Skip to main content

Acoustic Emission Activity Induced by Delamination and Fracture of Wood Structure

  • Chapter
  • First Online:
Delamination in Wood, Wood Products and Wood-Based Composites
  • 1775 Accesses

Abstract

The damage evolution related to fracture phenomena in wood can be expressed at several internal length scales such as atomic, micro, meso and macro scales. Damage initiates on the atomic scale and reaches relevance for larger scales while it propagates, leading to failure when reaching the macro scale. In this section we focus our attention on aspects related to the micro and macro scales. The dominating structure on micro scale is composed from the anatomic constituents while on meso scale the dominating structure is composed from the annual rings. Acoustic emission technique can be used to study the fracture damage mechanisms on micro and meso scales. Acoustic emission analysis requires the analysis of mechanical data and the acoustic emission rate, the localization of the acoustic emission source, the evaluation of the topography of the fracture plane and finally, studies for different failure modes. (Grosse and Finck 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher S, Höfflin L, Dill-Langer G (2001) Damage evolution and acoustic emission of wood at tension perpendicular to fiber. Holz als Roh Werkst 59:104–116

    Article  Google Scholar 

  • Ando K, Takita A, Hirashima Y, Sasaki Y (2007) Fractography of old wood. Nagoya Univ Forest Sci 26:1–7

    Google Scholar 

  • Ando K, Hirashima Y, Sugihara M, Hirao S, Sasaki Y (2006) Microscopic processes of shearing fracture of old wood, with acoustic emission technique. J Wood Sci 52, 6:483–489

    Article  Google Scholar 

  • Ando K, Ohta M (1999) Variability of fracture toughness by the crack tip position in an annual ring of coniferous wood. J Wood Sci 45:275–283

    Article  Google Scholar 

  • Ando K, Ohta M (1995) Relationship between the morphology of micro-fractures of wood and the acoustic emission characteristics. Mokuzai Gakk 41:640–646

    Google Scholar 

  • Ando K (1993) Direct observation of micro-fracture process of wood by SEM and its acoustic emission characteristics under tension test. Proceedings 9th conference on acoustic emission, Osaka, Japan, pp 85–90

    Google Scholar 

  • Ando K, Sato K, Fushitani M (1991) Fracture toughness and acoustic emission characteristics of wood. I. Effect of the location of a crack tip in an annual ring. Mokuzai Gakk 37:1129–1134

    Google Scholar 

  • Ando K, Sato K, Fushitani M (1992) Fracture toughness and acoustic emission characteristics of wood II: effects of grain angle. Mokuzai Gakkaishi, 38(4):342–349

    Google Scholar 

  • Ansell MP (1982) Acoustic emission from softwoods in tension. Wood Sci Technol 16:35–38

    Article  Google Scholar 

  • American Society for Nondestructive Testing – ASNT (2005) Acoustic emission testing. In Nondestructive Testing Handbook, 3rd edition, vol 6, Published by ASNT, Columbus OH

    Google Scholar 

  • ASTM E750-98 Standard practice for characterizing acoustic emission instrumentation

    Google Scholar 

  • Ballad EM, Vezirov SY, Pfleider K, Solodov IY, Busse G (2004) Nonlinear modulation technique for NDE with air-coupled ultrasound. Ultrasonics 42:1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Beall FC (2002) Overview of the use of ultrasonic technologies in research on wood properties. Wood Sci Technol 36(3):197–212

    Article  CAS  Google Scholar 

  • Booker JD (1994) Acoustic emission and surface checking in Eucalyptus Regnans boards during drying. Holz als Roh Werkst 52:383–388

    Article  Google Scholar 

  • Bucur V (2005) Acoustics of wood. Springer, Heidelberg

    Google Scholar 

  • Chen Z, Gabbitas B, Hunt D (2006) Monitoring of fracture of wood in torsion using acoustic emission. J Mater Sci 41(12):3645–3655

    Article  CAS  Google Scholar 

  • Chui CK (1992) Introduction to wavelets. San Diego, Academic

    Google Scholar 

  • Cunderlik I, Molinski W, Raczkowski J (1996) The monitoring of drying cracks in the tension and opposite wood by acoustic emission and SEM. Holzforschung 50:258–262

    Article  CAS  Google Scholar 

  • Cyra G, Tanaka C (2000) The effects of wood-fiber directions on acoustic emission in routing. Wood Sci Technol 34(3):237–252

    Article  CAS  Google Scholar 

  • Dill –Langer G, Aicher S (2000) Monitoring of microfracture by microscopy and acoustic emission. Proceedings internation conference Wood and wood fiber composites, Stuttgart, pp 93–104

    Google Scholar 

  • Drouillard TF (1990) Anecdotal history of acoustic emission from wood. J Acoust Emission 9(3):155–176, 1990.

    Google Scholar 

  • Fausett LV (1994) Fundamentals of neural networks: architecture, algorithms and applications. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Grabec I, Sachse W (1997) Synergetics of measurements, prediction and control. Springer, Berlin

    Google Scholar 

  • Green RE Jr (2004) Non-contact ultrasonic techniques. Ultrasonics 42:9–16

    Article  PubMed  Google Scholar 

  • Grosse C, Ohtsu M (2008) Acoustic emission testing basics for research – applications in civil engineering. Springer, Heidelberg

    Google Scholar 

  • Grosse CU, Finck F (2006) Quantitative evaluation of fracture processes in concrete using signal-based acoustic emission techniques. Cem Concr Compos 28:330–336

    Article  CAS  Google Scholar 

  • Grosse CU, Reinhardt HW, Finck F (2003) Signal-based acoustic emission techniques in civil engineering. J Mat Civ Eng. 15(3):274–279

    Article  CAS  Google Scholar 

  • Hill R, Brooks R, Kaloedes D (1998) Characterization of transverse failure in composites using acoustic emission. Ultrasonics 36:517–523

    Article  CAS  Google Scholar 

  • ISO 12716 – 2001 Non-destructive testing – Acoustic emission inspection

    Google Scholar 

  • JIS Z 2101 – 1994 Methods of test for woods

    Google Scholar 

  • Kawamoto S, Williams RS (2002) Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: a review – General Technical Report FPL-GTR-134. Madison, WI

    Google Scholar 

  • Kim KB, Kang HY, Yoon DJ, Choi MY (2005) Pattern classification of acoustic emission signals during wood drying by principal component analysis and artificial neural network. Key Eng Materials 297– 300:1962–1967

    Article  Google Scholar 

  • Kowalski SJ, MolinskiW, Musielak G (2004) The identification of fracture in dried wood based on theoretical modelling and acoustic emission; Wood Sci Technol 38(1):35–52

    Article  CAS  Google Scholar 

  • Landis E N (2008) Acoustic emission in wood. In: Grosse C, Ohtsu M (eds) Acoustic emission testing basics for research – applications in civil engineering. Springer, Heidelberg, pp 311–322

    Google Scholar 

  • Landis E N, Whittaker DB (2001) Acoustic emission as a measure of fracture energy. Proceedings of the 1st conference of the European society for wood mechanics, Vila Real, Portugal

    Google Scholar 

  • Lee SH, Quales SL, Schniewind AP (1996) Wood fracture, acoustic emission and the drying process. Part II. Acoustic emission pattern recognition analysis. Wood Sci Technol 30:283–292

    Article  Google Scholar 

  • Minozzi M, Caldarelli G, Pietronero L, Zapperi S (2003) Dynamic fracture model for acoustic emission. Eur Phys J B 36:203–207

    Article  CAS  Google Scholar 

  • Muravin B (2009) Acoustic emission, science and technology. J of Building and Infrastructure Engineering of the Israeli Assoc of Engineers and Architects (in press). http://www.muravin.com. Accessed 22 July 2010

  • Murphy JC, Majerowicz S, Green RE Jr, Glass JT (1990) Laser interferometric probe for detection of acoustic emission. Mater Eval 48:714–720

    Google Scholar 

  • Ogawa M, Sobue N (1999) Effect of loading speed on fracture of timber with a crack. Mokuzai Gakk 45(6):461–470

    CAS  Google Scholar 

  • Okoroafor EU, Hill R (1995) Investigation of complex failure modes in fibre bundles during dynamic mechanical testing using acoustic emission and Weibull statistics. J Mater Sci 30:4233–4243

    Article  Google Scholar 

  • Ono K (1997) Acoustic emission. In: Crocker MJ (ed) Encyclopedia of acoustics, Wiley, New York, NY Chapter 68:797–809

    Chapter  Google Scholar 

  • Persson K (1997) Modeling of wood properties by a micro-mechanical approach. Ph D Thesis, Lund University Report TV SM – 3020

    Google Scholar 

  • Petri A (1996) Acoustic emission and microcrack correlation. Phil Mag B 77(2):491–498

    Article  Google Scholar 

  • Reiter A, Stanzl-Tschegg SE, Tschegg EK (2000) Mode I fracture and acoustic emission of softwood and hardwood. Wood Sci Technol 34(5):417–430

    Article  Google Scholar 

  • Reiter A, Stanzl-Tschegg SE, Tschegg EK (2002) Fracture characteristics of different wood species under Mode I loading perpendicular to the grain. Mater Sci Eng A 332:29–36

    Article  Google Scholar 

  • Ringger T, Höfflin L, Dill-Langer G, Aicher S (2003) Measurement of the acoustic anisotropy of soft and hardwood; effect of source location. Otto-Graff J 14:231–253

    Google Scholar 

  • Sachse W, Kim KY (1987) Quantitative acoustic emission and failure mechanics of composite materials. Ultrasonics 25:195–203

    Article  Google Scholar 

  • Sasikumar T, Rajendraboopathy S, Usha KM, Vasudev ES (2008) Artificial Neural Network Prediction of Ultimate Strength of Unidirectional T-300/914 Tensile Specimens Using Acoustic Emission Response J. Nondestructive Eval. 27(4):127–133

    Article  Google Scholar 

  • Sato KN, Kamei M, Fushitani M, Noguchi M (1984) Acoustic emission generated upon mechano-sorptive creep of wood. Mokuzai Gakk 30(8):653–659

    Google Scholar 

  • Schniewind AP (1989) Concise encyclopedia of wood and wood-based material. Pergamon Press, Oxford

    Google Scholar 

  • Schniewind AP, Quales SL, Lee SH (1996) Wood fracture, acoustic emission and the drying process. Part I Acoustic emission associated with fracture. Wood Sci Technol 30:273–282

    Article  CAS  Google Scholar 

  • Scott IG (1991) Basic Acoustic Emission. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Serrano EP, Fabjo M (1996) Application of wavelet transform to acoustic emission signal processing. IEEE Trans Signal Proc 44(5):1270–1275

    Article  Google Scholar 

  • Solodov I Y (1998) Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36:383–390

    Article  Google Scholar 

  • Stephens RWB, Leventhal HG (1974) Acoustic and vibration. Chapman and Hall, London

    Google Scholar 

  • Stoessel R, Predak S, Solodov I, Busse G (2003) In:Green RE Jr, Djordjevic BB, Hentschel MP (eds) Nondestructive materials characterization, Springer, Berlin, XI:117

    Google Scholar 

  • Watanabe K, Landis EN (2007) An acoustic emission based study of energy dissipation in radially loaded spruce. In: Navi P, Guidon A (eds) Proceedings of the 3rd international symposium on wood machining, Lausanne, Switzerland, pp 179–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bucur, V. (2010). Acoustic Emission Activity Induced by Delamination and Fracture of Wood Structure. In: Bucur, V. (eds) Delamination in Wood, Wood Products and Wood-Based Composites. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9550-3_15

Download citation

Publish with us

Policies and ethics