Skip to main content

The Diversity of Deep-Sea Mussels and Their Bacterial Symbioses

  • Chapter
  • First Online:
The Vent and Seep Biota

Part of the book series: Topics in Geobiology ((TGBI,volume 33))

Abstract

Deep-sea chemosynthesis-based ecosystems are inhabited by diverse groups of metazoans. Although remote from the euphotic layer, and thus from photosynthetic primary producers, these ecosystems harbour high animal biomasses, orders of ­magnitude above biomasses usually reported in the deep-sea (Sibuet and Olu 1998; Van Dover 2000). The key to this high productivity is chemoautotrophy, a type of metabolism by which many prokaryotes fix inorganic carbon into organic molecules using the chemical energy resulting from the oxidation of reduced compounds ­present in their environment (Madigan et al. 2002). Indeed, hydrothermal vents and cold seeps are characterized by the occurrence of fluid emissions originating from the subsurface, which bring reduced compounds into mixing with bottom oxygenated seawater (reviewed in Von Damm 1995; Sibuet and Olu 1998; Van Dover 2000; Tunnicliffe et al. 2003). To summarize, hydrothermal vents occur mostly on oceanic ridges, where bottom seawater circulates into the newly formed crust. The high geothermic gradient linked with the presence of a magma chamber few kilometres below the ridge causes water to heat and to be enriched in reduced compounds ­(metals, sulphide…). Heated fluids, displaying lower densities, then reach back the seafloor along cracks and are emitted. Fluid interaction with cold seawater provokes the precipitation of dissolved metals and minerals in the form of complexes with sulphide, yielding typical (and often spectacular) chimneys. At cold seeps, which are mostly located along continental margins, fluids originate from the subsurface. The thermogenic or biogenic reduction of buried organic matter produces methane and other hydrocarbons which seep to the seafloor, and processes such as the anaerobic oxidation of methane coupled with sulphate-reduction can account for local ­enrichments in sulphide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony C (1982) The biochemistry of methylotrophs. Academic, London

    Google Scholar 

  • Arellano SM, Young CM (2009) Spawning development and the duration of larval life in a ­deep-sea cold-seep mussel. Biol Bull 216:149–162

    Google Scholar 

  • Baco AR, Smith CR (2003) High species richness in deep-sea-chemoautotrophic whale skeleton communities. Mar Ecol Prog Ser 260:109–114

    Google Scholar 

  • Barry JP, Buck KR, Kochevar RK, Nelson DC, Fujiwara Y Goffredi, SK HJ (2002) Methane-based symbiosis in a mussel Bathymodiolus platifrons from cold seeps in Sagami Bay, Japan. Invertebr Biol 121:47–54

    Google Scholar 

  • Belkin S, Nelson DC, Jannash HW (1986) Symbiotic assimilation of CO2 in two hydrothermal vent animals the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol Bull 170:110–121

    Google Scholar 

  • Bergquist DC, Fleckenstein C, Szalai EB, Knisel J, Fisher CR (2004) Environment drives physiological variability in the cold seep mussel Bathymodiolus childressi. Limnol Oceanogr 49:706–715

    Google Scholar 

  • Borowski C, Giere O, Krieger J, Amann R, Dubilier N (2002) New aspects of the symbiosis in the provannid snail Ifremeria nautilei from the North Fiji Nack Arc Basin. Cah Biol Mar 43:321–324

    Google Scholar 

  • Boutet I, Tanguy A, Le Guen D, Piccino P, Hourdez S, Legendre P, Jollivet D (2009) Global depression in gene expression as a response to rapid thermal changes in vent mussels. Proc R Soc Lond B 276:3071–3079

    Google Scholar 

  • Cary SC, Fisher CR, Felbeck H (1988) Mussel growth supported by methane as sole carbon and energy source. Science 240:78–80

    Google Scholar 

  • Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from ­sulphide-rich habitats. Nature 302:58–61

    Google Scholar 

  • Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–347

    Google Scholar 

  • Childress JJ (1988) Biology and chemistry of a deep-sea hydrothermal vent on the Galapagos Rift; the Rose Garden in 1985 an introduction. Deep Sea Res 35:1677–1680

    Google Scholar 

  • Childress JJ, Fisher CR, Brooks JM, Kennicutt MC II, Bidigare R, Anderson AE (1986) A methanotrophic marine molluscan (Bivalvia Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308

    Google Scholar 

  • Childress JJ, Fisher CR, Favuzzi JA, Arp AJ, Oros DR (1993) The role of a zinc-based serum-borne sulphide-binding component in the uptake and transport of dissolved sulphide by the chemoautotrophic symbiont containing clam Calyptogena elongata. J Exp Biol 179:131–158

    Google Scholar 

  • Colaco A, Dehairs F, Desbruyères D, Le Bris N, Sarradin PM (2002) d13C signature of hydrothermal mussels is related with the end-member fluid concentration of H2S and CH4 at the ­Mid-Atlantic Ridge hydrothermal vent fields. Cah Biol Mar 43:259–262

    Google Scholar 

  • Comtet T, Jollivet D, Khripounoff A, Segonzac M (2000) Molecular and morphological identification of settlement-stage vent mussel larvae Bathymodiolus azoricus (Bivalvia Mytilidae) ­preserved in situ at active vent fields on the Mid-Atlantic Ridge. Limnol Oceanogr 45:1655–1661

    Google Scholar 

  • Craddock C, Hoeh WR, Gustafson RG, Lutz RA, Hashimoto J, Vrijenhoek RJ (1995) Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold water methane/sulfide seeps. Mar Biol 121:477–485

    Google Scholar 

  • Cuvelier D, Sarrazin J, Colaço A, Copley J, Desbruyères D, Glover AG, Tyler P, Santos RS (2009) Distribution and spatial variation of hydrothermal faunal assemblages at Lucky Strike (Mid-Atlantic Ridge) revealed by high-resolution video image analysis. Deep Sea Res I 56:2026–2040

    Google Scholar 

  • Dando PR, Southward AJ, Southward EC (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc R Soc Lond B 227:227–247

    Google Scholar 

  • Dattagupta S, Bergquist DC, Szalai EB, Macko SA, Fisher CR (2004) Tissue carbon nitrogen and sulfur stable isotope turnover in transplanted Bathymodiolus childressii mussels: relation to growth and physiological condition. Limnol Oceanogr 49:1144–1151

    Google Scholar 

  • DeChaine EG, Bates AE, Shank T, Cavanaugh CM (2006) Off-axis symbiosis found: characterization and biogeography of bacterial symbionts of Bathymodiolus mussels from Lost City hydrothermal fields. Environ Microbiol 8:1902–1912

    Google Scholar 

  • Dell RK (1987) Mollusca of the family Mytilidae (Bivalvia) associated with organic remains from deep water off New Zealand with revisions of the genera Adipicola Dautzenberg 1927 and Idasola Iredale 1915. Natl Mus N Z Rec 3:17–36

    Google Scholar 

  • Desbruyères D, Segonzac M, Bright M (2006) Handbook of deep-sea hydrothermal vent fauna, Denisia 18. Linz Museum, Austria, p 544

    Google Scholar 

  • Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938

    Google Scholar 

  • Distel D, Lane D, Olsen G, Giovannoni S, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts - Analysis of phylogeny and specificity by 16S ribosomal RNA sequences. J Bacteriol 170:2506–2510

    Google Scholar 

  • Distel DL, Lee HKW, Cavanaugh CM (1995) Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci USA 92:9598–9602

    Google Scholar 

  • Distel D, Baco A, Chuang E, Morrill W, Cavanaugh C, Smith C (2000) Do mussels take wooden steps to deep-sea vents? Nature 403:725–726

    Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, Oxford

    Google Scholar 

  • Dubilier N, Windoffer R, Giere O (1998) Ultrastructure and stable carbon isotope composition of the hydrothermal vent mussel Bathymodiolus brevior and B. sp affinis brevior from the North Fiji Basin western Pacific. Mar Ecol Prog Ser 165:187–193

    Google Scholar 

  • Dubilier N, Blazejak A, Ruehland C (2005) Symbioses between bacteria and gutless marine ­oligochaetes. In: Overmann J (ed) Molecular basis of symbiosis. Springer, Berlin, pp 251–275

    Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Google Scholar 

  • Duperron S, Nadalig T, Caprais JC, Sibuet M, Fiala-Médioni A, Amann R, Dubilier N (2005) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71:1694–1700

    Google Scholar 

  • Duperron S, Bergin C, Zielinski F, McKiness ZP, DeChaine EG, Cavanaugh CM, Dubilier N (2006) A dual symbiosis shared by two mussel species Bathymodiolus azoricus and B. puteoserpentis (Bivalvia: Mytilidae) from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1441–1447

    Google Scholar 

  • Duperron S, Sibuet M, MacGregor BJ, Kuypers MM, Fisher CR, Dubilier N (2007) Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussels (Bivalvia: Mytilidae) from cold seeps in the Gulf of Mexico. Environ Microbiol 9:1423–1438

    Google Scholar 

  • Duperron S, Laurent MCZ, Gaill F, Gros O (2008a) Sulphur-oxidizing extracellular bacteria in the gills of Mytilidae associated with wood falls. FEMS Microbiol Ecol 63:338–349

    Google Scholar 

  • Duperron S, Halary S, Lorion J, Sibuet M, Gaill F (2008b) Unexpected co occurrence of 6 bacterial symbionts in the gill of the cold seep mussel Idas sp (Bivalvia:Mytilidae). Environ Microbiol 10:433–445

    Google Scholar 

  • Duperron S, Lorion J, Samadi S, Gros O, Gaill F (2009) Symbioses between deep-sea mussels (Mytilidae: Bathymodiolinae) and chemosynthetic bacteria: diversity, function and evolution. C R Biol 332:298–310

    Google Scholar 

  • Elsaied HE, Kaneko R, Naganuma T (2006) Molecular characterization of a deep-sea methanotrophic mussel symbiont that carries a RuBisCO gene. Mar Biotechnol 8:511–520

    Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291

    Google Scholar 

  • Fiala-Médioni A (1984) Mise en évidence par microscopie électronique à transmission de l’abondance de bactéries symbiotiques dans la branchie de Mollusques bivalves de sources hydrothermales profondes. C R Acad Sci 298:487–492

    Google Scholar 

  • Fiala-Médioni A, Métivier C, Herry A, Le Pennec M (1986) Ultrastructure of the gill filament of an hydrothermal vent mytilid Bathymodiolus sp. Mar Biol 92:65–72

    Google Scholar 

  • Fiala-Médioni A, Michalski JC, Jollès J, Alonso C, Montreuil J (1994) Lysosomic and lysozyme activities in the gill of bivalves from deep hydrothermal vents. C R Acad Sci 317:239–244

    Google Scholar 

  • Fiala-Médioni A, McKiness ZP, Dando P, Boulègue J, Mariotti A, Alayse-Danet AM, Robinson JJ, Cavanaugh CM (2002) Ultrastructural biochemical and immunological characterisation of two populations of he Mytilid mussel Bathymodiolus azoricus from the Mid Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–613

    Google Scholar 

  • Fisher CR (1995) Towards an appreciation of hydrothermal-vent animals: their environment physiological ecology and tissue stable isotope values. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geochemical interactions. American Geophysical Union, Washington, DC, pp 297–316

    Google Scholar 

  • Fisher CR, Childress JJ (1992) Organic carbon transfer from methanotrophic symbionts to the host hydrocarbon-seep mussel. Symbiosis 12:221–235

    Google Scholar 

  • Fisher CR, Childress JJ, Oremland RS, Bidigare RR (1987) The importance of methane and thiosulphate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol 96:59–71

    Google Scholar 

  • Fisher CR, Childress JJ, Arp AJ, Brooks JM, Distel DL, Favuzzi JA, Felbeck H, Hessler R, Johnson KS, Kennicutt MC, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988) Microhabitat variation in the hydrothermal vent mussel Bathymodiolus thermophilus at the Rose Garden vent on the Galapagos Rift. Deep Sea Res 35:1769–1791

    Google Scholar 

  • Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA Jr (1993) The ­co-occurrence of methanotrophic and chemoautotrophic sulfur oxidizing bacterial symbionts in a deep-sea mussel. Mar Ecol 14:277–289

    Google Scholar 

  • Flores JF, Fisher CR, Carney SL, Green BN, Freytag JK, Schaeffer SW, Royer WEJ (2005) Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proc Natl Acad Sci USA 102:2713–2718

    Google Scholar 

  • Fujiwara Y, Takai K, Uematsu K, Tsuchida S, Hunt JC, Hashimoto J (2000) Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distribution. Mar Ecol Prog Ser 208:147–155

    Google Scholar 

  • Fujiwara Y, Kawato M, Yamamoto T, Yamanaka T, Sato Okoshi W, Noda S et al (2007) Three-year investigations into sperm whale-fall ecosystems in Japan. Mar Ecol 28:219–232

    Google Scholar 

  • Génio L, Johnson SB, Vrijenhoek RC, Cunha MR, Tyler PA, Kiel S, Little CTS (2008) New record of “Bathymodiolusmauritanicus Cosel 2002 from the Gulf of Cadiz (NE Atlantic) mud volcanoes. J Shellfish Res 27:53–61

    Google Scholar 

  • Geret F, Rousse N, Riso R, Sarradin PM, Cosson R (1998) Metal compartmentalization and metallothionein isoforms in mussels from the Mid-Atlantic Ridge; preliminary approach to the fluid-organism relationship. Cah Biol Mar 39:291–293

    Google Scholar 

  • Goffredi SK, Wilpiszeski R, Lee RW, Orphan VJ (2008) Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments form a deep-sea whale fall in Monterey Canyon California. ISME J 2:204–220

    Google Scholar 

  • Gros O, Gaill F (2007) Extracellular bacterial association in gills of “wood mussels”. Cah Biol Mar 48:103–109

    Google Scholar 

  • Gros O, Guibert J, Gaill F (2007) Gill-symbiosis in Mytilidae associated with wood-fall environments. Zoomorphology 126:163–172

    Google Scholar 

  • Gustafson R, Turner R, Lutz R, Vrijenhoek R (1998) A new genus and five new species of mussels (Bivavlia Mytilidae) from deep-sea sulfide/hydrocarbon seeps in the Gulf of Mexico. Malacologia 40:63–112

    Google Scholar 

  • Halary S, Riou V, Gaill F, Boudier T, Duperron S (2008) 3D FISH for the quantification of methane- and sulphur-oxidising endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. ISME J 2:284–292

    Google Scholar 

  • Hashimoto J, Ohta S, Fujikura K, Miura T (1995) Microdistribution pattern and biogeography of the hydrothermal vent communities of the Minami-Ensei Knoll in the mid-Okinawa trough Western Pacific. Deep Sea Res I 42:577–598

    Google Scholar 

  • Henry MS, Childress JJ, Figueroa D (2008) Metabolic rates and thermal tolerances of chemoautotrophic symbioses from Lau Basin hydrothermal vents and their implication for species distribution. Deep Sea Res I 55:679–695

    Google Scholar 

  • Iwasaki H, Kyuno A, Shintaki M, Fujita Y, Fujiwara Y, Fujikura K, Hashimoto J, Martins LD, Gebruk A, Miyazaki JI (2006) Evolutionary relationships of deep-sea mussels inferred by mitochondrial DNA sequences. Mar Biol 149:1111–1122

    Google Scholar 

  • Jahnke LL, Summons RE, Dowling LM, Zahiralis KD (1995) Identification of methanotrophic lipid biomarkers in cold seep mussel gills: chemical and isotopic analysis. Appl Environ Microbiol 61:576–582

    Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725

    Google Scholar 

  • Jeffreys JG (1876) New and peculiar Mollusca of the Pecten Mytilus and Arca families procured in the ‘Valorous’ expedition. Ann Mag Nat Hist 4:424–436

    Google Scholar 

  • Johnson KS, Beehler CL, Sakamoto-Arnold CM, Childress JJ (1986) In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science 231:1139–1141

    Google Scholar 

  • Johnson KS, Childress JJ, Beehler CL, Sakamoto CM (1994) Biogeochemistry of hydrothermal vent mussel communities – the deep-sea analog to the intertidal zone. Deep Sea Res I 41:993–1011

    Google Scholar 

  • Jones WJ, Won YJ, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC (2006) Evolution of habitat use by deep-sea mussels. Mar Biol 148:841–851

    Google Scholar 

  • Kadar E, Bettencourt R, Costa V, Serrão Santos R, Lobo-da-Cunha A, Dando PR (2005) Experimentally induced endosymbiont loss and re-acquirement in the hydrothermal vent bivalve Bathymodiolus azoricus. J Exp Mar Biol Ecol 318:99–110

    Google Scholar 

  • Kamenev GM, Nadtochy VA, Kuznetsov AP (2001) Conchocoele bisecta (Conrad, 1849) (Bivalvia: Thyasiridae) from cold-water methane-rich areas of the sea of Okhotsk. Veliger 44:84–94

    Google Scholar 

  • Kenk VC, Wilson BR (1985) A new mussel (Bivlavia: Mytilidae) from hydrothermal vents in the Galapagos Rift zone. Malacologia 26:253–271

    Google Scholar 

  • Kerk D, Gee A, Dewhirst FE, Drum AS, Elston RA (1992) Phylogenetic placement of “Nuclear Inclusion X (NIX)” into the gamma subclass of proteobacteria on the basis of 16S ribosomal RNA sequence comparisons. Syst Appl Microbiol 15:191–196

    Google Scholar 

  • Kiel S, Goedert JL (2006) A wood-fall association from late Eocene deep-water sediments of Washington State, USA. Palaios 21:548–556

    Google Scholar 

  • Kochevar RE, Childress JJ, Fisher CR, Minnich E (1992) The methane mussel: roles of symbiont and host in the metabolic utilization of methane. Mar Biol 112:389–401

    Google Scholar 

  • Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, Matsuyama K, Takishita K, Kawato M, Uematsu K, Fujiwara Y, Sato T, Kato C, Kitagawa M, Kato I, Maruyama T (2007) Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam Calyptogena okutanii. Curr Biol 17:881–886

    Google Scholar 

  • Lajhta K, Michener RH (1994) Stable isotopes in ecology and environmental sciences. Oxford University Press, Oxford

    Google Scholar 

  • Laurent MCZ, Gros O, Brulport JP, Gaill F, Le Bris N (2009) Sunken wood habitat for thiotrophic symbiosis in mangrove swamps. Mar Environ Res 67:83–88

    Google Scholar 

  • Le Bris N, Duperron S (2010) Chemosynthetic communities and biogeochemical energy pathways along the MAR: the case of Bathymodiolus azoricus. In: Rona PA, Devey CW, Dyment J, Murton BJ (eds): Diversity of hydrothermal systems on slow spreading ocean ridges. Geophysical Monograph Series, American Geophysical Union 188:350

    Google Scholar 

  • Le Bris N, Rodier P, Sarradin PM, Le Gall C (2006a) Is temperature a good proxy for sulfide in hydrothermal vent habitats? Cah Biol Mar 47:465–470

    Google Scholar 

  • Le Bris N, Govenar B, Le Gall C, Fisher CR (2006b) Variability of physico-chemical conditions in 9°50N EPR diffuse flow vent habitats. Mar Chem 98:167–182

    Google Scholar 

  • Le Pennec M, Beninger PG (2000) Reproductive characteristics and strategies of reducing-system bivalves. Comp Biochem Physiol A 126:1–16

    Google Scholar 

  • Lee RW, Childress JJ (1994) Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic symbionts. Appl Environ Microbiol 60:1852–1858

    Google Scholar 

  • Lee RW, Robinson JJ, Cavanaugh CM (1999) Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. J Exp Biol 202:289–300

    Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Ann Rev Microbiol 49:399–426

    Google Scholar 

  • Little CTS, Vrijenhoek RC (2003) Are hydrothermal vent animals living fossils? Trends Ecol Evol 18:582–588

    Google Scholar 

  • Lorion J, Duperron S, Gros O, Cruaud C, Couloux A, Samadi S (2009) Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proc R Soc Lond B 276:177–185

    Google Scholar 

  • Lutz RA, Jablonski D, Rhoads DC, Turner R (1980) Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos rift. Mar Biol 57:127–133

    Google Scholar 

  • Lutz RA, Jablonski D, Turner R (1984) Larval development and dispersal at deep-sea hydrothermal vents. Science 226:1451–1454

    Google Scholar 

  • Maas PAY, O’Mullan GD, Lutz RA, Vrijenhoek RC (1999) Genetic and morphometric characterization of mussels (Bivalvia: Mytilidae) from Mid-Atlantic hydrothermal vents. Biol Bull 196:265–272

    Google Scholar 

  • MacDonald IR, Reilly JF II, Guinasso NL Jr, Brooks JM, Carney RS, Bryant WA, Bright TJ (1990) Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248:1096–1099

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2002) Brock biology of microorganisms. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  • Martins I, Colaço A, Dando PR, Martins I, Desbruyères D, Sarradin PM, Marques JC, Serrao Santos R (2008) Size-dependant variations on the nutritional pathway of Bathymodiolus azoricus demonstrated by a C-flux model. Ecol Model 217:59–71

    Google Scholar 

  • McKiness ZP, Cavanaugh CM (2005) The ubiquitous mussel: Bathymodiolus aff brevior symbiosis at the Central Indian Ridge hydrothermal vents. Mar Ecol Prog Ser 295:183–190

    Google Scholar 

  • McKiness ZP, McMullin ER, Fisher CR, Cavanaugh CM (2005) A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents. Mar Biol 148:109–116

    Google Scholar 

  • Miyazaki JI, Shintaku M, Kyuno A, Fujiwara Y, Hashimoto J, Iwasaki H (2004) Phylogenetic relationships of deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae). Mar Biol 144:527–535

    Google Scholar 

  • Moraga D, Jollivet D, Denis F (1994) Genetic differentiation across the western Pacific populations of the hydrothermal vent bivalve Bathymodiolus spp and the eastern Pacific (13°N) population of Bathymodiolus thermophilus. Deep Sea Res I 41:1551–1567

    Google Scholar 

  • Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl DM (ed) Microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, FL, pp 125–167

    Google Scholar 

  • Nelson DC, Hagen KD, Edwards DB (1995) The gill symbiont of the hydrothermal vent mussel Bathymodiolus thermophilus is a psychrophilic chemoautotrophic sulfur bacterium. Mar Biol 121:487–495

    Google Scholar 

  • Nix ER, Fisher CR, Vodenichar JS, Scott KM (1995) Physiological ecology of a mussel with methanotrophic endosymbionts at three hydrocarbon seep sites in the Gulf of Mexico. Mar Biol 122:605–617

    Google Scholar 

  • Okutani T, Fujiwara Y, Fujikura K, Miyake H, Kawato M (2003) A mass aggregation of the mussel Adipicola pacifica (Bivalvia:Mytilidae) on submerged whale bones. Venus 63:61–64

    Google Scholar 

  • Olu K, Sibuet M, Hermeignies F, Foucher J-P, Fiala-Médioni A (1996) Spatial distribution of diverse cold seep communities living on various diapiric structures of the southern Barbados prism. Prog Oceanogr 38:347–376

    Google Scholar 

  • Olu-LeRoy K, von Cosel R, Hourdez S, Jollivet D (2007a) Amphi-Atlantic cold-seep Bathymodiolus species complexes across the equatorial belt. Deep Sea Res 54:1890–1911

    Google Scholar 

  • Olu-LeRoy K, Caprais JC, Fifis A, Fabri MC, Galéron J, Budzinski H, Le Menach K, Khripounoff A, Ondreas H, Sibuet M (2007b) Cold seep assemblages on a giant pockmark off West Africa: spatial patterns and environmental control. Mar Ecol 28:1–16

    Google Scholar 

  • Page H, Fiala-Médioni A, Fisher C, Childress J (1991) Experimental evidence for filter-feeding by the hydrothermal vent mussel Bathymodiolus thermophilus. Deep Sea Res I 38:1455–1461

    Google Scholar 

  • Pailleret M, Haga T, Petit P, Privé-Gill C, Saedlou N, Gaill F, Zbinden M (2007) Sunken woods from the Vanuatu islands: identification of wood substrates and preliminary description of associated fauna. Mar Ecol 27:1–9

    Google Scholar 

  • Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC (1998) Cospeciation of chemoautotrophic ­bacteria and deep sea clams. Proc Natl Acad Sci USA 95:9962–9966

    Google Scholar 

  • Pelorce J, Poutiers JM (2009) Une nouvelle espèce de Bathymodiolinae (Mollusca Bivalvia Mytilidae) associée à des os de baleine coulés en Méditerranée. Zoosystema 31:975–985

    Google Scholar 

  • Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433

    Google Scholar 

  • Pile AJ, Young CM (1999) Plankton availability and retention efficiencies of cold-seep symbiotic mussels. Limnol Oceanogr 44:1833–1839

    Google Scholar 

  • Pimenov NV, Kalyuzhnaya MG, Khmelenina VN, Mityushina LL, Trotsenko YA (2002) Utilization of methane and carbon dioxide by symbiotrophic bacteria in gills of Mytilidae (Bathymodiolus) from the Rainbow and Logatchev hydrothermal fields on the Mid-Atlantic Ridge. Microbiology 71:587–594

    Google Scholar 

  • Powell MA, Somero GN (1986) Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull 171:274–290

    Google Scholar 

  • Rau G, Hedges J (1979) C-13 depletion in a hydrothermal vent mussel – Suggestion of a chemo-synthetic food source. Science 203:648–649

    Google Scholar 

  • Raulfs EC, Macko SA, Van Dover CL (2004) Tissue and symbiont condition of mussels (Bathymodiolus thermophilus) exposed to varying levels of hydrothermal activity. J Mar Biol Assoc UK 84:229–234

    Google Scholar 

  • Riou V, Halary S, Duperron S, Bouillon S, Elskens M, Bettencourt R, Santos RS, Dehairs F, Colaço A (2008) Influence of CH4 and H2S availability on symbiont distribution carbon assimilation and transfer in the dual symbiotic vent mussel Bathymodiolus azoricus. Biogeosciences 5:1681–1691

    Google Scholar 

  • Robinson JJ, Stein JL, Cavanaugh CM (1998a) Cloning and sequencing of a form II Ribulose-15-bisphosphate carboxylase/oxygénase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 180:1596–1599

    Google Scholar 

  • Robinson JJ, Polz MF, Fiala-Médioni A, Cavanaugh CM (1998b) Physiological and immunological evidence for two distinct C1-utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia:Mytilidae) a dual endosymbiotic mussel from the Mid-Atlantic Ridge. Mar Biol 132:625–633

    Google Scholar 

  • Rousse N, Boulègue J, Cosson R, Fiala-Médioni A (1998) Bioaccumulation of metal within the hydrothermal mytilidae Bathymodiolus sp from the Mid-Atlantic Ridge. Oceanol Acta 21:597–607

    Google Scholar 

  • Salerno JL, Macko SA, Hallam SJ, Bright M, Won Y, McKiness ZP, Van Dover CL (2005) Characterization of symbiont populations in life-history stages of mussels from chemosynthetic environments. Biol Bull 208:145–155

    Google Scholar 

  • Samadi S, Quéméré E, Lorion J, Tillier A, von Cosel R, Lopez P, Cruad C, Couloux A, Boisselier Dubayle MC (2007) Molecular phylogeny in mytilids supports the wooden steps to deep-sea vents hypothesis. C R Acad Sci 330:446–456

    Google Scholar 

  • Sarradin PM, Caprais JC, Riso R, Kerouel R, Aminot A (1999) Chemical environment of the hydrothermal mussel communities in the Lucky Strike and Menez Gwen vent fields Mid Atlantic Ridge. Cah Biol Mar 40:93–104

    Google Scholar 

  • Sarrazin J, Walter C, Sarradin PM, Brind’amour A, Desbruyères D, Briand P, Fabri MC, Van Gaever S, Vanreusel A, Bachraty C, Thiébaut E (2006) Community structure and temperature dynamics within a mussel assemblage on the southern East Pacific Rise. Cah Biol Mar 47:483–490

    Google Scholar 

  • Schmaljohann R, Faber E, Whiticar MJ, Dando PR (1990) Co-existence of methane- and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Mar Ecol Prog Ser 61:119–124

    Google Scholar 

  • Schöne BR, Giere O (2005) Growth increment and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk Bathymodiolus brevior from the North Fiji Basin Pacific Ocean. Deep Sea Res I 52:1896–1910

    Google Scholar 

  • Scott KM, Fisher CR (1995) Physiological ecology of sulfide metabolism in hydrothermal vent and cold seep vesicomyid clams and vestimentiferan tubeworms. Am Zool 35:102–111

    Google Scholar 

  • Shillito B, Jollivet D, Sarradin PM, Rodier P, Lallier FH, Desbruyères D, Gaill F (2001) Temperature resistance of Hesiolyra bergi a polychaetous annelid living on vent smoker walls. Mar Ecol Prog Ser 216:141–149

    Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography biodiversity and fluid dependence of deep sea cold seep communities at active and passive margins. Deep Sea Res II 45:517–567

    Google Scholar 

  • Smith CR, Maybaum HL, Baco AR, Pope RH, Carpenter SD, Yager PL, Macko SA, Deming JW (1998) Sediment community structure around a whale skeleton in the deep Northeast Pacific: macrofaunal microbial and bioturbation effects. Deep Sea Res II 45:335–364

    Google Scholar 

  • Smith PJ, McVeagh SM, Won Y, Vrijenhoek RC (2004) Genetic heterogeneity among New Zealand species of hydrothermal vent mussels (Mytilidae: Bathymodiolus). Mar Biol 144:537

    Google Scholar 

  • Southward EC (2008) The morphology of bacterial symbioses in the gills of mussels of the genera Adipicola and Idas (Bivalvia: Mytilidae). J Shellfish Res 27:139–146

    Google Scholar 

  • Spiridonova EM, Kuznetsov BB, Pimenov NV, Tourova TP (2006) Phylogenetic characterization of endosymbionts of the hydrothermal vents mussel Bathymodiolus azoricus by analysis of the 16S rRNA cbbL and pmoA genes. Microbiology 75:798–806

    Google Scholar 

  • Stewart FJ, Cavanaugh CM (2006) Bacterial endosymbioses in Solemya (Mollusca:Bivalvia) - model systems for studies of symbiont-host adaptation. Antonie Leeuwenhoek 90:343–360

    Google Scholar 

  • Stewart FJ, Newton LG, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol 13:439–448

    Google Scholar 

  • Taylor JD, Glover E (2006) Lucinidae (Bivalvia) – the most diverse group of chemosymbioic molluscs. Zool J Linn Soc 148:421–438

    Google Scholar 

  • Trask JL, Van Dover CL (1999) Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolus sp) from the Lucky Strike hydrothermal vent field Mid-Atlantic Ridge. Limnol Oceanogr 44:334–343

    Google Scholar 

  • Treude T, Smith CR, Wenzhöfer F, Carney E, Bernardino AF, Hannides AK, Krüger M, Boetius A (2009) Biogeochemistry of a deep-sea whale fall: sulfate reduction sulfide efflux and methanogenesis. Mar Ecol Prog Ser 382:1–21

    Google Scholar 

  • Tunnicliffe V, Juniper SK, Sibuet M (2003) Reducing environments of the deep-sea floor. In: Tyler PA (ed) Ecosystems of the world: the deep-sea. Elsevier, Amsterdam, The Netherlands, pp 81–110

    Google Scholar 

  • Tunnicliffe V, Davies KTA, Butterfield DA, Embley RW, Rose JM, Chadwick WW (2009) Survival of mussels in extremely acidic waters on a submarine volcano. Nat Geosci 2:344–348

    Google Scholar 

  • Tyler PA, Young CM (2003) Dispersal at hydrothermal vents: a summary of recent progress. Hydrobiologia 503:9–19

    Google Scholar 

  • Tyler PA, Young CM, Dolan E, Arellano SM, Brooke SD, Baker M (2007) Gametogenic periodicity in the chemosynthetic cold-seep mussel “Bathymodiolus childressi”. Mar Biol 150:829–840

    Google Scholar 

  • Tyler PA, Marsh L, Baco-Taylor A, Smith CR (2009) Protandric hermaphroditism in the whale-fall bivalve mollusc Idas washingtonia. Deep Sea Res II 56:1689–1699

    Google Scholar 

  • Vacelet J, Fiala-Médioni A, Fisher CR, Boury-Esnault N (1996) Symbiosis between methane-­oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Prog Ser 145:77–85

    Google Scholar 

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Van Dover SL, Aharon P, Bernhard JM et al (2003) Blake Ridge methane seeps: characterization of a soft-sediment chemosynthetically based ecosystem. Deep Sea Res I 50:281–300

    Google Scholar 

  • von Cosel R (2002) A new species of bathymodioline mussel (Mollusca Bivalvia Mytilidae) from Mauritania (West Africa) with comments on the genus Bathymodiolus Kenk & Wilson 1985. Zoosystema 24:259–271

    Google Scholar 

  • von Cosel R, Janssen R (2008) Bathymodioline mussels of the Bathymodiolus (sl) childressi clade from methane seeps near Edison Seamount New Ireland Papua New Guinea. Arch Molluskenkunde 137:195–224

    Google Scholar 

  • von Cosel R, Marshall BA (2003) Two new species of large mussels (Bivalvia: Mytilidae) from active submarine volcanoes and a cold seep off the eastern North Island of New Zealand with description of a new genus. Nautilus 117:31–46

    Google Scholar 

  • von Cosel R, Olu K (1998) Gigantism in Mytilidae A new Bathymodiolus from cold seep areas on the Barbados accretionary Prism. C R Biol 321:655–663

    Google Scholar 

  • von Cosel R, Comtet T, Krylova EM (1999) Bathymodiolus (Bivalvia:Mytilidae) from hydrothermal vents on the Azores Triple junction and the Logatchev hydrothermal field Mid-Atlantic Ridge. Veliger 42:218–248

    Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal vents. In: Humphris S, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical chemical biological and geological interactions, Geophysical Monographs. American Geophysical Union, Washington, DC, pp 222–247

    Google Scholar 

  • Won Y, Young CR, Lutz RA, Vrijenhoek RC (2003a) Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from Eastern Pacific hydrothermal vents. Mar Ecol 12:169–184

    Google Scholar 

  • Won YJ, Hallam SJ, O’Mullan D, Pan IL, Buck KR, Vrijenhoek RC (2003b) Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl Environ Microbiol 69:6785–6792

    Google Scholar 

  • Won YJ, Jones WJ, Vrijenhoek RC (2008) Absence of cospeciation between deep-sea mytilids and their thiotrophic symbionts. J Shellfish Res 27:129–138

    Google Scholar 

  • Woyke T, Teeling H, Ivanova N, Hunteman M, Richter M, Glockner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Musmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443:950–955

    Google Scholar 

  • Yamamoto H, Fujikura K, Hiraishi A, Kato K, Maki Y (2002) Phylogenetic characterization and biomass estimation of bacterial endosymbionts associated with invertebrates dwelling in chemosynthetic communities of hydrothermal vents and cold seeps. Mar Ecol Prog Ser 245:61–67

    Google Scholar 

  • Zbinden M, Shillito B, Le Bris N, de Villardi de Montaur C, Roussel E, Guyot F, Gaill F, Cambon-Bonavita MA (2008) New insights on the metabolic diversity among the epibiotic microbial community of the hydrothermal vent shrimp Rimicaris exoculata. J Exp Mar Biol Ecol 359:131–140

    Google Scholar 

  • Zielinski FU, Pernthaler A, Duperron S, Raggi L, Giere O, Borowski C, Dubilier N (2009) Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ Microbiol 11:1150–1167

    Google Scholar 

Download references

Acknowledgments

I thank S. Kiel for his invitation to contribute this chapter, and the two reviewers for their helpful comments. S. Gaudron is gratefully acknowledged for providing ­helpful comments on the manuscript. Thanks to S. Halary and J. Lorion for fruitful discussions. The author’s work is funded by Université Pierre et Marie Curie, French ANR Deep Oases, and EU programs HERMES and CHEMECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Duperron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Duperron, S. (2010). The Diversity of Deep-Sea Mussels and Their Bacterial Symbioses. In: Kiel, S. (eds) The Vent and Seep Biota. Topics in Geobiology, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9572-5_6

Download citation

Publish with us

Policies and ethics