Skip to main content

Min-Max Duality and Shakedown Theorems in Hardening Plasticity

  • Conference paper
  • 466 Accesses

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 6))

Abstract

This paper gives a comprehensive presentation on shakedown theorems in perfect and in hardening plasticity. The extension of classical shakedown theorems for hardening materials is an interesting subject in plasticity. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models. The starting point is an extended static shakedown theorem for hardening plasticity. It leads by min-max duality to dual static and kinematic approaches to compute the safety coefficient with respect to shakedown. These approaches are discussed for common models of isotropic and of kinematic hardening. In particular, the kinematic approach leads to new results on the expressions of the safety coefficient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodovillé, G. and de Saxcé, G. (2001). Plasticity with nonlinear kinematic hardening: modelling and shakedown analysis by the bipotential approach. Eur. J. Mech. A/Solids, 20: 99–112.

    Article  MATH  Google Scholar 

  • Burland, I. and Roscoe, K. (1968). On the generalized stress/strain behaviour of wet clay. In Engineering Plasticity, Heyman Leckie eds. Cambridge Press.

    Google Scholar 

  • Corigliano, A., Maier, G., and Pycko, S. (1995). Dynamic shakedown analysis and bounds for elasto-plastic structures with non-associated internal variable constitutive laws. Int. J. Solids Structures, 32: 3145–3166.

    Article  MathSciNet  MATH  Google Scholar 

  • Corradi, L. and Maier, G. (1974). Dynamic non-shakedown theorem for elastic perfectly-plastic continua. J. Mech. Phys. Solids, 22: 401–413

    Article  ADS  MATH  Google Scholar 

  • Debordes, O. (1976). Dualité des théorèmes statique et cinématique sur la théorie de l’adaptation des milieux continus élasto-plastiques. C.R. Acad. Sc., 282: 535–537.

    MathSciNet  MATH  Google Scholar 

  • Debordes, O. and Nayroles, B. (1976). Sur la théorie et le calcul à l’adaptation des structures élasto-plastiques. J. Mécanique, 20: 1–54

    MathSciNet  Google Scholar 

  • Fuschi, P. (1999). Structural shakedown for elastic-plastic materials with hardening saturation surface. Int. J. Solids Structures, 36: 219–240

    Article  MATH  Google Scholar 

  • Halphen, B. and Nguyen, Q. (1975). Sur les matériaux standard généra-lisés. J. Mecanique, 14: 1–37.

    MathSciNet  Google Scholar 

  • Koiter, W. (1960). General problems for elastic-plastic solids. In Progress in Solid Mechanics, Sneddon & Hill eds., volume 4, pages 165–221. North Holland.

    MathSciNet  Google Scholar 

  • Konig, J. (1987). Shakedown of elastic-plastic structures. Elsevier, Amsterdam.

    Google Scholar 

  • Lade, P. (1977). Elastoplastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Structures, 13: 1019–1035.

    Article  MATH  Google Scholar 

  • Maier, G. (1972). A shake-down matrix theory allowing for workhardening and second order geometric effects. In Symp. Foundations of Plasticity, Warsaw, Sawzuk ed., pages 417–433, Warsaw.

    Google Scholar 

  • Maier, G. (2001). On some issues in shakedown analysis. J. Appl. Mech., 68: 799–808.

    Article  ADS  MATH  Google Scholar 

  • Mandel, J. (1976). Adaptation d’une structure plastique écrouissable. Mech. Res. Com, 3: 251–256.

    Article  MATH  Google Scholar 

  • Martin, J. (1975). Plasticity: fundamentals and general results. MIT Press, Cambridge.

    Google Scholar 

  • Nayroles, B. (1977). Tendances récentes et perspectives à moyen terme en élastoplasticité asymptotique des constructions. In Proceedings, Congrès Français de Mécanique, Grenoble, France,Grenoble.

    Google Scholar 

  • Nguyen, Q. (1976). Extension des théorèmes d’adaptation et d’unicité en écrouissage non linéaire. C.R. Acad. Sc., 282: 755–758.

    MATH  Google Scholar 

  • Nguyen, Q. (2000). Stability and Nonlinear Solid Mechanics. Wiley, Chichester.

    Google Scholar 

  • Polizzotto, C. (1982). A unified treatment of shakedown theory and related bounding techniques. Solid Mech. Arch., 7: 19–75.

    MATH  Google Scholar 

  • Polizzotto, C., Borino, G., Cademi, S., and Fuschi, P. (1991). Shakedown problems for mechanical models with internal variables. Fur. J. Mech. A/Solids, 10: 621–639.

    MATH  Google Scholar 

  • Ponter, A. and Chen, H. (2001). A minimum theorem for cyclic load in excess of shakedown with application to the evaluation of a ratchet limit. J. Mech. Phys. Solids, 20: 539–554.

    MathSciNet  MATH  Google Scholar 

  • Pycko, S. and Mroz, Z. (1992). Alternative approach to shakedown as a solution of min-max problem. Acta Mechanica, 93: 205–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar, R. (1970). Convex analysis. Princeton University Press, Prince-ton.

    MATH  Google Scholar 

  • Schofield, A. and Wroth, C. (1968). Critical state soil mechanics. McGraw-Hill, London.

    Google Scholar 

  • Suquet, P. (1981). Sur les équations de la plasticité: existence et régularité des solutions. J. Mecanique, 20: 3–40.

    MathSciNet  MATH  Google Scholar 

  • Weichert, D. and Maier, G. (2000). Inelastic analysis of structures under variable repeated loads. Kluwer, Dordrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Nguyen, Q.S. (2004). Min-Max Duality and Shakedown Theorems in Hardening Plasticity. In: Complementarity, Duality and Symmetry in Nonlinear Mechanics. Advances in Mechanics and Mathematics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9577-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9577-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7119-7

  • Online ISBN: 978-90-481-9577-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics