Skip to main content

Kimberlites, Supercontinents and Deep Earth Dynamics: Mid-Proterozoic India in Rodinia

  • Chapter
  • First Online:
Topics in Igneous Petrology

Abstract

Diamonds and the mineral inclusions in diamonds demonstrate ­unequivocally that the kimberlites and lamproites (kimberlite clan rocks-KCRs) that transport these exotic assemblages to Earth’s surface from subcratonic lithospheres (∼200 km), the transition zone (410–660 km), and the lower mantle (>660 km), must have a thermal source to induce the eruptive process that is deeper than the deepest samples. The diamonds are old (2.8–3.2 Ga) but the KCRs are young. A synchronously global diamond eruptive event occurred in the Mesozoic at ∼100 Ma, with eruptions of huge volumes of basalt in large igneous provinces (LIPS), fragmentation and disruption of Pangaea, superchron behavior of Earth’s geomagnetic field, and superplumes from the D″ core–mantle boundary layer at 2,900 km. There was another significant diamond eruptive episode in the mid-Proterozoic at ∼1.1 Ga in the supercontinent of Rodinia. This event is examined in the context of the Mesozoic paradigm of LIPS, superplumes and superchrons. The conclusion is positive, and is particularly fitting, given the nature of this dedicated volume, and the fact that the largest number (>100) of known diamondiferous KCRs are in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albach S, Shirey SB, Stachel T, Creighton S, Muehlenbachs K, Harris JW (2009) Diamond ­formation episodes at the southern margin of the Kaapvaal Craton: Re-Os systematics of ­sulfide inclusions from the Jagersfontein Mine. Contrib Mineral Petrol 157:525–540

    Article  Google Scholar 

  • Allsopp HL, Burger AJ, Van Zyl C (1967) A minimum age for the Premier kimberlite pipe yielded by biotite Rb-Sr measurements, and related galena isotopic data. Earth Planet Sci Lett 3:161–166

    Article  Google Scholar 

  • Anderson D (1989) Theory of the Earth. Blackwell, Boston

    Google Scholar 

  • Anderson D (1994) Superplumes or supercontinents? Geology 22:39–42

    Article  Google Scholar 

  • Anderson D (2001) Top-down tectonics. Science 293:2016–2018

    Article  Google Scholar 

  • Babu TM (1998) Diamonds in India. Geological Society of India, Bangalore, 331p

    Google Scholar 

  • Bebout GE, Scholl DW, Kirby SH, Platt JP (1996) Subduction top to bottom. American Geophysical Union, Monograph 96, Washington, DC

    Google Scholar 

  • Boyd FR, Gurney JJ, Richardson SH (1985) Evidence for a thick 150–200 km Archean lithosphere from diamond inclusion thermobarometry. Nature 315:387–389

    Article  Google Scholar 

  • Bundy FP, Bassett WA, Weathers MS, Hemley RJ, Mao HK, Goncharov AF (1996) The pressure–temperature phase and transformation diagram for carbon: updated through 1994. Carbon 34:141–153

    Article  Google Scholar 

  • Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume generation zones at the ­margins of large low velocity provinces on the core-mantle boundary. Earth Planet Sci Lett 265:49–60

    Article  Google Scholar 

  • Chetty TRK (2000) Superplume and the Indian diamond corridor. In: Raval U (ed) Plate tectonics abstract vol. National Geophysical Research Institute, Hyderabad, pp 6–8

    Google Scholar 

  • Courtillot V, Olson P (2007) Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events. Earth Planet Sci Lett 260:495–504

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock JM (2003) Three distinct types of hot spots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Article  Google Scholar 

  • Dalziel IWD (1997) Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geol Soc Am Bull 109:16–42

    Article  Google Scholar 

  • De Wit MJ et al (1992) Formation of an Archean crust. Nature 357:553–562

    Article  Google Scholar 

  • Deines P (1980) The carbon isotopic composition of diamonds: relationship to shape, color, occurrence, and vapor composition. Geochem Cosmochim Acta 44:943–961

    Article  Google Scholar 

  • Ernst RE, Buchan KL (2001) Mantle plumes: their identification through time, Geological Society of America Special Paper. GSA, Boulder

    Google Scholar 

  • Ernst RE, Wingate MTD, Buchan KL, Li ZX (2008) Global record of 1600–700 Ma large igneous provinces (LIPS): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precam Res 160:159–178

    Article  Google Scholar 

  • Fei Y, Bertka M, Mysen BO (1999) Mantle petrology: field observations and high pressure experimentation. A tribute to FR Boyd, The Geochemical Society Special Publications 6. The Geochemical Society University, Houston

    Google Scholar 

  • Foulger GR, Natland JH, Presnall DC, Anderson DL (2005) Plates, plumes and paradigms, Geological Society of America Special Paper 388. GSA, Boulder

    Google Scholar 

  • Griffiths RW, Campbell IH (1991) Interaction of mantle plume heads with the Earth’s surface and onset of small scale convection. J Geophys Res 96:18295–18310

    Article  Google Scholar 

  • Gurnis M, Wysession ME, Knittle E, Buffett BA (1998) The core–mantle boundary, vol 28, American Geophysical Union, Geodynamic series. AGU, Washington, DC

    Google Scholar 

  • Haggerty SE (1986) Diamond genesis in a multiply-constrained model. Nature 320:34–38

    Article  Google Scholar 

  • Haggerty SE (1994) Superkimberlites: a geodynamic diamond window to the Earth’s core. Earth Planet Sci Lett 122:57–69

    Article  Google Scholar 

  • Haggerty SE (1999a) A diamond trilogy: superplumes, supercontinents and supernovae. Science 285:851–860

    Article  Google Scholar 

  • Haggerty SE (1999b) Diamond formation and kimberlite-clan magmatism in cratonic settings. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation – a tribute to FR Boyd, The Geochemical Society, Special Publications 6. The Geochemical Society University, Houston

    Google Scholar 

  • Haggerty SE, Birkett T (2004) Geological setting and chemistry of kimberlite clan rocks in the Dharwar Craton, India. Lithos 76:535–549

    Article  Google Scholar 

  • Haggerty SE, Sautter V (1990) Ultra-deep (>300 km), ultramafic, upper mantle xenoliths. Science 248:993–996

    Article  Google Scholar 

  • Hanson RE et al (2004) Coeval large-scale magmatism in the Kalahari and Laurentian Cratons during Rodinia assembly. Science 304:1126–1129

    Article  Google Scholar 

  • Harland BW, Armstrong RL, Cox AV, Lorraine EG, Smith A, Smith DG (1989) A geologic time scale. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Heaman LM, Kjarsgaard RA, Creaser RA (2003) The timing of kimberlite magmatism in North America: Implications for global kimberlite genesis and diamond exploration. Lithos 71:153–184

    Article  Google Scholar 

  • Hergt JM, Peate DW, Hawkesworth CJ (1991) The petrogenesis of Mesezoic Gondwana low-Ti flood basalts. Earth Planet Sci Lett 105:134–148

    Article  Google Scholar 

  • Jaques AL et al (1984) The diamond-bearing ultra-potassic (lamproitic) rocks of the West Kimberley region, Western Australia. In: Kornprobst J (ed) Kimberlites and related rocks. Dev Petrol 11A:225–254. Elsevier, Amsterdam

    Google Scholar 

  • Kumar A, Padmakumara VM, Dayal AM, Murthy DSN, Gopalan K (1993) Rb-Sr ages of Proterozoic kimberlites of India: evidence for contempoareous emplacement. Precam Res 62:227–232

    Article  Google Scholar 

  • Kumar A, Heaman LM, Manikyamba C (2007) Mesoproterozoic kimberlites in India: a possible link to 1.1 Ga global magmatism. Precam Res 154:192–204

    Article  Google Scholar 

  • Larson RL (1991a) Latest pulse of Earth: evidence for a Mid-Cretaceous superplume. Geology 19:963–966

    Article  Google Scholar 

  • Larson RL (1991b) Geological consequences of superplumes. Geology 19:963–966

    Article  Google Scholar 

  • Larson RL, Olson P (1991) Mantle plumes control magnetic reversal frequency. Earth Planet Sci Lett 107:437–447

    Article  Google Scholar 

  • Levinson AA, Gurney JJ, Kirkley MB (1992) Diamond sources and production: past, present and future. Gems Gemol Winter:234–253

    Google Scholar 

  • Li ZX et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precam Res 160:179–210

    Article  Google Scholar 

  • Mahoney JJ, Coffin MF (1997) Large igneous provinces. Continental, oceanic, and planetary flood volcanism, vol 100, Geophysical monograph. American Geophysical Union, Washington, DC

    Google Scholar 

  • Manghnani MH, Yagi T (1998) Properties of earth and planetary materials at high pressure and temperature, vol 101, Geophysical monograph. American Geophysical Union, Washington, DC

    Google Scholar 

  • Maruyama S, Santoch M, Zhao D (2007) Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the core-mantle boundary. Precamb Res 11:7–37

    Google Scholar 

  • Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnet included in diamonds. Nature 318:553–555

    Article  Google Scholar 

  • Nixon PH (1987) Mantle xenoliths. Wiley, New York

    Google Scholar 

  • Ringwood AE, Kesson SE, Hibberson W, Ware N (1993) Origin of kimberlites and related magmas. Earth Planet Sci Lett 113:521–538

    Article  Google Scholar 

  • Rogers JJW, Santoch M (2003) Supercontinents in Earth history. Gondwana Res 6:357–368

    Article  Google Scholar 

  • Scott-Smith BH, Danchin RV, Harris Jw, Stracke, KJ (1984) Kimberlites from Ororooroo, South Australia. In: Kornbrobst J (ed) Kimberlites and related rocks. Dev Petrol 11A:121–142. Elsevier, Amsterdam

    Google Scholar 

  • Silver PG, Behn MD (2008) Intermittent plate tectonics? Science 319:85–88

    Article  Google Scholar 

  • Sparks RSJ et al (2006) Dynamical constraints on kimberlite volcanism. J Volc Geotherm Res 155:18–48

    Article  Google Scholar 

  • Stachel T (2001) Diamonds from the asthenosphere and the transition zone. Eur J Miner 13:883–892

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds – constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Tackley PJ, Stevenson DJ, Glatzmaer GA, Schubert G (1993) Effects of an endothermic phase transition at 670 km in a spherical model of convection in the Earth’s mantle. Nature 361:699–704

    Article  Google Scholar 

  • Tappert R, Foden J, Stachel T, Muehlenbachs K, Tappert M, Wills K (2009) Deep mantle diamonds from South Australia: a record of Pacific subduction at the Gondwanan margin. Geology 37:43–46

    Article  Google Scholar 

  • Torsvik TH (2003) The Rodinia jigsaw puzzle. Science 300:1379–1381

    Article  Google Scholar 

  • Torsvik TH, Smethurst MA, Burke K, Steinburger B (2006) Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys J Int 167:1447–1460

    Article  Google Scholar 

  • Torsvik TH, Steinburger B, Cocks LRM, Burke K (2008) Longitude: linking Earths ancient surface to its deep interior. Earth Planet Sci Lett 276:273–282

    Article  Google Scholar 

  • Wilson L, Head JW (2007) An integrated model of kimberlite ascent and eruption. Nature 447:53–57

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Gautam Sen for the invitation and opportunity to contribute to this volume; it is, indeed, an honor to acknowledge the contributions and scholarship of Professor Mihir K. Bose. Thanks are also extended to Professor Jyotisankar Ray, two reviewers, and to Trond Torvik for instructive comments. Funding from the NSF over many years, with support from the Fulbright Foundation, the Government of India, and industry, provided unprecedented opportunities to explore the original land of diamonds: Namaste India!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. Haggerty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Haggerty, S.E. (2011). Kimberlites, Supercontinents and Deep Earth Dynamics: Mid-Proterozoic India in Rodinia. In: Ray, J., Sen, G., Ghosh, B. (eds) Topics in Igneous Petrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9600-5_16

Download citation

Publish with us

Policies and ethics