Skip to main content

Response of Chrysaora quinquecirrha medusae to low temperature

  • Jellyfish Blooms
  • Chapter
Jellyfish Blooms: New Problems and Solutions

Part of the book series: Developments in Hydrobiology 212 ((DIHY,volume 212))

  • 954 Accesses

Abstract

Because of their high abundance in Chesapeake Bay, Chrysaora quinquecirrha medusae may be an important reservoir of organic matter. The timing and location of the decomposition of biomass from medusae may have implications for carbon cycling in the bay. Our objective was to identify the cause of C. quinquecirrha medusa disappearance to better understand when and where decomposition occurs. A time series of visual surface counts and vertical net hauls in the Choptank River, a tributary of Chesapeake Bay, showed that as temperatures approached 15°C, C. quinquecirrha medusae disappeared from the surface, but persisted in net hauls until temperatures reached 10°C. In order to test whether medusae sink upon cooling, we exposed C. quinquecirrha medusae to low temperatures in large static tanks and measured their depth and pulsation rates twice daily for at least 6 days. This procedure was repeated three times through the 2008 jellyfish season. On average, individuals exposed to temperatures below 15°C were found deeper and pulsed slower than those in the warmer control tank. This suggests that low temperatures cause the medusae to sink before cooling to the limit of their physiological tolerance and may have implications for the deposition of organic matter associated with the seasonal disappearance of medusae from Chesapeake Bay.

Guest editors: J. E. Purcell & Dror Angel / Jellyfish Blooms: New Problems and Solutions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behrends, G. & G. Schneider, 1995. Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Marine Ecology Progress Series 127: 39–45.

    Article  Google Scholar 

  • Billet, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.

    Article  Google Scholar 

  • Breitburg, D. L. & R. S. Fulford, 2006. Oyster-sea nettle interdependence and altered control within the Chesapeake Bay ecosystem. Estuaries and Coasts 29: 776–784.

    Google Scholar 

  • Cargo, D. G., 1976. Some effects of tropical storm Agnes on the sea nettle population in the Chesapeake Bay. In Davis, J. & B. Laird (eds), The Effects of Tropical Storm Agnes on the Chesapeake Bay Estuarine System. Chesapeake Bay Consortium, Inc. Publ. No. 54: 417–424.

    Google Scholar 

  • Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13: 486–491.

    Article  Google Scholar 

  • Cargo, D. G. & G. E. Rabenold, 1980. Observations on the asexual reproductive activities of the sessile stages of the sea nettle Chrysaora quinquecirrha (Scyphozoa). Estuaries 3: 20–27.

    Article  Google Scholar 

  • Cargo, D. G. & L. P. Schultz, 1967. Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Science 8: 209–220.

    Article  Google Scholar 

  • Condon, R. H. & D. K. Steinberg, 2008. Development, biological regulation, and fate of ctenophore blooms in the York River Estuary, Chesapeake Bay. Marine Ecology Progress Series 369: 153–168.

    Article  Google Scholar 

  • Cowan, J. H. & E. D. Houde, 1993. Relative predation potentials of scyphomedusae, ctenophores and planktivorous fish on ichthyoplankton in Chesapeake Bay. Marine Ecology Progress Series 95: 55–65.

    Article  Google Scholar 

  • Decker, M. B., C. W. Brown, R. R. Hood, J. E. Purcell, T. F. Gross, J. C. Matanoski, R. O. Bannon & E. M. Setzler-Hammilton, 2007. Predicting the distribution of the scyphozomedusa Chrysaora quinquecirrha in Chesapeake Bay. Marine Ecology Progress Series 329: 99–113.

    Article  Google Scholar 

  • Feigenbaum, D. & M. Kelly, 1984. Changes in the lower Chesapeake Bay food chain in presence of the sea nettle Chrysaora quinquecirrha (Schyphomedusa). Marine Ecology Progress Series 19: 39–47.

    Article  Google Scholar 

  • Fisher, T. R., J. D. Hagy & E. Rochelle-Newall, 1998. Dissolved and particulate organic carbon in Chesapeake Bay. Estuaries 21: 215–229.

    Article  CAS  Google Scholar 

  • Fisher, T. R., J. D. Hagy, W. R. Boynton & M. R. Williams, 2006. Cultural eutrophication in the Choptank and Patuxent estuaries of Chesapeake Bay. Limnology and Oceanography 51: 435–447.

    Article  CAS  Google Scholar 

  • Gatz, A. J., V. S. Kennedy & J. A. Mihurski, 1973. Effects of temperature on activity and mortality of the scyphozoan medusa, Chrysaora quinquecirrha. Chesapeake Science 14: 171–180.

    Article  Google Scholar 

  • Hagy III, J. D., W. R. Boynton & D. A. Jasinski, 2005. Modelling phytoplankton deposition to Chesapeake Bay sediments during winter-spring: interannual variability in relation to river flow. Estuarine, Coastal and Shelf Science 62: 25–40.

    Article  CAS  Google Scholar 

  • Kemp, W. M., E. M. Smith, M. Marvin-DiPasquale & W. R. Boynton, 1997. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecology Progress Series 150: 229–248.

    Article  CAS  Google Scholar 

  • Kemp, W. M., W. R. Boynton, J. E. Adolf, D. F. Boesch, W. C. Boicourt, G. Brush, J. C. Cornwell, T. R. Fisher, P. M. Glibert, J. D. Hagy, L. W. Harding, E. D. Houde, D. G. Kimmel, W. D. Miller, R. E. I. Newell, M. R. Roman, E. M. Smith & J. C. Stevenson, 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Matanoski, J. C., R. R. Hood & J. E. Purcell, 2001. Characterizing the effect of prey on swimming and feeding efficiency of the scyphomedusa Chrysaora quinquecirrha. Marine Biology 139: 191–200.

    Article  Google Scholar 

  • Mills, C. E., 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Science 52: 575–581.

    Article  Google Scholar 

  • Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68.

    Article  Google Scholar 

  • Nemazie, D. A., J. E. Purcell & P. M. Glibert, 1993. Ammonium excretion by gelatinous zooplankton and their contribution to the ammonium requirements of microplankton in Chesapeake Bay. Marine Biology 116: 451–458.

    Article  CAS  Google Scholar 

  • Pitt, K. A., D. T. Welsh & R. H. Condon, 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616: 133–149.

    Article  CAS  Google Scholar 

  • Purcell, J. E., 1992. Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Chesapeake Bay. Marine Ecology Progress Series 87: 65–76.

    Article  Google Scholar 

  • Purcell, J. E. & M. B. Decker, 2005. Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnology and Oceanography 50: 376–387.

    Article  Google Scholar 

  • Purcell, J. E., D. A. Nemazie, S. E. Dorsey, E. D. Houde & J. C. Gamble, 1994a. Predation mortality of bay anchovy Anchoa mitchelli eggs and larvae due to scyphomedusae and ctenophores in Chesapeake Bay. Marine Ecology Progress Series 114: 47–58.

    Article  Google Scholar 

  • Purcell, J. E., J. R. White & M. R. Roman, 1994b. Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeake Bay. Limnology and Oceanography 39: 263–278.

    Article  Google Scholar 

  • Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series 180: 187–196.

    Article  Google Scholar 

  • Riemann, L., J. Titelman & U. Bamstedt, 2006. Links between jellyfish and microbes in a jellyfish dominated fjord. Marine Ecology Progress Series 325: 29–42.

    Article  CAS  Google Scholar 

  • Schuyler, Q. & B. K. Sullivan, 1997. Light responses and diel migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms. Journal of Plankton Research 19: 1417–1427.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W. H. Freeman and Co., New York.

    Google Scholar 

  • Tinta, T., A. Malej, M. Kos & V. Turk, 2010. Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria. Hydrobiologia. doi:10.1007/s10750-010-0223-x.

  • Titelman, J., L. Riemann, T. A. Sornes, T. Nilsen, P. Griekspoor & U. Bamstedt, 2006. Turnover of dead jellyfish: stimulation and retardation of microbial activity. Marine Ecology Progress Series 325: 43–58.

    Article  CAS  Google Scholar 

  • West, E. J., D. T. Welch & K. A. Pitt, 2009. Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Hydrobiologia 616: 151–160.

    Article  CAS  Google Scholar 

  • Yamamoto, J., M. Hirose, T. Ohtani, K. Sugimoto, K. Hirase, N. Shimamoto, T. Shimura, N. Honda, Y. Fujimori & T. Mukai, 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Marine Biology 153: 311–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Sexton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sexton, M.A., Hood, R.R., Sarkodee-adoo, J., Liss, A.M. (2010). Response of Chrysaora quinquecirrha medusae to low temperature. In: Purcell, J.E., Angel, D.L. (eds) Jellyfish Blooms: New Problems and Solutions. Developments in Hydrobiology 212, vol 212. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9541-1_10

Download citation

Publish with us

Policies and ethics