Skip to main content

Conservation Planning in a Changing Climate: Assessing the Impacts of Potential Range Shifts on a Reserve Network

  • Chapter
  • First Online:
Landscape-scale Conservation Planning

Abstract

As climates change over the coming century, many species will ­experience range shifts. Some species that currently inhabit protected areas will move out of those areas and others will move in. Drawing on model projections from previous studies, we assessed potential changes in the representation of trees, birds, ­mammals, and amphibians in the protected areas of the Northern Appalachian/Acadian ecoregion of North America. Six of 17 tree species were projected to ­experience a reduction in the areas suitable for growth in the region’s protected areas and 11 of the 17 were projected to gain representation. Seven of 14 bird species were projected to experience losses in representation of their suitable habitat and the other seven were projected to experience gains. Range-shift projections for mammals and amphibians indicated that the protected areas would likely experience 13% and 21% turnover in these species, respectively with roughly half of the species ­experiencing losses of suitable habitat in the reserves and half ­experiencing gains. Despite these potential changes, protected areas are still likely to be one of the best tools for protecting biodiversity in a changing climate. One of the major challenges for the coming decades will be to provide the connectivity that will facilitate movement out of, and into, protected areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan, J. D., Palmer, M., & Poff, N. L. (2005). Climate change and freshwater ecosystems. In T. E. Lovejoy & L. Hannah (Eds.), Climate change and biodiversity. New Haven, CT: Yale University Press.

    Google Scholar 

  • Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global Change Biology, 11, 1504–1513.

    Article  Google Scholar 

  • Battin, J., Wiley, M. W., Ruckelshaus, M. H., Palmer, R. N., Korb, E., Bartz, K. K., et al. (2007). Projected impacts of climate change on salmon habitat restoration. Proceedings of the National Academy of Sciences, 104, 6720–6725.

    Article  Google Scholar 

  • Beebee, T. J. C. (1995). Amphibian breeding and climate. Nature, 374, 219–220.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Brubaker, L. (1988). Vegetation history and anticipating future vegetation change. In J. K. Agee & D. R. Johnson (Eds.), Ecosystem management for parks and wilderness (pp. 41–61). Seattle, WA: University of Washington Press.

    Google Scholar 

  • Burkett, V., & Keusler, J. (2000). Climate change: Potential impacts and interactions in wetlands of the United States. Journal of the American Water Resources Association, 36, 313–320.

    Article  Google Scholar 

  • Carroll, C. (2007). Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and lynx in the Northern Appalachians. Conservation Biology, 21, 1092–1104.

    Article  Google Scholar 

  • Crick, H. Q. P., Dudley, C., Glue, D. E., & Thomson, D. L. (1997). UK birds are laying eggs earlier. Nature, 388, 526–526.

    Article  Google Scholar 

  • Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., et al. (2007). Random forests for classification in ecology. Ecology, 88, 2783–2792.

    Article  Google Scholar 

  • Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to quaternary climate change. Science, 292, 673–679.

    Article  Google Scholar 

  • Dunn, P. O., & Winkler, D. W. (1999). Climate change has affected the breeding date of tree swallows throughout North America. Proceedings of the Royal Society, London, 266, 2487–2490.

    Article  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel ­methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Franklin, J. F., & Lindenmayer, D. B. (2009). Importance of matrix habitats in maintaining ­biological diversity. Proceedings of the National Academy of Sciences, 106, 349–350.

    Article  Google Scholar 

  • Gibbs, J. P., & Breisch, A. R. (2001). Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conservation Biology, 15, 1175–1178.

    Article  Google Scholar 

  • Halpin, P. N. (1997). Global climate change and natural-area protection: Management responses and research directions. Ecological Applications, 7, 828–843.

    Article  Google Scholar 

  • Hannah, L., Midgley, G. F., Andelman, S., Araújo, M. B., Hughes, G., Martinez-Meyer, E., et al. (2007). Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 5, 131–138.

    Article  Google Scholar 

  • Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Scheffield, J., et al. (2006). Past and future changes in climate and hydrological indicators in the U.S northeast. Climate Dynamics, 28, 381–407.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D. B., Parmesan, C., Possingham, H. P., et al. (2008). Assisted colonization and rapid climate change. Science, 321, 345–346.

    Article  Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., et al. (Eds.). (2001). Climate change 2001: The scientific basis. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • IPCC. (2007a). Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • IPCC. (2007b). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Iverson, L. R., & Prasad, A. M. (1998). Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs, 68, 465–485.

    Article  Google Scholar 

  • Iverson, L. R., & Prasad, A. M. (2001). Potential changes in tree species richness and forest ­community types following climate change. Ecosystems, 4, 186–199.

    Article  Google Scholar 

  • Iverson, L., Prasad, A., & Matthews, S. (2008a). Modeling potential climate change impacts on the trees of the northeastern United States. Mitigation and Adaptation Strategies for Global Change, 13, 487–516.

    Article  Google Scholar 

  • Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008b). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254, 390–406.

    Article  Google Scholar 

  • Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006). Predicting climate-induced range shifts: Model differences and model reliability. Global Change Biology, 12, 1568–1584.

    Article  Google Scholar 

  • Lawler, J. J., Shafer, S. L., White, D., Kareiva, P., Maurer, E. P., Blaustein, A. R., et al. (2009). Projected climate-induced faunal change in the western hemisphere. Ecology, 90, 588–597.

    Article  Google Scholar 

  • Lawler, J. J., Tear, T. H., Pyke, C., Shaw, M. R., Gonzalez, P., Kareiva, P., et al. (2010). Resource management in a changing and uncertain climate. Frontiers in Ecology and the Environment, 8, 35–43.

    Article  Google Scholar 

  • Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243–253.

    Article  Google Scholar 

  • Matthews, S. N., O’Connor, R. J., Iverson, L. R., & Prasad, A. M. (2004). Atlas of climate change effects in 150 bird species of the eastern United States. Newtown Square, PA: USDA Forest Service, Northeastern Research Station.

    Google Scholar 

  • McKenzie, D., Gedalof, Z., Peterson, D. L., & Mote, P. (2004). Climatic change, wildfire, and conservation. Conservation Biology, 18, 890–902.

    Article  Google Scholar 

  • Mote, P. W. (2003). Trends in snow and water equivalent in the Pacific Northwest and their ­climatic causes. Geophysical Research Letters, 30, 1601–1604.

    Article  Google Scholar 

  • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., et al. (2000). Special report on emissions scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Noss, R. F. (2001). Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology, 15, 578–590.

    Article  Google Scholar 

  • Oppenheimer, M., O’Neill, B. C., Webster, M., & Agrawala, S. (2007). The limits of consensus. Science, 317, 1505–1506.

    Article  Google Scholar 

  • Parmesan, C. (1996). Climate and species’ range. Nature, 382, 765–766.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  Google Scholar 

  • Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579–583.

    Article  Google Scholar 

  • Pearsall, S. H., III. (2005). Managing for future change on the Albemarle Sound. In T. E. Lovejoy & L. Hannah (Eds.), Climate change and biodiversity (pp. 359–362). New Haven, CT: Yale University Press.

    Google Scholar 

  • Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the ­distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361–371.

    Article  Google Scholar 

  • Pearson, R. G., & Dawson, T. P. (2004). Bioclimate envelope models: What they detect and what they hide; response to Hampe (2004). Global Ecology and Biogeography, 13, 471–473.

    Article  Google Scholar 

  • Pearson, R. G., & Dawson, T. P. (2005). Long-distance plant dispersal and habitat fragmentation: Identifying conservation targets for spatial landscape planning under climate change. Biological Conservation, 123, 389–401.

    Article  Google Scholar 

  • Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L., McClean, C., et al. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711.

    Article  Google Scholar 

  • Poff, N. L., Brinson, M. M., & Day, J. W. J. (2002). Aquatic ecosystems and global climate change: Potential impacts on inland freshwater and coastal wetland ecosystems in the United States. Arlington, VA: Pew Center on Global Climate Change.

    Google Scholar 

  • Pounds, J. A., Bustamante, M. R., Coloma, L. A., Consuegra, J. A., Fogden, M. P. L., Foster, P. N., et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439, 161–167.

    Article  Google Scholar 

  • Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree ­techniques: Bagging and random forests for ecological prediction. Ecosystems, 9, 181–199.

    Article  Google Scholar 

  • Pyke, C. R., & Fischer, D. T. (2005). Selection of bioclimatically representative biological reserve systems under climate change. Biological Conservation, 121, 429–441.

    Article  Google Scholar 

  • Rodenhouse, N., Matthews, S., McFarland, K., Lambert, J., Iverson, L., Prasad, A., et al. (2008). Potential effects of climate change on birds of the Northeast. Mitigation and Adaptation Strategies for Global Change, 13, 517–540.

    Article  Google Scholar 

  • Root, T. L. (1992). Temperature mediated range changes in wintering passerine birds. Bulletin of the Ecological Society of America, 73, 327.

    Google Scholar 

  • Root, T. L. (1993). Effects of global climate change on North American birds and their ­communities. In P. M. Kareiva, J. G. Kingsolver, & R. B. Huey (Eds.), Biotic interactions and global change (pp. 280–292). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Roy, D. B., & Sparks, T. H. (2000). Phenology of British butterflies and climate change. Global Change Biology, 6, 407–416.

    Article  Google Scholar 

  • Saether, B. E., Engen, S., Lande, R., Arcese, P., & Smith, J. N. M. (2000). Estimating the time to extinction in an island population of song sparrows. Proceedings of the Royal Society of London – Series B: Biological Sciences, 267, 621–626.

    Article  Google Scholar 

  • Saxon, E., Baker, B., Hargrove, W., Hoffman, F., & Zganjar, C. (2005). Mapping environments at risk under different global climate change scenarios. Ecology Letters, 8, 53–60.

    Article  Google Scholar 

  • Scott, J. M., Griffith, B., Adamcik, R. S., Ashe, D. M., Czech, B., Fischman, R. L., et al. (2008). National Wildlife Refuges. In S. H. Julius & J. M. West (Eds.), Preliminary review of ­adaptation options for climate-sensitive ecosystems and resources. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research (pp. 8-1–8-95). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Shafer, C. L. (1999). National park and reserve planning to protect biological diversity: Some basic elements. Landscape and Urban Planning, 44, 123–153.

    Article  Google Scholar 

  • Stefanescu, C., Peñuelas, J., & Filella, I. (2003). Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biology, 9, 1494–1506.

    Article  Google Scholar 

  • Thomas, C. D., & Lennon, J. J. (1999). Birds extend their ranges northwards. Nature, 399, 213.

    Article  Google Scholar 

  • Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245–8250.

    Article  Google Scholar 

  • Trombulak, S. C., & Wolfson, R. (2004). Twentieth-century climate change in New England and New York, USA. Geophysical Research Letters, 31, L19202. doi:10.1029/2004GL020574.

    Article  Google Scholar 

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943.

    Article  Google Scholar 

  • Williams, P. H., Hannah, L., Andelman, S. J., Midgley, G. F., Araújo, M. B., Hughes, G., et al. (2005). Planning for climate change: Identifying minimum-dispersal corridors for the Cape Proteaceae. Conservation Biology, 19, 1063–1074.

    Article  Google Scholar 

  • Winter, T. C. (2000). The vulnerability of wetlands to climate change: A hydrologic landscape perspective. Journal of the American Water Resources Association, 36, 305–311.

    Article  Google Scholar 

  • Woolmer, G., Trombulak, S. C., Ray, J. C., Doran, P. J., Anderson, M. G., Baldwin, R. F., et al. (2008). Rescaling the human footprint: A tool for conservation planning at an ecoregional scale. Landscape and Urban Planning, 87, 42–53.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Evan Girvetz for assistance with the climate change analyses. We acknowledge the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. We thank L. Iverson, S. Matthews, and M. Peters of the U.S. Forest Service for access to their tree and bird spatial data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Lawler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lawler, J.J., Hepinstall-Cymerman, J. (2010). Conservation Planning in a Changing Climate: Assessing the Impacts of Potential Range Shifts on a Reserve Network. In: Trombulak, S., Baldwin, R. (eds) Landscape-scale Conservation Planning. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9575-6_15

Download citation

Publish with us

Policies and ethics