Skip to main content

Chemosymbiotic Bivalves

  • Chapter
  • First Online:
The Vent and Seep Biota

Part of the book series: Topics in Geobiology ((TGBI,volume 33))

Abstract

Although the remarkable chemosymbiosis between bivalve molluscs and sulphide- and methane-oxidizing bacteria was originally recognized in a few species of spectacular, large mussels (Bathymodiolus) and clams (Calyptogena) from deep water ­hydrothermal vents it is now realized that there are hundreds of species of chemo­symbiotic bivalves living from the intertidal zone to hadal depths. Far from being restricted to vent and seep habitats they are found in a wide range of reducing ­environments from sands and muds, mangrove sediments, seagrass beds, areas of sunken vegetation including wood pulp, offshore sewage sites and whale falls. Chemosymbiotic bivalves have been reported from six distinct families; Solemyidae, Nucinellidae, Mytilidae, Lucinidae, Thyasiridae and Vesicomyidae. The symbiosis has been identified in all species of Lucinidae, Solemyidae and Vesiocomyidae studied so far and is likely obligate, while in Thyasiridae many species possess symbionts but others lack them. In Mytilidae, chemosymbiosis is confined to ­members of the subfamily Bathymodiolinae, while other mytilids are asymbiotic. Little is known of the Nucinellidae with symbiosis inferred from internal ­morphology of two species (Reid 1998). Additionally, mention should also be made of the families Xylophagainae and Teredinidae of wood-boring bivalves (Distel and Roberts 1997) that possess cellulolytic endosymbionts held in a similar position within the gills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JA, Sanders HL (1969) Nucinella serrei (Bivalvia: Protobranchia), a monomyarian solemyid and possible living actinodont. Malacologia 7:381–396

    Google Scholar 

  • Amano K, Kiel S (2007) Fossil vesicomyid bivalves from the North Pacific region. Veliger 49:270–293

    Google Scholar 

  • Amano K, Jenkins RG, Kurihara Y, Kiel S (2007) A new genus for Vesicomya inflata Kanie & Nishida, a lucinid shell convergent with that of vesicomyids, from Cretaceous strata of Hokkaido, Japan. Veliger 50:255–262

    Google Scholar 

  • Arp AJ, Childress JJ, Fisher CR (1984) Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica. Physiol Zool 57:648–662

    Google Scholar 

  • Baco AR, Smith CR, Peek AS, Roderick GK, Vrijenhoek RC (1999) The phylogenetic relationships of whale-fall vesicomyid clams based on mitochondrial COI DNA sequences. Mar Ecol Prog Ser 182:137–147

    Google Scholar 

  • Ball AD, Purdy KJ, Glover EA, Taylor JD (2009) Ctenidial structure and three bacterial symbiont morphotypes in Anodontia (Euanodontia) ovum (Reeve, 1850) from the Great Barrier Reef, Australia (Bivalvia: Lucinidae). J Moll Stud 75:175–185

    Google Scholar 

  • Barry PJ, McCormack GP (2007) Two new species of Adontorhina Berry, 1947 (Bivalvia: Thyasiridae) from the Porcupine Bank, off the west coast of Ireland. Zootaxa 1526:37–49

    Google Scholar 

  • Bennett BA, Smith CR, Glaser B, Maybaum HL (1994) Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. Mar Ecol Prog Ser 108:205–223

    Google Scholar 

  • Bouchet P, von Cosel R (2004) The world’s largest lucinid is an undescribed species from Taiwan (Mollusca: Bivalvia). Zool Stud 43:704–711

    Google Scholar 

  • Britton JC (1970) The Lucinidae (Mollusca: Bivalvia) of the Western Atlantic Ocean. Ph.D. ­dissertation, George Washington University, University Microfilms, pp 71–12, 288

    Google Scholar 

  • Brooks JM, Kennicutt MC, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–1142

    Google Scholar 

  • Callender WR, Powell EN (1997) Autochthonous death assemblages from chemautotrophic communities at petroleum seeps: palaeoproduction, energy flow and implications from the fossil record. Hist Biol 12:165–198

    Google Scholar 

  • Callender WR, Powell EN (2000) Long-term history of chemautotrophic clam-dominated faunas of petroleum seeps in the northwestern Gulf of Mexico. Facies 43:177–204

    Google Scholar 

  • Cary SC, Fry B, Felbeck H, Vetter RD (1989) Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar Ecol Prog Ser 55:31–45

    Google Scholar 

  • Cavanaugh CM, McKiness ZP, Newton ILG, Stewart FJ (2006) Marine chemosynthetic symbioses. In: Dworkin M, Falkow SI, Rosenberg E, Schlelfer KH, Stackebrandt E (eds) The Prokaryotes 1. Springer, New York, pp 475–507

    Google Scholar 

  • Clarke AH (1989) New mollusks from undersea oil seep sites off Louisiana. Malacology Data Net 2:123–134

    Google Scholar 

  • Coan EV, Scott PV, Bernard FR (2000) Bivalve seashells of western North America. Santa Barbara Museum of Natural History Monographs 2, Santa Barbara, 764 p

    Google Scholar 

  • Conway NM, Capuzzo JM, Fry B (1989) The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from a stable isotope analysis of endosymbionts and hosts. Limnol Oceanogr 34:249–255

    Google Scholar 

  • Conway NM, Howes BL, McDowell Capuzzo JE, Turner RD (1992) Characterization and site description of Solemya borealis (Bivalvia; Solemyidae), another bivalve-bacteria symbiosis. Mar Biol 112:601–613

    Google Scholar 

  • Cope JCW (1996) Early Ordovician (Arenig) bivalves from the Llangynog Inlier, South Wales. Palaeontology 39:979–1025

    Google Scholar 

  • Cordes EE, Bergquist DC, Fisher CR (2009) Macro-ecology of Gulf of Mexico cold seeps. Ann Rev Mar Sci 1:143–168

    Google Scholar 

  • von Cosel R (2006) Taxonomy of West African bivalves VIII. Remarks on Lucinidae, with descriptions of five new genera and nine new species. Zoosystema 28:805–851

    Google Scholar 

  • von Cosel R, Bouchet P (2008) Tropical deep-water lucinids (Mollusca: Bivalvia) from the Indo-Pacific: essentially unknown, but diverse and occasionally gigantic. In: Héros V, Cowie R, Bouchet P (eds) Tropical deep sea benthos, vol 25. Mém Mus nat Hist natur, Paris 196:115–213

    Google Scholar 

  • von Cosel R, Janssen R (2008) Bathymodioline mussels of the Bathymodiolus (s.l.) childressi clade from methane seeps near Edison Seamount, New Ireland, Papua New Guinea. Arch Molluskenkunde 137:195–224

    Google Scholar 

  • von Cosel R, Marshall BA (2003) Two new species of large mussels (Bivalvia Mytilidae) from active submarine volcanoes and a cold seep off the eastern North Island of New Zealand, with descriptions of a new genus. Nautilus 117:31–46

    Google Scholar 

  • von Cosel R, Olu K (2008) A new genus and new species of Vesicomyidae (Mollusca, Bivalvia) from cold seeps on the Barbados accretionary prism, with comments on other species. Zoosystema 30:929–944

    Google Scholar 

  • von Cosel R, Olu K (2009) Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. Deep Sea Res II 56:2350–2379

    Google Scholar 

  • von Cosel R, Salas C (2001) Vesicomyidae (Mollusca: Bivalvia) of the genera Vesicomya, Waisiuconcha, Isorropodon and Callogonia in the eastern Atlantic and the Mediterranean. Sarsia 86:333–366

    Google Scholar 

  • Dando PR, Bussmann I, Niven SJ, O’Hara SCM, Schaljohann R, Taylor LJ (1994) A methane seep in the Skagerrak, the habitat of the pogonophore Siboglinum poseidoni and the bivalve mollusc Thyasira sarsi. Mar Ecol Prog Ser 107:157–167

    Google Scholar 

  • Dando PR, Southward AJ, Southward EC (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc Roy Soc Lond B 227:227–247

    Google Scholar 

  • Dando PR, Spiro B (1993) Varying nutritional dependence of the thyasirid bivalves Thyasira sarsi and T. equalis on chemoautotrophic symbiotic bacteria, demonstrated by isotopic ratios of tissues carbon and shell carbonate. Mar Ecol Prog Ser 92:131–158

    Google Scholar 

  • Distel DL (1998) Evolution of chemoautotrophic endosymbioses in bivalves. Bioscience 48:277–286

    Google Scholar 

  • Distel DL, Felbeck H (1987) Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar Biol 96:79–86

    Google Scholar 

  • Distel DL, Lee HKW, Cavanaugh CM (1995) Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Nat Acad Sci USA 92:9598–9602

    Google Scholar 

  • Distel DL, Roberts SJ (1997) Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. Biol Bull 192:253–261

    Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Google Scholar 

  • Dufour SC (2005) Gill anatomy and evolution of symbiosis in the bivalve family Thyasiridae. Biol Bull 208:200–212

    Google Scholar 

  • Dufour SC, Felbeck H (2003) Sulphide mining by the superextensible foot of symbiotic ­thyasirids. Nature 426:65–67

    Google Scholar 

  • Duperron S, Halary S, Lorion J, Sibuet M, Gaill F (2008) Unexpected co-occurrence of six ­bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445

    Google Scholar 

  • Duperron S, Nadalig T, Caprais JC, Sibuet M, Fiala-Medioni A, Amann R, Dubilier N (2005) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71:1694–1700

    Google Scholar 

  • Duplessis MR, Dufour SC, Blankenship LE, Felbeck H, Yayanos AA (2004) Anatomical and experimental evidence for particulate feeding in Lucinoma aequizonata and Parvilucina tenuisculpta (Bivalvia: Lucinidae) from the Santa Barbara Basin. Mar Biol 145:551–561

    Google Scholar 

  • Fiala-Médioni A, Metivier C, Herry A, Le Pennec M (1986) Ultrastructure of the gill of the hydrothermal-vent mytilids Bathymodiolus sp. Mar Biol 92:65–72

    Google Scholar 

  • Fiala-Médioni A, Le Pennec M (1988) Structural adaptations in the gill of the Japanese subduction zone bivalves (Vesicomydae) Calyptogena phaseoliformis and Calyptogena laubieri. Ocean Acta 11:185–192

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Revs Aqua Sci 2:399–436

    Google Scholar 

  • Fisher CR, Childress JJ (1986) Translocation of fixed carbon from symbiotic bacteria to host ­tissues in the gutless bivalve Solemya reidi. Mar Biol 93:59–68

    Google Scholar 

  • Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA (1993) The co-occurrence of methanotrophic and chemoautotrophic sulfur oxidizing bacterial symbionts in a deep-sea mussel. Mar Ecol 14:277–289

    Google Scholar 

  • Frenkiel L, Mouëza M (1995) Gill ultrastructure and symbiotic bacteria in Codakia orbicularis (Bivalvia, Lucinidae). Zoomorph 115:51–61

    Google Scholar 

  • Frenkiel L, Gros O, Mouëza M (1996) Gill structure in Lucina pectinata (Bivalvia: Lucinidae) with reference to hemoglobin in bivalves with symbiotic sulphur-oxidising bacteria. Mar Biol 125:511–524

    Google Scholar 

  • Fujikura K, Kojima S, Tamaki K, Maki Y, Hunt OT (1999) The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench. Mar Ecol Prog Ser 190:17–26

    Google Scholar 

  • Fujiwara Y (2003) Endosymbioses between invertebrates and chemosymbiotic bacteria. Jap J Benthol 58:26–33

    Google Scholar 

  • Fujiwara Y, Kato C, Masui N, Fujikura K, Kojima S (2001) Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Mar Ecol Prog Ser 214:151–159

    Google Scholar 

  • Fujiwara Y, Okutani T, Yamanaka T, Kawato M, Mizota C, Fujikura K, Yamamoto T, Okoshi K (2009) Solemya pervernicosa lives in sediment underneath submerged whale carcasses: its biological significance. Venus 68:27–37

    Google Scholar 

  • Gebruk AV, Krylova EM, Lein AY, Vinogradov GM, Anderson E, Pimenov NV, Cherkasev GA, Crane K (2003) Methane seep community of the Håkon Mosby mud volcano (the Norwegian Sea): composition and trophic aspects. Sarsia 88:394–403

    Google Scholar 

  • Giere O (1985) Structure and position of bacterial endosymbionts in the gill filaments of Lucinidae from Bermuda (Mollusca, Bivalvia). Zoomorph 105:296–301

    Google Scholar 

  • Giribet G (2008) Bivalvia. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, CA, pp 105–141

    Google Scholar 

  • Giribet G, Distel DL (2004) Bivalve phylogeny and molecular data. In: Lydeard C, Lindberg D (eds) Molecular Systematics and Phylogeography of Mollusks. Smithsonian Institution Press, Washington, DC, pp 45–90

    Google Scholar 

  • Giribet G, Wheeler W (2002) On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invert Biol 121:271–324

    Google Scholar 

  • Glover EA, Taylor JD (2007) Diversity of chemosymbiotic bivalves on coral reefs: Lucinidae of New Caledonia and Lifou (Mollusca, Bivalvia). Zoosystema 29:109–181

    Google Scholar 

  • Glover EA, Taylor JD, Rowden AA (2004) Bathyaustriella thionipta, a new lucinid bivalve from a hydrothermal vent on the Kermadec Ridge, New Zealand and its relationship to shallow water taxa (Mollusca: Bivalvia: Lucinidae). J Moll Stud 70:283–295

    Google Scholar 

  • Glover EA, Taylor JD, Williams ST (2008) Mangrove associated lucinid bivalves of the central Indo-West Pacific: review of the “Austriella” group with a new genus and species (Mollusca: Bivalvia: Lucinidae). Raffles Mus Bull Zool Suppl 18:25–40

    Google Scholar 

  • Goffredi SK, Barry JP (2002) Species-specific variation in sulfide physiology between closely related vesicomyid clams. Mar Ecol Prog Ser 225:227–238

    Google Scholar 

  • Goffredi SK, Barry JP, Buck KR (2004) Vesicomyid symbioses from Monterey Bay (central California) cold seeps. Symbiosis 36:1–27

    Google Scholar 

  • Goffredi SK, Hurtado LA, Hallam S, Vrijenhoek RC (2003) Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the ‘pacifica/lepta’ species complex. Mar Biol 142:311–320

    Google Scholar 

  • Gros O, Durand P, Frenkiel L, Mouëza M (1998a) Putative environmental transmission of sulfur-oxidising gill endosymbionts in four tropical lucinid bivalves, inhabiting various environments. FEMS Microbiol Letts 160:257–262

    Google Scholar 

  • Gros O, Frenkiel L, Mouëza M (1996) Gill ultrastructure and symbiotic bacteria in the tropical lucinid, Linga pensylvanica (Linné). Symbiosis 20:259–280

    Google Scholar 

  • Gros O, Frenkiel L, Mouëza M (1998b) Gill filament differentiation and experimental colonization by symbiotic bacteria in aposymbiotic juveniles of Codakia orbicularis (Bivalvia: Lucinidae). Invert Reprod Develop 34:219–231

    Google Scholar 

  • Gros O, Frenkiel L, Felbeck H (2000) Sulfur-oxidising endosymbioisis in Divaricella quadrisulcata (Bivalvia: Lucinidae): morphological, ultrastructural and phylogenetic analysis. Symbiosis 29:293–317

    Google Scholar 

  • Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H (2003) Detection of free-living forms of sulfide-oxidising gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6264–6267

    Google Scholar 

  • Gustafson RG, Reid RGB (1986) Association of bacteria with larvae of the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Mar Biol 97:389–401

    Google Scholar 

  • Hashimoto J, Fujikura K, Fujiwara Y, Tanishima M, Ohta S, Kojima S, Yieh SM (1995) Observations of a deep-sea biological community co-dominated by lucinid bivalve, Lucimoma spectabilis (Yokoyama, 1920) and vestimentiferans at the Kanesu-no-Se Bank, Enshu-Nada, Central Japan. JAMSTEC J Deep Sea Res 11:211–217

    Google Scholar 

  • Herry A, Le Pennec M (1987) Endosymbiotic bacteria in the gills of the littoral bivalve molluscs Thyasira flexuosa (Thyasiridae) and Lucinella divaricata (Lucinidae). Symbiosis 4:25–36

    Google Scholar 

  • Holmes AM, Oliver PG, Sellanes J (2005) A new species of Lucinoma (Bivalvia: Lucinoidea) from a methane gas seep off the southwest coast of Chile. J Conch 38:673–682

    Google Scholar 

  • Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC (2003) Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 69:2058–2064

    Google Scholar 

  • Imhoff JF, Sahling H, Sühling J, Kath T (2003) 16S rDNA-based phylogeny of sulphur-oxidising bacterial endosymbionts in marine bivalves from cold-seep habitats. Mar Ecol Prog Ser 249:39–51

    Google Scholar 

  • Jones WJ, Won YJ, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC (2006) Evolution of habitat use by deep-sea mussels. Mar Biol 148:841–851

    Google Scholar 

  • Kamenev GM (2009) North Pacific species of the genus Solemya Lamarck, 1818 (Bivalvia: Solemyidae), with notes on Acharax johnsoni (Dall, 1891). Malacologia 51:233–261

    Google Scholar 

  • Kamenev MK, Nadtochy VA, Kuznetsov AP (2001) Conchocele bisecta (Conrad, 1849) (Bivalvia: Thyasiridae) from cold water methane-rich areas of the Sea of Okhotsk. Veliger 44:84–94

    Google Scholar 

  • Kanie Y, Kuramochi T (1995) Acharax yokoyskensis n.sp. (giant bivalve) from the Miocene Hayama Formation of the Miura Peninsula, south-central Japan. Sci Rept Yokosuka City Mus 43:51–57

    Google Scholar 

  • Kauffman EG, Harries PJ, Meyer C, Villamil T, Arango C, Jaecks G (2007) Paleoecology of giant Inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado. J Paleont 81:64–81

    Google Scholar 

  • Kennish MJ, Lutz RA (1992) The hydrothermal vent clam, Calyptogena magnifica (Boss and Turner, 1980): a review of existing literature. Revs Aquatic Sci 6:29–66

    Google Scholar 

  • Kiel S, Little CTS (2006) Cold seep mollusks are older than the general marine mollusk fauna. Science 313:1429–1431

    Google Scholar 

  • Kiel S, Amano K, Jenkins RG (2008) Bivalves from Cretaceous cold-seep deposits on Hokkaido, Japan. Acta Palaeont Polon 53:525–537

    Google Scholar 

  • Kojima S, Fujikura K, Okutani T (2004) Multiple trans-Pacific migrations of deep-sea vent/seep-endemic bivalves in the family Vesicomyidae. Mol Phylog Evol 32:396–406

    Google Scholar 

  • Krueger DM, Cavanaugh CM (1997) Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes. Appl Environ Microbiol 63:91–98

    Google Scholar 

  • Krueger DM, Dubilier N, Cavanaugh CM (1996a) Chemoautotrophic symbiosis in the tropical solemyid Solemya occidentalis (Bivalvia: Protobranchia): ultrastructural and phylogenetic analysis. Mar Biol 126:55–64

    Google Scholar 

  • Krueger DM, Gallager SM, Cavanaugh CM (1992) Suspension feeding on phytoplankton by Solemya velum, a symbiont-containing clam. Mar Ecol Prog Ser 86:145–151

    Google Scholar 

  • Krueger DM, Gustafson RG, Cavanaugh CM (1996b) Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol Bull 190:195–202

    Google Scholar 

  • Krylova EM, Drozdov AL, Mironov AN (2000) Presence of bacteria in gills of hadal bivalve ‘Vesicomyasergeevi Filatova, 1971. Ruthenica 10:76–79

    Google Scholar 

  • Krylova EM, Sahling H (2006) Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae). J Moll Stud 72:359–395

    Google Scholar 

  • Krylova EM, Sahling H (2010) Vesicomyidae (Bivalvia): current taxonomy and distribution. PLoS ONE 5(4) e9957:1–9

    Google Scholar 

  • Krylova EM, Sahling H, Janssen R (2010) Abyssogena: a new genus of the family Vesicomyidae from deep water vents and seeps. J Moll Stud 76:107–132

    Google Scholar 

  • Kuznetsov AP, Schileyko AA (1984) On gutless Protobranchia (Bivalvia). Biogicheskie Nauki 1984 2:39–49 (In Russian)

    Google Scholar 

  • Kuznetsov AP, Ota C, Endow K (1990) Morphofunctional consequences of bacterial symbiotrophy in Solemya (Petrasma) pusilla (Protobranchia, Bivalvia) from Sagami Bay (central Japan). Izvest Akad Nauk SSSR, Ser Biol 1991(6):895–903

    Google Scholar 

  • LaPerna R (2005) A gigantic deep-sea Nucinellidae from the tropical West Pacific (Bivalvia: Protobranchia). Zootaxa 881:1–10

    Google Scholar 

  • Liljedahl L (1984) Janeia silurica, a link between nuculoids and solemyoids (Bivalvia). Palaeontology 27:693–698

    Google Scholar 

  • Luyten YA, Thompson JR, Morrill W, Polz MF, Distel DL (2006) Extensive variation in intracellular symbiont community composition among members of a single population of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl Environ Microbiol 72:412–417

    Google Scholar 

  • Majima R, Ikeda K, Wada H, Kato K (2003) An outer-shelf cold-seep assemblage in forearc basin fill, Pliocene Takanabe Formation, Kyushu Island, Japan. Paleont Res 7:297–311

    Google Scholar 

  • Matsukuma A (2000) Family Thyasiridae. In: Okutani T (ed) Marine Mollusks in Japan. Tokai University Press, Tokyo, pp 933–935

    Google Scholar 

  • Métivier B, von Cosel R (1993) Acharax alinae n.sp., Solemyidae (Mollusca: Bivalvia) géante du bassin de Lau. Comptes Rend l’Acad Sci ser III Sci Vie 316(3):229–237

    Google Scholar 

  • Meyer E, Nilkerd B, Glover EA, Taylor JD (2008) Ecological importance of chemoautotrophic lucinid bivalves in a peri – mangrove community in Eastern Thailand. Raffles Mus Bull Zool Suppl 18:41–55

    Google Scholar 

  • Mikkelsen PM, Bieler R, Kappner I, Rawlings TA (2006) Phylogeny of Veneroidea (Mollusca: Bivalvia) based on morphology and molecules. Zool J Linn Soc 148:439–521

    Google Scholar 

  • Morton B (1986) The functional morphology of the organs of feeding and digestion of the hydrothermal vent bivalve Calyptogena magnifica (Vesicomyidae). J Zool 208:83–98

    Google Scholar 

  • Neulinger SC, Sahling H, Sühling J, Imhoff JF (2006) Presence of two phylogenetically distinct groups in the deep-sea mussel Acharax (Mollusca: Bivalvia: Solemyidae). Mar Ecol Prog Ser 312:161–168

    Google Scholar 

  • Ockelmann KW, Dinesen GE (in press) Life on wood – the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia). Mar Biol Res

    Google Scholar 

  • Okutani T (2002) A new thyasirid Conchocele novaeguinensis n.sp. from a thanatocoenosis associated with a possible cold seep activity off New Guinea. Venus 61:141–145

    Google Scholar 

  • Okutani T, Hashimoto J (1997) A new species of lucinid bivalve (Heterodonta: Lucinidae) from Kanesu-no-Se bank near the mouth of Suruga Bay, with a review of the Recent species of the chemosynthetic genus Lucinoma from Japan. Venus 56:271–280

    Google Scholar 

  • Oliver PG, Holmes AM (2006a) New species of Thyasiridae (Bivalvia) from chemosynthetic communities in the Atlantic Ocean. J Conch 39:175–183

    Google Scholar 

  • Oliver PG, Holmes AM (2006b) A new species of Lucinoma (Bivalvia: Lucinoidea) from the oxygen minimum zone of the Oman margin, Arabian Sea. J Conch 39:63–77

    Google Scholar 

  • Oliver PG, Holmes AM (2007) A new species of Axinus (Thyasiridae: Bivalvia) from the Baby Bare Seamount, Cascadia Basin, NE Pacific with a description of the anatomy. J Conch 39:363–375

    Google Scholar 

  • Oliver PG, Killeen IJ (2002) The Thyasiridae (Mollusca: Bivalvia) of the British Continental Shelf and North Sea Oil fields. Studies in Marine Biodiversity and Systematics from the National Museum of Wales, BIOMOR Reports, 3: 73p

    Google Scholar 

  • Oliver PG, Levin L (2006) A new species of the family Thyasiridae (Mollusca: Bivalvia) from the oxygen minimum zone of the Pakistan Margin. J Mar Biol Assn UK 86:411–416

    Google Scholar 

  • Oliver PG, Sellanes J (2005) New species of Thyasiridae from a methane seepage area off Concepcion, Chile. Zootaxa 1092:1–20

    Google Scholar 

  • Olu-Le Roy K, Sibuet M, Fiala-Médioni A, Gofas S, Salas C, Mariotti A, Foucher JP, Woodside J (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936

    Google Scholar 

  • Olu-Le Roy K, von Cosel R, Houdez S, Carney SL, Jollivet D (2007) Amphi-Atlantic cold-seep Bathymodiolus species complexes across the equatorial belt. Deep-Sea Res I 54:1890–1911

    Google Scholar 

  • Ott J, Bright M, Bulgheresi S (2004) Symbioses between marine nematodes and sulfur-oxidising bacteria. Symbiosis 36:103–126

    Google Scholar 

  • Owen G (1961) A note on the habits and nutrition of Solemya parkinsoni (Protobranchia: Bivalvia). Quart J Micros Sci 102:15–21

    Google Scholar 

  • Passos FD, Meserani GDC, Gros O (2007) Structural and ultrastrucural analysis of the gills in the bacterial-bearing species Thyasira falklandica (Bivalvia, Mollusca). Zoomorph 126:153–162

    Google Scholar 

  • Payne CM, Allen AJ (1991) The morphology of deep-sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean. Phil Trans Roy Soc Lond B334:481–562

    Google Scholar 

  • Peek AS, Gustafson R, Lutz RA, Vrijenhoek RC (1997) Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): results from mitochondrial cytochrome oxidase subunit 1. Mar Biol 130:151–161

    Google Scholar 

  • Pojeta J (1988) The origin and Paleozoic diversification of solemyoid pelecypods. Mem New Mexico Bur Mines Min Res 44:201–271

    Google Scholar 

  • Powell MA, Somero GN (1985) Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol Bull 169:164

    Google Scholar 

  • Reid RGB (1980) Aspects of the biology of a gutless species of Solemya (Bivalvia: Protobranchia). Can J Zool 58:386–393

    Google Scholar 

  • Reid RGB (1998) Order Solemyoida. In: Beesley PL, Ross GJB, Wells A (eds) Mollusca: the Southern Synthesis. Fauna of Australia, vol 5, Part A. CSIRO Publishing, Melbourne, pp 2241–247

    Google Scholar 

  • Reid RGB, Brand DG (1986) Sulfide-oxidising symbiosis in lucinaceans: implications for bivalve evolution. Veliger 29:3–24

    Google Scholar 

  • Reid RGB, Brand DG (1987) Observations on Australian Solemyidae. J Malac Soc Austral 8:41–50

    Google Scholar 

  • Rodrigues CF, Oliver PG, Cunha MR (2008) Thyasiroidea (Mollusca: Bivalvia) from mud volcanoes of the Gulf of Cadiz. Zootaxa 1752:41–56

    Google Scholar 

  • Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138

    Google Scholar 

  • Salas C, Woodside J (2002) Lucinoma kazani n.sp. (Mollusca, Bivalvia): evidence of a living community associated with a cold seep in the Eastern Mediterranean Sea. Deep Sea Res I 49:991–1005

    Google Scholar 

  • Sasaki T, Okutani Y, Fujikura K (2005) Molluscs from hydrothermal vents and cold seeps in Japan: a review of taxa recorded in twenty recent years (1984–2004). Venus 64:87–133

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Ann Rev 41:311–354

    Google Scholar 

  • Southward EC (1986) Gill symbionts in thyasirids and other bivalve molluscs. J Mar Biol Assn UK 66:889–914

    Google Scholar 

  • Southward EC (2008) The morphology of bacterial symbioses in the gills of mussels of the genera Adipicola and Idas (Bivalvia: Mytlilidae). J Shellfish Res 27:139–146

    Google Scholar 

  • Stanley SM (1970) Relation of shell form to life habits of the Bivalvia (Mollusca). Geol Soc America Mem 125:1–296

    Google Scholar 

  • Stecher J, Tunnicliffe V, Türkay M (2003) Population characteristics of abundant bivalves (Mollusca, Vesicomyidae) at a sulphide-rich seafloor site near Lihir Island, Papua New Guinea. Can J Zool 81:1815–1824

    Google Scholar 

  • Stempell W (1899) Zur Anatomie von Solemya togata Poli. Zoologische Jahrbücher, Abtheilung für Anatomie und Ontogenie der Thiere 13:89–170

    Google Scholar 

  • Stewart FJ, Cavanaugh CM (2006) Bacterial endosymbioses in Solemya (Mollusca: Bivalvia) – model systems for studies of symbiont-host adaptation. Antonie van Leeuwenhoeck 90:343–360

    Google Scholar 

  • Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosymbiotic endosymbioises: adaptations to oxic-anoxic interfaces. Trends Microbiol 13:439–448

    Google Scholar 

  • Stewart FJ, Young CR, Cavanaugh CM (2008) Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis. Mol Biol Evol 25:673–687

    Google Scholar 

  • Taylor JD, Glover EA (1997) A chemosymbiotic lucinid bivalve (Bivalvia: Lucinoidea) with periostracal pipes; functional morphology and description of a new genus and species. In: Wells FE (ed) The marine flora and fauna of the Houtman Abrolhos Islands, Western Australia. Western Australian Museum, Perth, pp 335–361

    Google Scholar 

  • Taylor JD, Glover EA (2000) Functional anatomy, chemosymbiosis and evolution of the Lucinidae. In: Harper, E, Taylor JD, Crame, JA (eds) The evolutionary biology of the bivalvia. Spec Pub Geol Soc Lond 177:207–225

    Google Scholar 

  • Taylor JD, Glover EA (2005) Cryptic diversity of chemosymbiotic bivalves: a systematic revision of worldwide Anodontia (Mollusca: Bivalvia: Lucinidae). Systemat Biodiv 3:281–338

    Google Scholar 

  • Taylor JD, Glover EA (2006) Lucinidae (Bivalvia) – the most diverse group of chemosymbiotic molluscs. Zool J Linn Soc 148:421–438

    Google Scholar 

  • Taylor JD, Glover EA (2009a) A giant lucinid bivalve from the Eocene of Jamaica – systematics, life habits and chemosymbiosis (Mollusca: Bivalvia: Lucinidae). Palaeontol 52:95–109

    Google Scholar 

  • Taylor JD, Glover EA (2009b) New lucinid bivalves from hydrocarbon seeps of the Western Atlantic (Mollusca: Bivalvia: Lucinidae). Steenstrupia 30:127–140

    Google Scholar 

  • Taylor JD, Glover EA, Williams ST (2008) Ancient shallow water chemosymbiotic bivalves: ­systematics of Solemyidae of eastern and southern Australia. Mem Qld Mus – Nature 54:75–104

    Google Scholar 

  • Taylor JD, Glover EA, Zuschin M, Dworschak PC, Waitzbauer W (2005) Another bivalve with dreadlocks: living Rasta lamyi from Aqaba, Red Sea (Bivalvia: Lucinidae). J Conch 38:489–497

    Google Scholar 

  • Taylor JD, Williams ST, Glover EA (2007a) Evolutionary relationships of the bivalve family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. J Mar Biol Assn UK 87:565–574

    Google Scholar 

  • Taylor JD, Williams ST, Glover EA, Dyal P (2007b) A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S rRNA and 28S rRNA genes. Zool Scripta 36:587–606

    Google Scholar 

  • Vokes H (1956) Notes on the Nucinellidae (Pelecypoda) with description of a new species from the Eocene of Oregon. J Paleont 30:652–671

    Google Scholar 

  • Williams ST, Taylor JD, Glover EA (2004) Molecular phylogeny of the Lucinoidea (Bivalvia): non-monophyly and separate acquisition of bacterial chemosymbiosis. J Moll Stud 70:187–202

    Google Scholar 

  • Won YJ, Hallam SJ, O’Mullan GD, Pan IL, Buck KR, Vrijenhoeck RC (2003) Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl Environ Microbiol 69:6785–6792

    Google Scholar 

  • Won YJ, Jones WJ, Vrijenhoeck RC (2008) Absence of cospeciation between deep-sea mytilids and their thiotrophic endosymbioints. J Shellfish Res 27:129–138

    Google Scholar 

  • Yamanaka T, Shimizota C, Matsuyama-Serisawa K, Kakegawa T, Miyazaki J, Mampuku M, Tsutsumi H, Fujiwara Y (2008) Stable isotopic characterization of carbon, nitrogen and sulfur uptake of Acharax japonica from central Japan. Plankton Benthos Res 3:36–41

    Google Scholar 

  • Zardus JD (2002) Protobranch bivalves. Adv Mar Biol 42:2–65

    Google Scholar 

Download references

Acknowledgements We are grateful to Shana Goffredi for generously providing electron micrographs of Calyptogena ctenidia, to Graham Oliver for the image of Axinus cascadensis, James Turner for images of Acharax species and Pierre Lozouet for the image of Nucinella. Philippe Bouchet and Rudo von Cosel kindly arranged a loan of preserved Vesicomyidae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Taylor, J.D., Glover, E.A. (2010). Chemosymbiotic Bivalves. In: Kiel, S. (eds) The Vent and Seep Biota. Topics in Geobiology, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9572-5_5

Download citation

Publish with us

Policies and ethics