resources, 2nd ed. Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, p 54

    Google Scholar 

  • Gamo T (1982) Genetics variants of the Bombyx mori silkworm encoding sericin proteins of different length. Biochem Genet 20:165–177

    Article  PubMed  CAS  Google Scholar 

  • Gamo T, Inokuchi T, Laufer H (1977) Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori. Insect Biochem 7:285–295

    Article  CAS  Google Scholar 

  • Garel A, Deleage G, Prudhomme JC (1997) Structure and organization of the Bombyx mori Sericin 1 gene and of the Sericin 1 deduced from the sequence of the Ser 1B cDNA. Insect Biochem Mol Biol 27:469–477

    Article  PubMed  CAS  Google Scholar 

  • Hakimi O, Knight DP, Vollrath F, Vadgama P (2007) Spider and mulberry silkworm silks as compatible biomaterials. Compos Part B Eng 38:324–337

    Article  CAS  Google Scholar 

  • Holland C, Terry AE, Porter D, Vollrath F (2007) Natural and unnatural silks. Polymer 48:3388–3392

    Article  CAS  Google Scholar 

  • Huang J, Valluzzi R, Bini E, Vernaglia B, Kaplan DL (2003) Cloning, expression, and assembly of sericin-like protein. J Biol Chem 278:46117–46123

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Tanaka K, Tanaka H, Ohtomo K, Kanda T, Imamura M, Quan GX, Kojima K, Yamashita T, Nakajima T, Taira H, Tamura T, Mizuno S (2004) Assembly of the silk fibroin elementary unit in endoplasmic reticulum and a role of L-chain for protection of α1,2-mannose residues in N-linked oligosaccharide chains of fibrohexamerin/P25. Eur J Biochem 271:356–366

    Article  PubMed  CAS  Google Scholar 

  • Inouye K, Kurokawa M, Nishikawa S, Tsukada M (1998) Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. J Biochem Biophys Methods 37:159–164

    Article  PubMed  CAS  Google Scholar 

  • Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Article  PubMed  CAS  Google Scholar 

  • Karageorgiou V, Tomkins M, Fajardo R, Meinel L, Snyder B, Wade K, Chen J, Vunjak-Novakovic G, Kaplan DL (2006) Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. J Biomed Mat 78A:324–334

    Article  CAS  Google Scholar 

  • Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D, Gronowicz G (2006) RGD-tethered silk substrate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res 448:234–239

    Article  PubMed  CAS  Google Scholar 

  • Kirker-Head C, Karageorgiou V, Hofmann S, Fajardo R, Betz O, Merkle HP, Hilbe M, von Rechenberg B, McCool J, Abrahamsen L, Nazarian A, Cory E, Curtis M, Kaplan D, Meinel L (2007) BMP-silk composite matrices heal critically sized femoral defects. Bone 41:247–255

    Article  PubMed  CAS  Google Scholar 

  • Kludkiewicz B, Takasu Y, Fedič R, Tamura T, Sehnal F, Žurovec M (2009) Structure and expression of the silk adhesive protein Ser2 in Bombyx mori. Insect Biochem Mol Biol 39:938–946

    Article  PubMed  CAS  Google Scholar 

  • Knight DP, Knight MM, Vollrath F (2000) Int J Biol Macromol 27:205–210

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi I, Kojima K, Sezutsu H, Uchino K, Tamura T (2009) Expression of the Japanese oak silkworm Antheraea yamamai fibroin gene in the domesticated silkworm Bombyx mori. Insect Sci 16:465–473

    Article  CAS  Google Scholar 

  • Kodrík D (1992) Small protein components of the cocoons in Galleria mellonella (Lepidoptera, Pyralidae) and Bombyx mori (Lepidoptera, Bombycidae). Acta Ent Bohemoslov 89:269–273

    Google Scholar 

  • Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y (2007) A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem 12:2943–2951

    Article  CAS  Google Scholar 

  • Komatsu K (1975) Studies on dissolution behaviors and structural characteristics of silk sericin. Bull Sericult Exp Stat 26:135–256

    CAS  Google Scholar 

  • Kundu SC, Dash BC, Dash R, Kaplan D (2008) Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Prog Polym Sci 33:998–1012

    Article  CAS  Google Scholar 

  • Kłudkiewicz B, Kodrík D, Grzelak K, Nirmala X, Sehnal F (2005) Recombinant, structually unique Kazal-type proteinase inhibitor retains activity when C-terminally extended and glycosylated. Protein Expr Purif 43:94–102

    Article  PubMed  CAS  Google Scholar 

  • Lazaris A, Arcidiacono S, Huang Y, Zhou J-F, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fiber spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476

    Article  PubMed  CAS  Google Scholar 

  • Li YG, Ji DF, Lin TB, Zhong S, Hu GY, Chen S (2008) Protective effect of sericin peptide against alcohol-induced gastric injury in mice. Chin Med J 121:2083–2087

    PubMed  CAS  Google Scholar 

  • Liu H, Ge Z, Wang Y, Toh SL, Sutthikhum V, Goh JC (2007) Modification of sericin-free silk fibers for ligament tissue engineering application. J Biomed Mater Res B 82:129–138

    Google Scholar 

  • Megeed Z, Haider M, Li DQ, O’Malley BW, Cappello J, Ghandehari H (2004) In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Contr Rel 94:433–445

    Article  CAS  Google Scholar 

  • Michaille JJ, Couble P, Prudhomme JC, Garel A (1986) A single gene produces multiple sericin messenger RNAs in the silkgland of Bombyx mori. Biochimie 68:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Michaille JJ, Garel A, Prudhomme JC (1990) Expression of Ser1 and Ser2 genes in the middle silk gland of Bombyx mori during the fifth instar. Sericologia 30:49–60

    Google Scholar 

  • Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res 29:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38:583–592

    Article  PubMed  CAS  Google Scholar 

  • Nirmala X, Kodrík D, Žurovec M, Sehnal F (2001a) Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor. Eur J Biochem 268:2064–2073

    Article  PubMed  CAS  Google Scholar 

  • Nirmala X, Mita K, Vanisree V, Žurovec M, Sehnal F (2001b) Identification of four small molecular mass proteins in the silk of Bombyx mori. Insect Mol Biol 10:437–445

    Article  PubMed  CAS  Google Scholar 

  • Ogawa A, Terada S, Kanayama T, Miki M, Morikawa M, Kimura T, Yamaguchi A, Sasaki M, Yamada H (2004) Improvement of islet culture with sericin. J Biosci Bioeng 98(3):217–219

    PubMed  CAS  Google Scholar 

  • Padamwar MN, Pawar AP (2004) Silk sericin and its applications: a review. J Sci Ind Res 63:323–329

    CAS  Google Scholar 

  • Padamwar MN, Pawar AP, Daithankar AV, Mahadik KR (2005) Silk sericin as a moisturizer: an in vivo study. J Cosmet Dermatol 4:250–257

    Article  PubMed  Google Scholar 

  • Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL (2003) Macrophage responses to silk. Biomaterials 24:3079–3085

    Article  PubMed  CAS  Google Scholar 

  • Peigler RS (1993) Wild silks of the world. Am Entomol 39:151–161

    Google Scholar 

  • Sarovart S, Sudatis B, Meesilpa P, Grady BP, Magaraphan R (2003) The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Rev Adv Mater Sci 5:193–198

    CAS  Google Scholar 

  • Sasaki M, Kato N, Watanabe H, Yamada H (2000) Silk protein, sericin, suppresses colon carcinogenesis induced by 1,2-dimethylhydrazine in mice. Oncol Rep 7:1049–1052

    PubMed  CAS  Google Scholar 

  • Sasaki M, Kato Y, Yamada H, Terada S (2005) Development of a novel serum-free freezing medium for mammalian cells using the silk protein sericin. Biotechnol Appl Biochem 42:183–188

    Article  PubMed  CAS  Google Scholar 

  • Sehnal F, Craig CL (2009) Silk production. In: Resh VH and Cardé RT (eds) The Encyclopedia of Insects, 2nd edn. Elsevier, San Diego, CA, pp 921–924

    Google Scholar 

  • Sehnal F, Sutherland T (2008) Silks produced by insect labial glands. Prion 2:1–9

    Article  Google Scholar 

  • Sehnal F, Žurovec M (2004) Construction of silk fiber core in Lepidoptera. Biomacromolecules 5:666–674

    Article  PubMed  CAS  Google Scholar 

  • Sezutsu H, Yukuhiro K (2000) Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J Mol Evol 51:329–338

    PubMed  CAS  Google Scholar 

  • Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139–148

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y (1977) Differentiation of silk gland. A model system for the study of differential gene action. In: Beermann W (ed) Results and problems in cell differentiation. Springer, Berlin, Heidelberg

    Google Scholar 

  • Takahashi M, Tsujimoto K, Kato Y, Yamada H, Takagi H, Nakamori S (2003) The silk protein, sericin, protects against cell death caused by acute serum deprivation in insect cell culture. Biotechnol Lett 25:1805–1809

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Tsujimoto K, Yamada H, Takagi H, Nakamori S (2005a) A sericin-derived peptide protects sf9 insect cells from death caused by acute serum deprivation. Biotechnol Lett 27:893–897

    Article  PubMed  CAS  Google Scholar 

  • Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K (2007) Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochem Mol Biol 37:1234–1240

    Article  PubMed  CAS  Google Scholar 

  • Takasu Y, Yamada H, Tsubouchi K (2002) Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 66:2715–2718

    Article  PubMed  CAS  Google Scholar 

  • Takei F, Kikuchi Y, Kikuchi A, Mizuno S, Shimura K (1987) Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol 105:175–180

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi A, Ohtsuki C, Miyazaki T, Kamitakahara M, Ogata S, Yamazaki M, Furutani Y, Kinoshita H, Tanihara M (2005b) Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin. J R Soc Interface 2:373–378

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M, Tanihara M (2003) Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A 65:283–289

    Article  PubMed  CAS  Google Scholar 

  • Tamada Y, Sano M, Niwa K, Imai T, Yoshino G (2004) Sulfation of silk sericin and anticoagulant activity of sulfated sericin. J Biomater Sci Polym Ed 15:971–980

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Inoue H, Suzuki Y (1987) The fibroin genes of Antheraea yamamai and Bombyx mori are different in their core regions but reveal a striking sequence similarity in their 5 ends and 5 flanking regions. Mol Gen Genet 206:189–195

    Article  Google Scholar 

  • Tanaka K, Inoue S, Mizuno S (1999) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29:269–276

    Article  PubMed  CAS  Google Scholar 

  • Terada S, Nishimura T, Sasaki M, Yamada H, Miki M (2002) Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40:3–12

    Article  PubMed  CAS  Google Scholar 

  • Terada S, Sasaki M, Yanagihara K, Yamada H (2005) Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture. J Biosci Bioeng 100:667–671

    Article  PubMed  CAS  Google Scholar 

  • Teramoto H, Nakajima K, Takabayashi C (2005) Preparation of elastic silk sericin hydrogel. Biosci Biotechnol Biochem 69:845–847

    Article  PubMed  CAS  Google Scholar 

  • Tsubouchi K, Igarashi Y, Takasu Y, Yamada H (2005) Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 69:403–405

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto K, Takagi H, Takahashi M, Yamada H, Nakamori S (2001) Cryoprotective effect of the serine-rich repetitive sequence in silk protein sericin. J Biochem 129:979–986

    PubMed  CAS  Google Scholar 

  • Vendrely C, Scheibel T (2007) Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 7:401–409

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Kim H-J, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27:6064–6082

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara K, Terada S, Miki M, Sasaki M, Yamada H (2006) Effect of the silk protein sericin on the production of adenovirus-based gene-therapy vectors. Biotechnol Appl Biochem 45:59–64

    Article  PubMed  CAS  Google Scholar 

  • Yonemura N, Sehnal F (2006) The design of silk fiber composition in moths has been conserved for more than 150 million years. J Mol Evol 63:42–53

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol Adv 20:91–100

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP, Xue RY (2006) Silk sericin-insulin bioconjugates: synthesis, characterization and biological activity. J Control Rel 115:307–315

    Article  CAS  Google Scholar 

  • Zhaorigetu S, Sasaki M, Kato N (2007) Consumption of sericin suppresses colon oxidative stress and aberrant crypt foci in 1,2-dimethylhydrazine-treated rats by colon undigested sericin. J Nutr Sci Vitaminol (Tokyo) 53:297–300

    Article  CAS  Google Scholar 

  • Zhaorigetu S, Sasaki M, Watanabe H, Kato N (2001) Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci Biotechnol Biochem 65:2181–2186

    Article  PubMed  CAS  Google Scholar 

  • Zhaorigetu S, Yanaka N, Sasaki M, Watanabe H, Kato N (2003a) Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J Photochem Photobiol B 71:11–17

    Article  PubMed  CAS  Google Scholar 

  • Zhaorigetu S, Yanaka N, Sasaki M, Watanabe H, Kato N (2003b) Silk protein, sericin, suppresses DMBA-TPA-induced mouse skin tumorigenesis by reducing oxidative stress, inflammatory responses and endogenous tumor promoter TNF-alpha. Oncol Rep 10:537–543

    PubMed  CAS  Google Scholar 

  • Žurovec M, Sehnal F (2002) Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella. J Biol Chem 277:22639–22647

    Article  PubMed  CAS  Google Scholar 

  • Žurovec M, Yang C, Kodrík D, Sehnal F (1998b) Identification of a novel type of silk protein and regulation of its expression. J Biol Chem 273:15423–15428

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Preparation of this chapter was supported by the research programme Z50070568 of the Academy of Sciences and by grant P502/10/2382 from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Sehnal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sehnal, F. (2011). Biotechnologies Based on Silk. In: Vilcinskas, A. (eds) Insect Biotechnology. Biologically-Inspired Systems, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9641-8_11

Download citation

Publish with us

Policies and ethics