Skip to main content
  • 468 Accesses

Abstract

The ongoing miniaturization of integrated circuits will reach its limits in the near future. Shrinking transistor sizes and power dissipation are the major barriers in the development of smaller and more powerful circuits. Reversible logic provides an alternative that may overcome many of these problems in the future. For low-power design, reversible logic offers significant advantages since zero power dissipation will only be possible if computation is reversible. Furthermore, quantum computation profits from enhancements in this area, because every quantum circuit inherently is reversible and thus requires reversible descriptions. However, since reversible logic is subject to certain restrictions (e.g. fanout and feedback are not directly allowed), the design of reversible circuits significantly differs from the design of traditional circuits. No continuous design flow exists so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Originally, Moore predicted a doubling every 12 months; ten years later he updated to 18 months.

  2. 2.

    CMOS is the abbreviation for Complementary Metal Oxide Semiconductor, the technology mainly used for today’s integrated circuits.

References

  1. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MATH  Google Scholar 

  2. R. Cuykendall, D.R. Andersen, Reversible optical computing circuits. Opt. Lett. 12(7), 542–544 (1987)

    Article  Google Scholar 

  3. B. Desoete, A. De Vos, A reversible carry-look-ahead adder using control gates. Integr. VLSI J. 33(1–2), 89–104 (2002)

    Article  MATH  Google Scholar 

  4. E.F. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21(3/4), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Gay, R. Nagarajan, N. Papanikolaou, QMC: A model checker for quantum systems, in Computer Aided Verification (2008), pp. 543–547

    Google Scholar 

  6. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Maslov, G.W. Dueck, D.M. Miller, Toffoli network synthesis with templates. IEEE Trans. CAD 24(6), 807–817 (2005)

    Google Scholar 

  8. R.C. Merkle, Reversible electronic logic using switches. Nanotechnology 4, 21–40 (1993)

    Article  Google Scholar 

  9. J.P. McGregor, R.B. Lee, Architectural enhancements for fast subword permutations with repetitions in cryptographic applications, in Int’l Conf. on Comp. Design (2001), pp. 453–461

    Google Scholar 

  10. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  11. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000)

    MATH  Google Scholar 

  12. M. Perkowski, J. Biamonte, M. Lukac, Test generation and fault localization for quantum circuits, in Int’l Symp. on Multi-Valued Logic (2005), pp. 62–68

    Google Scholar 

  13. A. Peres, Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)

    Article  MathSciNet  Google Scholar 

  14. I. Polian, T. Fiehn, B. Becker, J.P. Hayes, A family of logical fault models for reversible circuits, in Asian Test Symp. (2005), pp. 422–427

    Google Scholar 

  15. K.N. Patel, J.P. Hayes, I.L. Markov, Fault testing for reversible circuits. IEEE Trans. CAD 23(8), 1220–1230 (2004)

    Google Scholar 

  16. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Foundations of Computer Science (1994), pp. 124–134

    Google Scholar 

  17. Z. Shi, R.B. Lee, Bit permutation instructions for accelerating software cryptography, in Int’l Conf. on Application-Specific Systems, Architectures, and Processors (2000), pp. 138–148

    Google Scholar 

  18. V.V. Shende, A.K. Prasad, I.L. Markov, J.P. Hayes, Synthesis of reversible logic circuits. IEEE Trans. CAD 22(6), 710–722 (2003)

    Google Scholar 

  19. T. Toffoli, Reversible computing, in Automata, Languages and Programming, ed. by W. de Bakker, J. van Leeuwen (Springer, Berlin, 1980), p. 632. Technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

    Chapter  Google Scholar 

  20. H. Thapliyal, M.B. Srinivas, The need of DNA computing: reversible designs of adders and multipliers using fredkin gate, in SPIE (2005)

    Google Scholar 

  21. G.F. Viamontes, I.L. Markov, J.P. Hayes, Checking equivalence of quantum circuits and states, in Int’l Conf. on CAD (2007), pp. 69–74

    Google Scholar 

  22. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wille .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wille, R., Drechsler, R. (2010). Introduction. In: Towards a Design Flow for Reversible Logic. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9579-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9579-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9578-7

  • Online ISBN: 978-90-481-9579-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics