Skip to main content

Modeling Multi-point Correlations in Wall-Bounded Turbulence

  • Conference paper
  • 3757 Accesses

Part of the book series: ERCOFTAC Series ((ERCO,volume 14))

Abstract

In large eddy simulation (LES), one is generally not interested in the large-scale or filtered quantities computed in the simulation, but rather the corresponding characteristics of the underlying real turbulence. One approach to reconstructing the statistics of turbulence from the filtered statistics of an LES is to employ models for the small separation multi-point velocity correlations, which can be parameterized using the statistics of the LES. This has been employed to good effect in isotropic turbulence, but to employ this technique for near-wall turbulent shear flows requires a model for the anisotropy and inhomogeneity in the correlations. Here we explore the use of multi-point correlation models in LES modeling and reconstruction, and propose a anisotropy/inhomogeneity model for the two-point second-order correlation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adrian, R.: On the role of conditional averages in turbulence theory. In: Zakin, J., Patterson, G. (eds.) Turbulence in Liquids, pp. 323–332. Science Press, Princeton (1977)

    Google Scholar 

  2. Adrian, R.: Stochastic estimation of sub-grid scale motions. Appl. Mech. Rev. 43(5), 214–218 (1990)

    Article  Google Scholar 

  3. Adrian, R., Jones, B., Chung, M., Hassan, Y., Nithianandan, C., Tung, A.: Approximation of turbulent conditional averages by stochastic estimation. Phys. Fluids 1(6), 992–998 (1989)

    Article  Google Scholar 

  4. Arad, I., L’vov, V.S., Procaccia, I.: Correlation functions in isotropic and anisotropic turbulence: the role of the symmetry group. Phys. Rev. E 59(6), 6753–6765 (1999). doi:10.1103/PhysRevE.59.6753

    Article  MathSciNet  Google Scholar 

  5. Bhattacharya, A., Kassinos, S.C., Moser, R.D.: Representing anisotropy of two-point second-order turbulence velocity correlations using structure tensors. Phys. Fluids 20(10) (2008). doi:10.1063/1.3005818

  6. Biferale, L., Lohse, D., Mazzitelli, I., Toschi, F.: Probing structures in channel flow through SO(3) and SO(2) decomposition. J. Fluid Mech. 452, 39–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cambon, C., Rubinstein, R.: Anisotropic developments for homogeneous shear flows. Phys. Fluids 18(8) (2006)

    Google Scholar 

  8. Chang, H., Moser, R.D.: An inertial range model for the three-point third-order velocity correlation. Phys. Fluids 19, 105,111 (2007)

    Google Scholar 

  9. Del Álamo, J., Jiménez, J., Zandonade, P., Moser, R.: Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135–144 (2004)

    Article  MATH  Google Scholar 

  10. Frisch, U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  11. Kassinos, S., Reynolds, W., Rogers, M.: One-point turbulence structure tensors. J. Fluid Mech. 428, 213–248 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. USSR 30, 301 (1941)

    Google Scholar 

  13. Langford, J.A., Moser, R.D.: Optimal LES formulations for isotropic turbulence. J. Fluid Mech. 398, 321–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Langford, J.A., Moser, R.D.: Breakdown of continuity in large-eddy simulation. Phys. Fluids 11, 943–945 (2001)

    Google Scholar 

  15. Misra, A., Pullin, D.I.: A vortex-based subgrid model for large-eddy simulation. Phys. Fluids 9, 2443–2454 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moser, R.D., Zandonade, P.S., Vedula, P., Malaya, N., Chang, H., Bhattacharya, A., Haselbacher, A.: Theoretically based optimal large-eddy simulation. Phys. Fluids 21(10) (2009)

    Google Scholar 

  17. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  18. Sirovich, L., Smith, L., Yakhot, V.: Energy spectrum of homogeneous and isotropic turbulence in the far dissipation range. Phys. Rev. Lett. 72, 344–347 (1994)

    Article  Google Scholar 

  19. Vedula, P., Moser, R.D., Zandonade, P.S.: On the validity of quasi-normal approximation in turbulent channel flow. Phys. Fluids 17, 055,106 (2005)

    Article  Google Scholar 

  20. Voelkl, T., Pullin, D.I., Chan, D.C.: A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids 13, 1810–1825 (2000)

    Article  MathSciNet  Google Scholar 

  21. Volker, S., Venugopal, P., Moser, R.D.: Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. Fluids 14, 3675 (2002)

    Article  Google Scholar 

  22. Zandonade, P.S., Langford, J.A., Moser, R.D.: Finite volume optimal large-eddy simulation of isotropic turbulence. Phys. Fluids 16, 2255–2271 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the National Science Foundation, the Air Force Office of Scientific Research and the National Aeronautics and Space Administration are gratefully acknowledged. In addition, we would like to thank Profs. Javier Jimenez and Ron Adrian for many helpful discussions of near-wall turbulence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Moser, R.D., Bhattacharya, A., Malaya, N. (2011). Modeling Multi-point Correlations in Wall-Bounded Turbulence. In: Stanislas, M., Jimenez, J., Marusic, I. (eds) Progress in Wall Turbulence: Understanding and Modeling. ERCOFTAC Series, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9603-6_4

Download citation

Publish with us

Policies and ethics