Skip to main content

Controlling Eutrophication in the Baltic Sea and the Kattegat

  • Chapter
  • First Online:
Eutrophication: causes, consequences and control

Abstract

The basic aim of this work was to motivate a realistic strategy to combat marine eutrophication in north-eastern Europe. Data from the Kattegat (located between Sweden and Denmark) were used to illustrate basic principles and processes related to nutrient fluxes. We have applied a process-based mass-balance model, CoastMab, to the Kattegat and quantified the nutrient fluxes to, within, and from the system. Several scenarios aiming to decrease eutrophication in the Kattegat have been modeled. By far the most dominating nutrient fluxes to the bioproductive surface-water layer in the Kattegat come from the south (from the Baltic Proper), which should be evident just by comparing the catchment area for the Baltic Sea, including the Baltic States, parts of Russia, Belarus and Germany, Poland, Finland, and Sweden in relation to the relatively small catchment area draining directly into the Kattegat (from SW Sweden and parts of Denmark). The dominating deep-water fluxes come from the north (from the Skagerrak). The strategy that one should ask for should concur with some evident practical constraints, e.g., it is not realistic to reduce all anthropogenic P or N discharges. For countries where major investments in nutrient reductions have already been made, it will become increasingly expensive to reduce the remaining tons. In the “optimal” scenario discussed in this work, about 10,000 t year–1 of P is being reduced and also N reductions that would lower the N concentration in the Baltic Proper by 10%. The cost for this “optimal” strategy was estimated at 200–420 million euro year–1 given that the focus will be on the most cost-effective P reductions connected to the most polluted estuaries and coastal areas. To achieve cost-effectiveness, one can assume that most of this would go to upgrading urban sewage treatment in the Baltic States, Poland, and other former East Bloc countries. The costs to reduce 15,016 t year–1 of P and 133,170 t year–1 of N according to the HELCOM strategy (agreed upon by the Baltic Sea states in November 2007) would be 3,100 million euro year–1. That is, 2,680–2,900 million euro year–1 higher than the “optimal” strategy advocated in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • BACC (2008) Assessment of climate change for the Baltic Sea Basin. Springer, Heidelberg, 474 p

    Google Scholar 

  • BALTEX (2006) Baltex Phase II 2003–2012. Science Framework and Implementation Strategy. International BALTEX Secretariat Publication, No. 34, GKSS, Geestacht, p 92

    Google Scholar 

  • Beach Erosion Board (1972) Waves in inland reservoirs. Technical Memoir 132. Beach Erosion Corps of Engineers, Washington, DC

    Google Scholar 

  • Bergström S, Carlsson B (1993) Hydrology of the Baltic basin. SMHI Rep Hydrol 7:32

    Google Scholar 

  • Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23:280–287

    Google Scholar 

  • Boesch DF, Carstensen J, Paerl H, Skjoldal R, Voss M (2008) Eutrophication of the Seas along Sweden’s West Coast. Naturvårdsverket, Report 5898, Stockholm, 78 p

    Google Scholar 

  • Bloesch J, Burns NM (1980) A critical review of sedimentation trap technique. Schweiz Z Hydrol 42:15–55

    Google Scholar 

  • Bloesch J, Uehlinger U (1986) Horizontal sedimentation differences in a eutrophic Swiss lake. Limnol Oceanogr 31:1094–1109

    Article  CAS  Google Scholar 

  • Bryhn AC (2009) Sustainable phosphorus loadings from effective and cost-effective phosphorus management around the Baltic Sea. PLoS ONE 4:5417

    Article  Google Scholar 

  • Carstensen J, Conley DJ, Andersen JH, Ærtebjerg G (2006) Coastal eutrophication and trend reversal: A Danish case study. Limnol Oceanogr 51:398–408

    Article  Google Scholar 

  • Christiansen C, Gertz F, Laima MJC, Lund-Hansen LC, Vang T, Jürgensen C (1997) Nutrient (P, N) dynamics in the southwestern Kattegat, Scandinavia: sedimentation and resuspension effects. Environ Geol 29:66–77

    Article  CAS  Google Scholar 

  • Dillon PJ, Rigler FH (1974) The phosphorus-chlorophyll relationship in lakes. Limnol Oceanogr 19:767–773

    Article  CAS  Google Scholar 

  • Dodds WK (2003) Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. J North Am Benthol Soc 22:171–181

    Article  Google Scholar 

  • Eilola K, Sahlberg J (2006) Model assessment of the predicted environmental consequences for OSPAR problem areas following nutrient reductions. SMHI, Reports Oceanography No. 83

    Google Scholar 

  • Evans MS, Arts MT, Robarts RD, et al (1996) Algal productivity, algal biomass, and zooplankton biomass in a phosphorus-rich, saline lake: deviations from regression model predictions. Can J Fish Aquat Sci 53:1048–1060

    Article  Google Scholar 

  • Gren IM, Elofsson K (2008) Costs and benefits from nutrient reductions to the Baltic Sea. Swedish EPA Report 5877, Stockholm, 67 p

    Google Scholar 

  • Håkanson L (1977) The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can J Earth Sci 14:397–412

    Article  Google Scholar 

  • Håkanson L (1982) Lake bottom dynamics and morphometry – the dynamic ratio. Water Resour Res 18:1444–1450

    Article  Google Scholar 

  • Håkanson L (1999) Water pollution – methods and criteria to rank, model and remediate chemical threats to aquatic ecosystems. Backhuys, Leiden, 299 p

    Google Scholar 

  • Håkanson L (2000) Modelling radiocesium in lakes and coastal areas – new approaches for ecosystem modellers. A textbook with Internet support. Kluwer Academic, Dordrecht, 215 p

    Google Scholar 

  • Håkanson L (2004) Lakes – form and function. Blackburn Press, Caldwell, NJ, 201 p

    Google Scholar 

  • Håkanson L (2006) Suspended particulate matter in lakes, rivers and marine systems. Blackburn Press, New Jersey, 331 p

    Google Scholar 

  • Håkanson L (2009) Modeling nutrient fluxes to, within and from the Kattegat to find an optimal, cost-efficient Swedish remedial strategy. Uppsala University, Geotryckeriet, Uppsala, 122 p

    Google Scholar 

  • Håkanson L, Blenckner T, Malmaeus JM, et al (2004) New, general methods to define the depth separating surface water from deep water, outflow and internal loading for mass-balance models for lakes. Ecol Modell 175:339–352

    Article  Google Scholar 

  • Håkanson L, Boulion V (2002) The Lake Foodweb – modelling predation and abiotic/biotic interactions. Backhuys, Leiden, 344 p

    Google Scholar 

  • Håkanson L, Bryhn AC (2008a) Eutrophication in the Baltic Sea – present situation, nutrient transport processes, remedial strategies. Springer, Berlin, Heidelberg, 261 p

    Book  Google Scholar 

  • Håkanson L, Bryhn AC (2008b) Modeling the foodweb in coastal areas – a case study of Ringkobing Fjord, Denmark. Ecol Res 23:421–444

    Article  Google Scholar 

  • Håkanson L, Bryhn AC (2008c) Tools and criteria for sustainable coastal ecosystem management – with examples from the Baltic Sea and other aquatic systems. Springer, Heidelberg, 300 p

    Google Scholar 

  • Håkanson L, Bryhn AC, Hytteborn JK, et al (2007) On the issue of limiting nutrient and predictions of cyanobacteria in aquatic systems. Sci Total Environ 379:89–108

    Article  Google Scholar 

  • Håkanson L, Eklund JM (2007) A dynamic mass-balance model for phosphorus fluxes and concentrations in coastal areas. Ecol Res 22:296–320

    Article  Google Scholar 

  • Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer, Berlin, 316 p

    Book  Google Scholar 

  • Håkanson L, Kulinski I, Kvarnäs H, et al (1984) Water dynamics and bottom dynamics in coastal areas (in Swedish, Vattendynamik och bottendynamik i kustzonen). SNV PM 1905, Solna, 228 p

    Google Scholar 

  • Håkanson L, Peters RH (1995) Predictive limnology. Methods for predictive modelling. SPB Academic, Amsterdam, 464 p

    Google Scholar 

  • Håkansson B (2007) Swedish National Report on Eutrophication Status in the Kattegat and the Skagerrak. OSPAR Assessment 2007. SHMI, Oceanography No. 36, 54 p

    Google Scholar 

  • HELCOM (1986) Water balance of the Baltic Sea. Baltic Sea Environment Proceedings 16. HELCOM, Helsinki

    Google Scholar 

  • HELCOM (1990) Second periodic assessment of the state of the marine environment of the Baltic Sea, 1984–1988; Background document. Baltic Sea Environment Proceedings 35B. HELCOM, Helsinki, 432 p

    Google Scholar 

  • HELCOM (2000) Baltic Sea Environment Proceedings 100. HELCOM, Helsinki

    Google Scholar 

  • HELCOM (2007a) Towards a Baltic Sea unaffected by eutrophication. HELCOM, Helsinki, 35 p

    Google Scholar 

  • HELCOM (2007b) HELCOM Baltic Sea Action Plan – HELCOM Ministerial Meeting, Krakow, Poland, 15 Nov 2007, 101 pp

    Google Scholar 

  • HELCOM, NEFCO (2007) Economic analysis of the BSAP with focus on eutrophication. HELCOM, Helsinki, 112 p

    Google Scholar 

  • Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst 19:89–110

    Article  Google Scholar 

  • Howarth RW, Marino R, Lane J, Cole JJ, et al (1988a) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol Oceanogr 33:669–687

    Article  CAS  Google Scholar 

  • Howarth RW, Marino R, Cole JJ, et al (1988b) Nitrogen fixation in freshwater, estuarine, and marine ecosystems: 2. Biogeochemical controls. Limnol Oceanogr 33:688–701

    Article  CAS  Google Scholar 

  • Huang B, Hong H (1999) Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters. Mar Poll Bull 39:205–211

    Article  CAS  Google Scholar 

  • Jacobsen TS (1980) The Belt Project. Sea water exchange of the Baltic-measurements and methods. Report from the National Agency of Environmental Protection, Denmark, 106 pp

    Google Scholar 

  • Jönsson A (2005) Model studies of surface waves and sediment resuspension in the Baltic Sea. Dr thesis No 332, Linköping Univ, Linköping

    Google Scholar 

  • Köhler J (2006) Detergent phosphates: an EU policy assessment. J Bus Chem 3:15–30

    Google Scholar 

  • Lehtimäki J, Sivonen K, Luukainen R, Niemelä SI, et al (1997) The effects of incubation time, temperature, light, salinity, and phosphorus on growth and hepatotoxin production by Nodularia strains. Arch Hydrobiol 130:269–282

    Google Scholar 

  • Lemmin U, Imboden DM (1987) Dynamics of bottom currents in a small lake. Limnol Oceanogr 32:62–75

    Article  Google Scholar 

  • Mann KH (1982) Ecology of coastal waters. A systems approach. Blackwell, Oxford, 322 p

    Google Scholar 

  • Marino R, Chan F, Howarth RW, Pace ML, Likens GE, et al (2006) Ecological constraints on planktonic nitrogen fixation in saline estuaries. I. Nitrogen and trophical controls. Mar Ecol Prog Ser 309:25–39

    Article  CAS  Google Scholar 

  • Meijer ML, Dehaan MW, Breukelaar AW, Buiteveld H, et al (1990) Is reduction of benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes?. Hydrobiologia 200–201:303–315

    Article  Google Scholar 

  • Newton A, Icely JD, Falcao M, et al (2003) Evaluation of eutrophication in the Ria Formosa coastal lagoon, Portugal. Cont Shelf Res 23:1945–1961

    Article  Google Scholar 

  • Nissling A, Johansson U, Jacobsson M (2006) Effects of salinity and temperature conditions on the reproductive success of turbot (Scophthalmus maximus) in the Baltic Sea. Fish Res 80:230–238

    Article  Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, 154 p

    Google Scholar 

  • Omstedt A, Axell LB (2003) Modeling the variations of salinity and temperature in the large Gulfs of the Baltic Sea. Cont Shelf Res 23:265–294

    Article  Google Scholar 

  • Omstedt A, Elken J, Lehmann A, Piechura J, et al (2004) Knowledge of the Baltic Sea Physics gained during the BALTEX and related programmes. Prog Oceanogr 63:1–28

    Article  Google Scholar 

  • Omstedt A, Rutgersson A (2000) Closing the water and heat cycles of the Baltic Sea. Meteorol Z 9:57–64

    Google Scholar 

  • Rahm L, Jönsson A, Wulff F (2000) Nitrogen fixation in the Baltic proper: an empirical study. J Mar Syst 25:239–248

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–222

    CAS  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA, et al (1963) The influence of organisms on the composition of sea-water. In: Hill, N (ed) The Sea 2. Interscience, New York, NY, pp 26–77

    Google Scholar 

  • Remane A (1934) Die Brackwasserfauna. Verh Detsch Zool Ges 36:34–74

    Google Scholar 

  • Riley ET, Prepas EE (1985) Comparison of the phosphorus-chlorophyll relationships in mixed and stratified lakes. Can J Fish Aquat Sci 42:831–835

    Article  CAS  Google Scholar 

  • Rubio VC, Sánchez-Vázques FJ, Madrid JA, et al (2005) Effects of salinity on food intake and macronutrient selection in European sea bass. Physiol Behav 85:333–339

    Article  CAS  Google Scholar 

  • Rutgersson A, Omstedt A, Räisänen J, et al (2002) Net precipitation over the Baltic Sea during present and future climate conditions. Clim Res 22:27–39

    Article  Google Scholar 

  • Samuelsson M (1996) Interannual salinity variations in the Baltic Sea during the period 1954–1990. Cont Shelf Res 16:1463–1477

    Article  Google Scholar 

  • Savchuk OP (2005) Resolving the Baltic Sea into seven subbasins: N and P budgets for 1991–1999. J Mar Syst 56:1–15

    Article  Google Scholar 

  • Savchuk OP, Wulff F (1999) Modeling the Baltic Sea eutrophication in a decision support system. Ambio 2–3:141–148

    Google Scholar 

  • Savchuk OP, Wulff F, Hille S, Humborg C, Pollehne F, et al (2008) The Baltic Sea a century ago – a reconstruction from model simulations, verified by observations. J Mar Syst 74:485–494

    Article  Google Scholar 

  • Schernewski G, Neumann T (2005) The trophic state of the Baltic Sea a century ago: a model simulation study. J Mar Syst 53:109–124

    Article  Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262

    Article  CAS  Google Scholar 

  • Schindler DW (1978) Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnol Oceanogr 23:478–486

    Article  Google Scholar 

  • Seitzinger SP, Sanders RW (1999) Atmospheric Inputs of Dissolved Organic Nitrogen Stimulate Estuarine Bacteria and Phytoplankton. Limnol Oceanogr 44:721–730

    Article  CAS  Google Scholar 

  • Sellner KG (1997) Physiology, ecology and toxic properties of marine cyanobacteria blooms. Limnol Oceanogr 42:1089–1104

    Article  Google Scholar 

  • Smith VH (1979) Nutrient dependence of primary productivity in lakes. Limnol Oceanogr 24:1051–1064

    Article  Google Scholar 

  • Smith VH (1985) Predictive models for the biomass of blue-green algae in lakes. Water Resour Bull 21:433–439

    Article  CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res Int 10:126–139

    Article  CAS  Google Scholar 

  • Smith VH, Joye SB, Howarth RW, et al (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51:351–355

    Article  CAS  Google Scholar 

  • Stigebrandt A (2001) Physical oceanography of the Baltic Sea. In: Wulff L, Rahm, L, Larsson, P(eds) A Systems analysis of the Baltic Sea. Springer, Berlin, pp 19–74

    Chapter  Google Scholar 

  • Swedish EPA (2008) Ingen övergödning (No over-enrichment), revised version. Swedish EPA report 5840, Stockholm, 123 p

    Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 688:525–531

    Article  Google Scholar 

  • Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkänen H, Savchuk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff F (2007) Internal Ecosystem Feedbacks Enhance Nitrogen-fixing Cyanobacteria Blooms and Complicate Management in the Baltic Sea. Ambio 36:186–193

    Article  CAS  Google Scholar 

  • Vichi M, Ruardij P, Baretta JW (2004) Link or sink: a modelling interpretation of the open Baltic biogeochemistry. Biogeosci Discuss 1:79–100

    Article  CAS  Google Scholar 

  • Vidal M, Duarte CM, Agusti S (1999) Dissolved organic nitrogen and phosphorus pools and fluxes in the Central Atlantic Ocean. Limnol Oceanogr 44:106–115

    Article  CAS  Google Scholar 

  • Vollenweider RA (1968) The scientific basis of lake eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors, Technical Report. OECD, Paris, 159 p

    Google Scholar 

  • Wallin M, Håkanson L, Persson J (1992) Nutrient loading models for coastal waters -especially for the assessment of environmental effects of marine fish farms. Nordiske Seminar - og Arbejdsrapporter 502. Nordic Council of Ministers, Copenhagen, 207 p

    Google Scholar 

  • Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int Rev Gesamten Hydrobiol 82:169–184

    Article  Google Scholar 

  • Wasmund N, Voss M, Lochte K, et al (2001) Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar Ecol Prog Ser 214:1–14

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology. Academic, London, 1006 p

    Google Scholar 

  • Winsor P, Rodhe J, Omstedt A, et al (2001) Baltic Sea ocean climate: an analysis of 100 yr of hydrographic data with focus on the freshwater budget. Clim Res 18:5–15

    Article  Google Scholar 

Download references

Acknowledgments

Ingemar Cato, SGU, has been very helpful and freely supplied sediment data on nutrient concentrations. Pia Andersson, SHMI, has also been most helpful in supplying the necessary water chemical data, data on tributary discharges, and atmospheric nitrogen deposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas C. Bryhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Håkanson, L., Bryhn, A.C. (2010). Controlling Eutrophication in the Baltic Sea and the Kattegat. In: Ansari, A., Singh Gill, S., Lanza, G., Rast, W. (eds) Eutrophication: causes, consequences and control. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9625-8_2

Download citation

Publish with us

Policies and ethics