Skip to main content

Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria

  • Jellyfish Blooms
  • Chapter
Jellyfish Blooms: New Problems and Solutions

Part of the book series: Developments in Hydrobiology 212 ((DIHY,volume 212))

Abstract

The decomposition of jellyfish after major bloom events results in the release of large amounts of nutrients, which can significantly alter nutrient and oxygen dynamics in the surrounding environment. The response of the ambient bacterial community to decomposing jellyfish biomass was evaluated in two marine ecosystems, the Gulf of Trieste (northern Adriatic Sea) and Big Lake (Mljet Island, southern Adriatic Sea). The major difference between these two ecosystems is that Aurelia sp. medusae occur throughout the year in the oligotrophic Big Lake, whereas in the mesotrophic Gulf of Trieste, they occur only seasonally and often as blooms. Addition of homogenized jellyfish to enclosed bottles containing ambient water from each of these systems triggered considerable changes in the bacterial community dynamics and in the nutrient regime. The high concentrations of protein, dissolved organic phosphorous (DOP), and PO4 3− immediately after homogenate addition stimulated increase in bacterial abundance and production rate, coupled with NH4 + accumulation in both ecosystems. Our preliminary results of the bacterial community structure, as determined with denaturing gradient gel electrophoresis, indicated differences in the bacterial community response between the two ecosystems. Despite divergence in the bacterial community responses to jellyfish homogenate, increased bacterial biomass and growth rates in both distinctive marine systems indicate potentially significant effects of decaying jellyfish blooms on microbial plankton.

Guest editors: J. E. Purcell & Dror Angel / Jellyfish Blooms: New Problems and Solutions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A. L., 1972. Abandoned larvacean houses: a unique food source in the pelagic environment. Science 177: 885–887.

    Article  CAS  Google Scholar 

  • Alldredge, A. L., 1976. Discarded appendicularian houses as sources of food, surface habitats and particulate organic matter in planktonic environments. Limnology and Oceanography 21: 14–23.

    Article  CAS  Google Scholar 

  • Alldredge, A. L., 2005. The contribution of discarded appendicularian houses to the flux of particulate organic carbon from oceanic surface waters. In Gorsky, G., M. J. Youngbluth & D. Deibel (eds), Response of Marine Ecosystems to Global Change. Contemporary Publishing International, Paris, France: 309–326.

    Google Scholar 

  • Alldredge, A. L. & M. J. Youngbluth, 1985. The significance of macroscopic aggregates (marine snow) as sites of heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep Sea Research 32: 1445–1456.

    Article  Google Scholar 

  • Alldredge, A. L., J. Cole & D. A. Caron, 1986. Production of heterotrophic bacteria inhabiting organic aggregates (marine snow) from surface waters. Limnology and Oceanography 31: 68–78.

    Article  Google Scholar 

  • Alvarez-Colombo, G., A. Benović, A. Malej, D. Lučić, T. Makovec, V. Onofri, M. Acha, A. Madriolas & H. Mianzan, 2008. Acoustic survey of a jellyfish-dominated ecosystem (Mljet Island, Croatia). Hydrobiologia 616: 99–111.

    Article  Google Scholar 

  • Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, London.

    Google Scholar 

  • Arai, M. N., 2005. Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85: 523–536.

    Article  Google Scholar 

  • Azam, F. & F. Malfatti, 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology 5: 782–791.

    Article  CAS  Google Scholar 

  • Båmstedt, U. & H. R. Skjoldal, 1980. RNA concentration of zooplankton: relationship with size and growth. Limnology and Oceanography 25: 304–316.

    Article  Google Scholar 

  • Benović, A., D. Lučić, V. Onofri, M. Peharda, M. Carić, N. Jasprica & S. Bobanović-Čoli, 2000. Ecological characteristics of the Mljet Island seawater lakes (Southern Adriatic Sea) with special reference to their resident populations of medusae. Scientia Marina 64: 197–206.

    Google Scholar 

  • Billett, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.

    Article  Google Scholar 

  • Boström, K. H., K. Simu, A. Hagström & L. Riemann, 2004. Optimization of DNA extraction for quantitative marine bacterioplankton community analysis. Limnology and Oceanography Methods 2: 365–373.

    Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  Google Scholar 

  • Carlson, C. A., S. J. Giovannoni, D. A. Hansell, S. J. Goldberg, R. Parsons, M. P. Otero, K. Vergin & B. R. Wheeler, 2002. Effect of nutrient amendments on bacteriplankton production, community structure and DOC utilization in the northwestern Sargasso Sea. Aquatic Microbial Ecology 30: 19–36.

    Article  Google Scholar 

  • Caron, D. A., P. G. Davis, L. P. Madin & J. Mc N. Sieburth, 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218: 795–797.

    Article  CAS  Google Scholar 

  • Caron, D. A., E. L. Lim, R. W. Sanders, M. R. Dennett & U. G. Berninger, 2000. Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems. Aquatic Microbial Ecology 22: 175–184.

    Article  Google Scholar 

  • Cherrier, J. & J. E. Bauer, 2004. Bacterial utilization of transient plankton-derived dissolved organic carbon and nitrogen inputs in surface ocean waters. Aquatic Microbial Ecology 35: 229–241.

    Article  Google Scholar 

  • Clarke, A., L. J. Holmes & D. J. Gore, 1992. Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155: 55–68.

    Article  Google Scholar 

  • Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker & J. S. Mattic, 1991. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research 19: 4008.

    Article  CAS  Google Scholar 

  • Giovannoni, S. J., H. J. Tripp, S. Givan, et al., 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: 1242–1245.

    Article  CAS  Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim.

    Google Scholar 

  • Hamner, W. M. & M. N. Dawson, 2009. A review and synthesis on the systematic and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616: 161–191.

    Article  Google Scholar 

  • Hansson, L. J. & B. Norrman, 1995. Release of dissolved organic carbon (DOC) by scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktonic bacteria. Marine Biology 121: 527–532.

    Article  CAS  Google Scholar 

  • Hollibaugh, J. T. & F. Azam, 1983. Microbial degradation of dissolved proteins in seawater. Limnology and Oceanography 28: 1104–1116.

    Article  CAS  Google Scholar 

  • Hoppe, H. G., S. J. Kim & K. Gocke, 1988. Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake. Applied and Environmental Microbiology 54: 784–790.

    CAS  Google Scholar 

  • Houghton, J. D. R., T. K. Doyle, M. W. Wilson, J. Davenport & G. C. Hays, 2006. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate environment. Ecology 87: 1967–1972.

    Article  Google Scholar 

  • Keil, R. G. & D. L. Kirchman, 1993. Dissolved combined amino acids: chemical form and utilization by marine bacteria. Limnology and Oceanography 38: 1256–1270.

    Article  CAS  Google Scholar 

  • Kirchman, D. L., 2008. Introduction and overview. In Kirchman, D. L. (ed.), Microbial Ecology of the Ocean, 2nd edn. Wiley-Blackwell, New Jersey.

    Google Scholar 

  • Kirchman, D. L., E. K’Nees & R. Hodson, 1985. Leucin incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and Environmental Microbiology 49: 599–607.

    CAS  Google Scholar 

  • Kremer, P., 1975. Excretion and body composition of the ctenophore Mnemiopsis leidyi (A. Agassiz): comparison and consequences. In 10th European Symposium on Marine Biology, Ostend, Belgium: 351–362.

    Google Scholar 

  • Kremer, P., 1977. Respiration and excretion by the ctenophore Mnemiopsis leidyi. Marine Biology 71: 149–156.

    Article  Google Scholar 

  • Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusa from the northeast Pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.

    Article  Google Scholar 

  • Lee, S. H. & J. A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived bacterioplankton. Applied and Environmental Microbiology 53: 1298–1303.

    CAS  Google Scholar 

  • Lo, W. T. & I. L. Chen, 2008. Population succession and feeding of scyphomedusae, Aurelia aurita, in a eutrophic tropical lagoon in Taiwan. Estuarine Coastal and Shelf Science 76: 227–238.

    Article  Google Scholar 

  • Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.

    Article  Google Scholar 

  • Malej, A., V. Turk, D. Lučić & A. Benović, 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology 151: 827–841.

    Article  Google Scholar 

  • Martinez, L., D. C. Smith, G. F. Steward & F. Azam, 1996. Variability in the ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquatic Microbial Ecology 10: 223–230.

    Article  Google Scholar 

  • Mills, C. E., 1995. Medusae, siphonophores, and ctenophores as planktovorous predators in changing global ecosystem. ICES Journal of Marine Science 52: 575–581.

    Article  Google Scholar 

  • Muyzer, G. & K. Smalla, 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127–141.

    Article  CAS  Google Scholar 

  • Muyzer, G., E. D. Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59: 695–700.

    CAS  Google Scholar 

  • Passow, U. & A. L. Alldredge, 1994. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Marine Ecology Progress Series 113: 185–198.

    Article  Google Scholar 

  • Passow, U., A. L. Alldredge & B. E. Logan, 1994. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Research 41: 335–357.

    Article  CAS  Google Scholar 

  • Pinhassi, J., F. Azam, J. Hemphala, R. A. Long, J. Martinez, U. L. Zweifel & A. Hagstrom, 1999. Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquatic Microbial Ecology 17: 13–26.

    Article  Google Scholar 

  • Pitt, K. A., D. T. Welsh & R. H. Condon, 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorous cycling and plankton production. Hydrobiologia 616: 133–149.

    Article  CAS  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Purcell, J. E. & M. V. Sturdevant, 2001. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology Progress Series 210: 67–83.

    Article  Google Scholar 

  • Purcell, J. E., A. Malej & A. Benović, 1999. Potential links of jellyfish to eutrophication and fisheries. In Malone, T. C., A. Malej, L. W. Harding, N. Smodlaka & R. E. Turner (eds), Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea (Coastal and Estuarine Studies, 55). American Geophysical Union, Washington, DC: 241–263.

    Google Scholar 

  • Riemann, L., J. Titelman & U. Båmstedt, 2006. Links between jellyfish and microbes in a jellyfish dominated fjord. Marine Ecology Progress Series 325: 29–42.

    Article  CAS  Google Scholar 

  • Schafer, H., L. Bernard, C. Courties, et al., 2001. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in genetic diversity of bacterial populations. FEMS Microbiology Ecology 34: 243–253.

    Article  CAS  Google Scholar 

  • Schneider, G., 1989. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient generation in the Kiel Bight, western Baltic. Marine Biology 100: 507–514.

    Article  Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.

    Article  CAS  Google Scholar 

  • Simon, M., A. L. Alldredge & F. Azam, 1990. Bacterial carbon dynamics on marine snow. Marine Ecology Progress Series 65: 205–211.

    Article  CAS  Google Scholar 

  • Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucin. Marine Microbial Food Webs 6: 107–114.

    Google Scholar 

  • Stoecker, D. K., A. E. Michaels & L. H. Davis, 1987. Grazing by the jellyfish, Aurelia aurita, on microplankton. Journal of Plankton Research 9: 901–915.

    Article  Google Scholar 

  • Sullivan, B. K., J. R. Garcia & G. Klein-MacPhee, 1994. Prey selection by the scyphomedusan predator Aurelia aurita. Marine Biology 121: 335–341.

    Article  Google Scholar 

  • Thingstad, T. F., Å. Hagström & F. Rassoulzdadegan, 1997. Accumulation of degradable DOC in surface waters: it is caused by malfunctioning microbial loop? Limnology and Oceanography 42: 398–404.

    Article  CAS  Google Scholar 

  • Titelman, J., L. Riemann, T. A. Sørnes, T. Nilsen, B. Griekspoor & U. Båmstedt, 2006. Turnover of dead jellyfish: stimulation and retardation on microbial activity. Marine Ecology Progress Series 325: 43–58.

    Article  CAS  Google Scholar 

  • Turk, V., D. Lučić, V. Flander-Putrle & A. Malej, 2008. Feeding of Aurelia sp. (Scyphozoa) and links to the microbial food web. Marine Ecology 29: 495–505.

    Article  CAS  Google Scholar 

  • West, E. J., D. T. Welsh & K. A. Pitt, 2009. Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Hydrobiologia 616: 151–160.

    Article  CAS  Google Scholar 

  • Yamamoto, J., M. Hirose, T. Ohtani, K. Sugimoto, K. Hirase, N. Shimamoto, T. Shimura, N. Honda, Y. Fujimori & T. Mukai, 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Marine Biology 153: 311–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Turk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tinta, T., Malej, A., Kos, M., Turk, V. (2010). Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria. In: Purcell, J.E., Angel, D.L. (eds) Jellyfish Blooms: New Problems and Solutions. Developments in Hydrobiology 212, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9541-1_14

Download citation

Publish with us

Policies and ethics