Skip to main content

Functional Impacts of Signal Integration: Regulation of Inflammation-Related Transcription Factors by Heterotrimeric G Proteins

  • Chapter
  • First Online:
From Molecular to Modular Tumor Therapy

Part of the book series: The Tumor Microenvironment ((TTME,volume 3))

Abstract

Oncogenic mutations of G proteins and G protein-coupled receptors (GPCRs) have been identified in various endocrine tumors for almost 20 years. Chronic inflammation contributes to tumorigenesis by the induction of cytokine and chemokine production and leukocyte infiltration. Many inflammatory mediators and chemoattractants elicit their effects by stimulating specific GPCRs. The subsequent activation of various G proteins often results in the modulation of transcription factors via complex signaling networks. Human herpesviruses can even resort to hijacking such control by making their own constitutive GPCRs that eventually lead to the development of Kaposi’s sarcoma. Increasing evidence indicates that inflammation-related transcription factors such as STAT3 and NFκB are common effectors of converging streams of G protein signals, which further signifies the importance of G protein-mediated regulations of inflammatory actions and tumorigenesis. This chapter aims to review the regulations of transcription factors mediated by G proteins and the biological relevance of cross-communications between different signaling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A1R, A2AR, A2BR, A3R:

Types 1, 2A, 2B and 3 adenosine receptors

Akt:

Protein kinase B

AP-1:

Activator protein-1

AT1R:

Type 1 angiotension II receptor

ATF-2:

Activating transcription factor-2

ASMC:

Airway smooth muscle cells

Bax:

Bcl-2-associated X protein

Bcl-2:

B-cell CLL/lymphoma 2

bFGF:

Basic fibroblast growth factor

BK1R, BK2R:

Types 1 and 2 bradykinin receptors

BLT1, BLT2 :

Types 1 and 2 leukotriene B4 receptors

C5a:

Complement 5a

cAMP:

Cyclic AMP

CaM:

Calmodulin

CaMKII:

Calmodulin kinase II

CBP:

CREB-binding protein

CCR:

CC chemokine receptor

C/EBPδ:

CCAAT/enhancer binding protein δ

CHO:

Chinese hamster ovary cells

COX-2:

Cyclooxygenase-2

CREB:

Cyclic AMP-responsive element binding protein

c-Src:

Cellular-sarcoma

CXCR:

CXC chemokine receptor

DAG:

Diacylglycerol

Egr-3:

Early growth response-3

EGF:

Epidermal growth factor

EP4:

Prostaglandin E4 receptor

Epac:

Exchange proteins directly activated by cAMP

EPRAP:

EP4 receptor-associated protein

ERK:

Extracellular signal-regulated kinase

fMLP:

N-formyl-methionyl-leucyl-phenylalaine

G-CSF:

Granulocyte colony-stimulating factor

GM-CSF:

Granulocyte/macrophage colony-stimulating factor

G protein:

Heterotrimeric guanine nucleotide binding regulatory protein

GPCR:

G protein-coupled receptor

GRPR:

Gastrin-releasing peptide-preferring receptor

H1R, H2R:

Types 1 and 2 histamine receptors

HCMV:

Human cytomegalovirus

hBD-3:

Human β-defensin-3

HEK293:

Human embryonic kidney 293 cells

HEL:

Human erythroleukemia cells

hIP:

Human prostacyclin receptor

HUVEC:

Human umbilical vein endothelial cells

ICAM-1:

Intercellular cell adhesion molecule-1

IFN-γ:

Interferon-γ

IκB:

Inhibitor of κB

IKK:

Inhibitor of κB kinase

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IP3 :

Inositol trisphosphate

Jak:

Janus kinase

JNK:

c-Jun N-terminal kinase

KSHV-GPCR:

Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor

LHSCC:

Laryngeal and hypopharyngeal squamous cell carcinomas

LPA:

Lysophosphatidic acid

LPS:

Lipopolysaccharide

mAKAP:

Muscle A kinase-anchoring protein

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemotactic protein-1

M-CSF:

Macrophage-colony stimulating factor

Mcl-1:

Myeloid cell leukemia sequence 1

MEK1/2:

Mitogen-activated protein kinase kinase 1/2

MIP-1α:

Macrophage inflammatory protein-1α

MIP-1β:

Macrophage inflammatory protein-1β

MMP:

Matrix metallopeptidase

NFAT:

Nuclear factor of activated T-cells

NFκB:

Nuclear factor κB

NPC:

Nasopharyngeal carcinoma

p38:

p38 mitogen-activated protein kinase

PAF:

Platelet-activating factor

PAI-1:

Plasminogen activator inhibitor-1

PAR:

Protease-activated receptor

PDK-1:

3′-phosphoinositide-dependent protein kinase-1

PGE2:

Prostanglandin E2

PI3K:

Phosphatidylinositol 3-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PIP2:

Phosphatidylinositol bisphosphate

PLC:

Phospholipase C

PPAR:

Peroxisome proliferator-activated receptor

ROS:

Reactive oxygen species

RyR2:

Ryanodine receptor 2

SST2R, SST4R:

Types 2 and 4 somatostatin receptors

STAT:

Signal transducer and activator of transcription

Tac1:

Tachykinin 1

TIMP-1:

Tissue inhibitor of metalloprotease-1

TNF-α:

Tumor necrosis factor-α

TRAIL:

TNF-related apoptosis-inducing ligand

TXA2 :

Thromboxane A2 receptor

Tyk2:

Tyrosine kinase 2

US28:

Viral chemokine receptor US28

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

VSMC:

Vascular smooth muscle cells.

References

  1. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  2. Harkins L, Volk AL, Samanta M et al (2002) Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360:1557–1563

    Article  PubMed  CAS  Google Scholar 

  3. Cobbs CS, Harkins L, Samanta M et al (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62:3347–3350

    PubMed  CAS  Google Scholar 

  4. Chang Y, Cesarman E, Pessin MS et al (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    Article  PubMed  CAS  Google Scholar 

  5. Cesarman E, Chang Y, Moore PS et al (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191

    Article  PubMed  CAS  Google Scholar 

  6. Liang C, Lee JS, Jung JU (2008) Immune evasion in Kaposi’s sarcoma-associated herpes virus associated oncogenesis. Semin Cancer Biol 18:423–436

    Article  PubMed  CAS  Google Scholar 

  7. Burger M, Burger JA, Hoch RC et al (1999) Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi’s sarcoma herpesvirus-G protein-coupled receptor. J Immunol 163:2017–2022

    PubMed  CAS  Google Scholar 

  8. Parma J, Duprez L, Van Sande J et al (1993) Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365:649–651

    Article  PubMed  CAS  Google Scholar 

  9. Hirakawa T, Ascoli M (2003) A constitutively active somatic mutation of the human lutropin receptor found in Leydig cell tumors activates the same families of G proteins as germ line mutations associated with Leydig cell hyperplasia. Endocrinology 144:3872–3878

    Article  PubMed  CAS  Google Scholar 

  10. Sadana R, Dessauer CW (2009) Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17:5–22

    Article  PubMed  CAS  Google Scholar 

  11. Mizuno N, Itoh H (2009) Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals 17:42–54

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki N, Hajicek N, Kozasa T (2009) Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 17:55–70

    Article  PubMed  CAS  Google Scholar 

  13. Ho MK, Su Y, Yeung WW et al (2009) Regulation of transcription factors by heterotrimeric G proteins. Curr Mol Pharmacol 2:19–31

    PubMed  CAS  Google Scholar 

  14. Lyons J, Landis CA, Harsh G et al (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659

    Article  PubMed  CAS  Google Scholar 

  15. Hermouet S, Aznavoorian S, Spiegel AM (1996) In vitro and in vivo growth inhibition of murine melanoma K-1735 cell by a dominant negative mutant α subunit of the Gi2 protein. Cell Signal 8:159–166

    Article  PubMed  CAS  Google Scholar 

  16. Rudolph U, Finegold MJ, Rich SS et al (1995) Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nat Genet 10:143–150

    Article  PubMed  CAS  Google Scholar 

  17. Van Raamsdonk CD, Bezrookove V, Green G et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602

    Article  PubMed  CAS  Google Scholar 

  18. Kumar RN, Shore SK, Dhanasekaran N (2006) Neoplastic transformation by the gep oncogene, Gα12, involves signaling by STAT3. Oncogene 25:899–906

    Article  PubMed  CAS  Google Scholar 

  19. Liu SC, Jen YM, Jiang SS et al (2009) Gα12-mediated pathway promotes invasiveness of nasopharyngeal carcinoma by modulating actin cytoskeleton reorganization. Cancer Res 69:6122–6130

    Article  PubMed  CAS  Google Scholar 

  20. Chen ZJ (2005) Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol 7:758–765

    Article  PubMed  CAS  Google Scholar 

  21. Nam NH (2006) Naturally occurring NF-κB inhibitors. Mini Rev Med Chem 6:945–951

    Article  PubMed  CAS  Google Scholar 

  22. Bollrath J, Greten F (2009) IKK/NF-κB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep 10:1314–1319

    Article  PubMed  CAS  Google Scholar 

  23. Coge F, Guenin SP, Rique H et al (2001) Structure and expression of the human histamine H4-receptor gene. Biochem Biophys Res Commun 284:301–309

    Article  PubMed  CAS  Google Scholar 

  24. Zampeli E, Tiligada E (2009) The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol 157:24–33

    Article  PubMed  CAS  Google Scholar 

  25. Dunford PJ, O’Donnell N, Riley JP et al (2006) The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J Immunol 176:7062–7070

    PubMed  CAS  Google Scholar 

  26. Matsuda N, Teramae H, Futatsugi M et al (2009) Up-Regulation of Histamine H4 receptors contributes to splenic apoptosis in septic mice: counteraction of the anti-apoptotic action of nuclear factor-κB. J Pharmacol Exp Ther (in press)

    Google Scholar 

  27. Schwarz M, Murphy PM (2001) Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κB and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 167:505–513

    PubMed  CAS  Google Scholar 

  28. Webb PR, Wang KQ, Scheel-Toellner D et al (2000) Regulation of neutrophil apoptosis: a role for protein kinase C and phosphatidylinositol-3-kinase. Apoptosis 5:451–458

    Article  PubMed  CAS  Google Scholar 

  29. Ali AS, Ali S, El-Rayes BF et al (2009) Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev 35:1–8

    Article  PubMed  CAS  Google Scholar 

  30. Marais R, Light Y, Mason C et al (1998) Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 280:109–112

    Article  PubMed  CAS  Google Scholar 

  31. Belcheva MM, Coscia CJ (2002) Diversity of G protein-coupled receptor signaling pathways to ERK/MAP kinase. Neurosignals 11:34–44

    Article  PubMed  CAS  Google Scholar 

  32. Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283:125–134

    Article  PubMed  CAS  Google Scholar 

  33. Aggarwal BB, Shishodia S, Sandur SK et al (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    Article  PubMed  CAS  Google Scholar 

  34. Brechter AB, Persson E, Lundgren I et al (2008) Kinin B1 and B2 receptor expression in osteoblasts and fibroblasts is enhanced by interleukin-1 and tumour necrosis factor-α. Effects dependent on activation of NF-κB and MAP kinases. Bone 43:72–83

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14:377–386

    Article  PubMed  CAS  Google Scholar 

  36. Wang MT, Honn KV, Nie D (2007) Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev 26:525–534

    Article  PubMed  CAS  Google Scholar 

  37. Brechter AB, Lerner UH (2007) Bradykinin potentiates cytokine-induced prostaglandin biosynthesis in osteoblasts by enhanced expression of cyclooxygenase 2, resulting in increased RANKL expression. Arthritis Rheum 56:910–923

    Article  PubMed  CAS  Google Scholar 

  38. Chen BC, Yu CC, Lei HC et al (2004) Bradykinin B2 receptor mediates NF-κB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells. J Immunol 173:5219–5228

    PubMed  CAS  Google Scholar 

  39. Hsieh HL, Wang HH, Wu CY et al (2007) BK-induced COX-2 expression via PKC-δ-dependent activation of p42/p44 MAPK and NF-κB in astrocytes. Cell Signal 19:330–340

    Article  PubMed  CAS  Google Scholar 

  40. Hsieh HL, Sun CC, Wang TS et al (2008) PKC-δ/c-Src-mediated EGF receptor transactivation regulates thrombin-induced COX-2 expression and PGE2 production in rat vascular smooth muscle cells. Biochim Biophys Acta 1783:1563–1575

    Article  PubMed  CAS  Google Scholar 

  41. Bollrath J, Phesse TJ, von Burstin VA et al (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15:91–102

    Article  PubMed  CAS  Google Scholar 

  42. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    Article  PubMed  CAS  Google Scholar 

  43. Kortylewski M, Xin H, Kujawski M et al (2009) Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15:114–123

    Article  PubMed  CAS  Google Scholar 

  44. Burger M, Hartmann T, Burger JA et al (2005) KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway. Oncogene 24:2067–2075

    Article  PubMed  CAS  Google Scholar 

  45. Bhat GJ, Thekkumkara TJ, Thomas WG et al (1995) Activation of the STAT pathway by angiotensin II in T3CHO/AT1A cells. Cross-talk between angiotensin II and interleukin-6 nuclear signaling. J Biol Chem 270:19059–19065

    Article  PubMed  CAS  Google Scholar 

  46. Marrero MB, Schieffer B, Paxton WG et al (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375:247–250

    Article  PubMed  CAS  Google Scholar 

  47. Briest W, Rassler B, Deten A et al (2003) Norepinephrine-induced interleukin-6 increase in rat hearts: differential signal transduction in myocytes and non-myocytes. Pflugers Arch 446:437–446

    Article  PubMed  CAS  Google Scholar 

  48. Gonzalez-Cabrera PJ, Gaivin RJ, Yun J et al (2003) Genetic profiling of α1-adrenergic receptor subtypes by oligonucleotide microarrays: coupling to interleukin-6 secretion but differences in STAT3 phosphorylation and gp-130. Mol Pharmacol 63:1104–1116

    Article  PubMed  CAS  Google Scholar 

  49. Yin F, Li P, Zheng M et al (2003) Interleukin-6 family of cytokines mediates isoproterenol-induced delayed STAT3 activation in mouse heart. J Biol Chem 278:21070–21075

    Article  PubMed  CAS  Google Scholar 

  50. Bhat GJ, Baker KM (1997) Angiotensin II stimulates rapid serine phosphorylation of transcription factor Stat3. Mol Cell Biochem 170:171–176

    Article  PubMed  CAS  Google Scholar 

  51. Chen X, Wang J, Zhou F et al (2003) STAT proteins mediate angiotensin II-induced production of TIMP-1 in human proximal tubular epithelial cells. Kidney Int 64:459–467

    Article  PubMed  CAS  Google Scholar 

  52. Huang W, Yu LF, Zhong J et al (2009) Stat3 is involved in angiotensin II-induced expression of MMP2 in gastric cancer cells. Dig Dis Sci 54:2056–2062

    Article  PubMed  CAS  Google Scholar 

  53. Sahar S, Dwarakanath RS, Reddy MA et al (2005) Angiotensin II enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells: a novel cross-talk in the pathogenesis of atherosclerosis. Circ Res 96:1064–1071

    Article  PubMed  CAS  Google Scholar 

  54. Wang XD, Chen XM, Wang JZ et al (2006) Signal transducers and activators of transcription 3 mediates up-regulation of angiotensin II-induced tissue inhibitor of metalloproteinase-1 expression in cultured human senescent fibroblasts. Chin Med J (Engl) 119:1094–1102

    CAS  Google Scholar 

  55. Corre I, Baumann H, Hermouet S (1999) Regulation by Gi2 proteins of v-fms-induced proliferation and transformation via Src-kinase and STAT3. Oncogene 18:6335–6342

    Article  PubMed  CAS  Google Scholar 

  56. Liu AM, Lo RK, Wong CS et al (2006) Activation of STAT3 by Gαs distinctively requires protein kinase A, JNK, and phosphatidylinositol 3-kinase. J Biol Chem 281:35812–35825

    Article  PubMed  CAS  Google Scholar 

  57. Lo RK, Cheung H, Wong YH (2003) Constitutively active Gα16 stimulates STAT3 via a c-Src/JAK- and ERK-dependent mechanism. J Biol Chem 278:52154–52165

    Article  PubMed  CAS  Google Scholar 

  58. Borner C, Kraus J, Schroder H et al (2004) Transcriptional regulation of the human mu-opioid receptor gene by interleukin-6. Mol Pharmacol 66:1719–1726

    Article  PubMed  CAS  Google Scholar 

  59. Lo RK, Wise H, Wong YH (2006) Prostacyclin receptor induces STAT1 and STAT3 phosphorylations in human erythroleukemia cells: a mechanism requiring PTX-insensitive G proteins, ERK and JNK. Cell Signal 18:307–317

    Article  PubMed  CAS  Google Scholar 

  60. Sakhalkar SP, Patterson EB, Khan MM (2005) Involvement of histamine H1 and H2 receptors in the regulation of STAT-1 phosphorylation: inverse agonism exhibited by the receptor antagonists. Int Immunopharmacol 5:1299–1309

    Article  PubMed  CAS  Google Scholar 

  61. Wong M, Fish EN (1998) RANTES and MIP-1α activate stats in T cells. J Biol Chem 273:309–314

    Article  PubMed  CAS  Google Scholar 

  62. Suzuki Y, Ozawa Y, Murakami K et al (1997) Lysophosphatidic acid inhibits epidermal-growth-factor-induced Stat1 signaling in human epidermoid carcinoma A431 cells. Biochem Biophys Res Commun 240:856–861

    Article  PubMed  CAS  Google Scholar 

  63. Lee H, Herrmann A, Deng JH et al (2009) Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell 15:283–293

    Article  PubMed  CAS  Google Scholar 

  64. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  CAS  Google Scholar 

  65. Yu Z, Zhang W, Kone BC (2002) Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor κB. Biochem J 367:97–105

    Article  PubMed  CAS  Google Scholar 

  66. Pende M, Fisher TL, Simpson PB et al (1997) Neurotransmitter- and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C, and mitogen-activated protein kinase/ribosomal S6 kinase pathway. J Neurosci 17:1291–1301

    PubMed  CAS  Google Scholar 

  67. Andrisani OM (1999) CREB-mediated transcriptional control. Crit Rev Eukaryot Gene Expr 9:19–32

    PubMed  CAS  Google Scholar 

  68. Choi YJ, Kim SY, Oh JM et al (2009) Stimulatory heterotrimeric G protein augments γ ray-induced apoptosis by up-regulation of Bak expression via CREB and AP-1 in H1299 human lung cancer cells. Exp Mol Med 41:592–600

    Article  PubMed  CAS  Google Scholar 

  69. Pham H, Vincenti R, Slice LW (2008) COX-2 promoter activation by AT1R-Gq-PAK-p38β signaling in intestinal epithelial cells. Biochim Biophys Acta 1779:408–413

    Article  PubMed  CAS  Google Scholar 

  70. Melnikova V, Bar-Eli M (2007) Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Rev 26:359–371

    Article  PubMed  CAS  Google Scholar 

  71. Maussang D, Verzijl D, van Walsum M et al (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 103:13068–13073

    Article  PubMed  CAS  Google Scholar 

  72. McLean KA, Holst PJ, Martini L et al (2004) Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology 325:241–251

    Article  PubMed  CAS  Google Scholar 

  73. Gupta S, Campbell D, Derijard B et al (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267:389–393

    Article  PubMed  CAS  Google Scholar 

  74. Reimold AM, Kim J, Finberg R et al (2001) Decreased immediate inflammatory gene induction in activating transcription factor-2 mutant mice. Int Immunol 13:241–248

    Article  PubMed  CAS  Google Scholar 

  75. Tchivileva IE, Tan KS, Gambarian M et al (2009) Signaling pathways mediating β3-adrenergic receptor-induced production of interleukin-6 in adipocytes. Mol Immunol 46:2256–2266

    Article  PubMed  CAS  Google Scholar 

  76. Chan AS, Yeung WW, Wong YH (2005) Integration of G protein signals by extracellular signal-regulated protein kinases in SK-N-MC neuroepithelioma cells. J Neurochem 94:1457–1470

    Article  PubMed  CAS  Google Scholar 

  77. Shaw KT, Ho AM, Raghavan A et al (1995) Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc Natl Acad Sci USA 92:11205–11209

    Article  PubMed  CAS  Google Scholar 

  78. Jain J, McCaffrey PG, Miner Z et al (1993) The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature 365:352–355

    Article  PubMed  CAS  Google Scholar 

  79. Kaminuma O (2008) Selective inhibitors of nuclear factor of activated T cells: potential therapeutic drugs for the treatment of immunological and inflammatory diseases. Inflamm Allergy Drug Targets 7:35–40

    Article  PubMed  CAS  Google Scholar 

  80. Pare GC, Bauman AL, McHenry M et al (2005) The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling. J Cell Sci 118:5637–5646

    Article  PubMed  CAS  Google Scholar 

  81. Boss V, Abbott KL, Wang XF et al (1998) The cyclosporin A-sensitive nuclear factor of activated T cells (NFAT) proteins are expressed in vascular smooth muscle cells. Differential localization of NFAT isoforms and induction of NFAT-mediated transcription by phospholipase C-coupled cell surface receptors. J Biol Chem 273:19664–19671

    Article  PubMed  CAS  Google Scholar 

  82. Bueno C, Lemke CD, Criado G et al (2006) Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Gα11-dependent, PLC-β-mediated pathway. Immunity 25:67–78

    Article  PubMed  CAS  Google Scholar 

  83. Fujii T, Onohara N, Maruyama Y et al (2005) Gα12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. J Biol Chem 280:23041–23047

    Article  PubMed  CAS  Google Scholar 

  84. Nishida M, Onohara N, Sato Y et al (2007) Gα12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through nuclear factor of activated T cells activation. J Biol Chem 282:23117–23128

    Article  PubMed  CAS  Google Scholar 

  85. Liu X, Liu T, Slusarski DC et al (1999) Activation of a frizzled-2/β-adrenergic receptor chimera promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via Gαo and Gαt. Proc Natl Acad Sci USA 96:14383–14388

    Article  PubMed  CAS  Google Scholar 

  86. Slusarski DC, Corces VG, Moon RT (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390:410–413

    Article  PubMed  CAS  Google Scholar 

  87. Chan AS, Wong YH (2005) Gq-mediated activation of c-Jun N-terminal kinase by the gastrin-releasing peptide-preferring bombesin receptor is inhibited upon costimulation of the Gs-coupled dopamine D1 receptor in COS-7 cells. Mol Pharmacol 68:1354–1364

    Article  PubMed  CAS  Google Scholar 

  88. Takeya H, Gabazza EC, Aoki S et al (2003) Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells. Blood 102:1693–1700

    Article  PubMed  CAS  Google Scholar 

  89. Tan X, Sanders P, Bolado J, Jr. et al (2003) Integration of G-protein coupled receptor signaling pathways for activation of a transcription factor (EGR-3). Genom Proteom Bioinform 1:173–179

    CAS  Google Scholar 

  90. Lowes VL, Ip NY, Wong YH (2002) Integration of signals from receptor tyrosine kinases and G protein-coupled receptors. Neurosignals 11:5–19

    Article  PubMed  CAS  Google Scholar 

  91. Chan AS, Wong YH (2004) Epidermal growth factor differentially augments Gi-mediated stimulation of c-Jun N-terminal kinase activity. Br J Pharmacol 142:635–646

    Article  PubMed  CAS  Google Scholar 

  92. Shao J, Evers BM, Sheng H (2004) Prostaglandin E2 synergistically enhances receptor tyrosine kinase-dependent signaling system in colon cancer cells. J Biol Chem 279:14287–14293

    Article  PubMed  CAS  Google Scholar 

  93. Guillermet-Guibert J, Saint-Laurent N, Davenne L et al (2007) Novel synergistic mechanism for sst2 somatostatin and TNFα receptors to induce apoptosis: crosstalk between NF-κB and JNK pathways. Cell Death Differ 14:197–208

    Article  PubMed  CAS  Google Scholar 

  94. Lee MM, Wong YH (2009) CCR1-mediated activation of nuclear factor-κB in THP-1 monocytic cells involves pertussis toxin-insensitive Gα14 and Gα16 signaling cascades. J Leukoc Biol 86:1319–1329

    Article  PubMed  CAS  Google Scholar 

  95. Lo RK, Liu AM, Wise H et al (2008) Prostacyclin receptor-induced STAT3 phosphorylation in human erythroleukemia cells is mediated via Gαs and Gα16 hybrid signaling. Cell Signal 20:2095–2106

    Article  PubMed  CAS  Google Scholar 

  96. Blaukat A, Barac A, Cross MJ et al (2000) G protein-coupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Gαq and Gαi signals. Mol Cell Biol 20:6837–6848

    Article  PubMed  CAS  Google Scholar 

  97. Rallabhandi P, Nhu QM, Toshchakov VY et al (2008) Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. J Biol Chem 283:24314–24325

    Article  PubMed  CAS  Google Scholar 

  98. Chen BC, Lin WW (2001) PKC- and ERK-dependent activation of IκB kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation. Br J Pharmacol 134:1055–1065

    Article  PubMed  CAS  Google Scholar 

  99. Baud V, Karin M (2009) Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8:33–40

    Article  PubMed  CAS  Google Scholar 

  100. Groner B, Lucks P, Borghouts C (2008) The function of Stat3 in tumor cells and their microenvironment. Semin Cell Dev Biol 19:341–350

    Article  PubMed  CAS  Google Scholar 

  101. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94

    Article  PubMed  CAS  Google Scholar 

  102. Liu AM, Wong YH (2004) G16-mediated activation of nuclear factor κB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling. J Biol Chem 279:53196–53204

    Article  PubMed  CAS  Google Scholar 

  103. Brasier AR, Jamaluddin M, Han Y et al (2000) Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-κB (NF-κB) transcription factor. Mol Cell Biochem 212:155–169

    Article  PubMed  CAS  Google Scholar 

  104. Wolf G, Wenzel U, Burns KD et al (2002) Angiotensin II activates nuclear transcription factor-κB through AT1 and AT2 receptors. Kidney Int 61:1986–1995

    Article  PubMed  CAS  Google Scholar 

  105. Guo RW, Yang LX, Wang H et al (2008) Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-κB-dependent pathway in vascular smooth muscle cells. Regul Pept 147:37–44

    Article  PubMed  CAS  Google Scholar 

  106. Tham DM, Martin-McNulty B, Wang YX et al (2002) Angiotensin II is associated with activation of NF-κB-mediated genes and downregulation of PPARs. Physiol Genomics 11:21–30

    PubMed  CAS  Google Scholar 

  107. Lee CH, Shieh DC, Tzeng CY et al (2008) Bradykinin-induced IL-6 expression through bradykinin B2 receptor, phospholipase C, protein kinase Cδ and NF-κB pathway in human synovial fibroblasts. Mol Immunol 45:3693–3702

    Article  PubMed  CAS  Google Scholar 

  108. Pan ZK, Ye RD, Christiansen SC et al (1998) Role of the Rho GTPase in bradykinin-stimulated nuclear factor-κB activation and IL-1β gene expression in cultured human epithelial cells. J Immunol 160:3038–3045

    PubMed  CAS  Google Scholar 

  109. Pan ZK, Zuraw BL, Lung CC et al (1996) Bradykinin stimulates NF-κB activation and interleukin 1β gene expression in cultured human fibroblasts. J Clin Invest 98:2042–2049

    Article  PubMed  CAS  Google Scholar 

  110. Ehrenfeld P, Matus CE, Pavicic F et al (2009) Kinin B1 receptor activation turns on exocytosis of matrix metalloprotease-9 and myeloperoxidase in human neutrophils: involvement of mitogen-activated protein kinase family. J Leukoc Biol 86:1179–1189

    Article  PubMed  CAS  Google Scholar 

  111. Hsieh HL, Wu CY, Yang CM (2008) Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-δ-dependent ERK/Elk-1 pathway in astrocytes. Glia 56:619–632

    Article  PubMed  Google Scholar 

  112. Hsieh HL, Yen MH, Jou MJ et al (2004) Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 16:1163–1176

    Article  PubMed  CAS  Google Scholar 

  113. Levine L, Lucci JA, 3rd, Pazdrak B et al (2003) Bombesin stimulates nuclear factor κB activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63:3495–3502

    PubMed  CAS  Google Scholar 

  114. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  PubMed  CAS  Google Scholar 

  115. Huang CY, Lee CY, Chen MY et al (2009) Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-κB-dependent pathways. J Cell Physiol 221:204–212

    Article  PubMed  CAS  Google Scholar 

  116. Huang YC, Hsiao YC, Chen YJ et al (2007) Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-κB-dependent pathway in human lung cancer cells. Biochem Pharmacol 74:1702–1712

    Article  PubMed  CAS  Google Scholar 

  117. Lu DY, Tang CH, Yeh WL et al (2009) SDF-1α up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NF-κB-dependent pathway in microglia. Eur J Pharmacol 613:146–154

    Article  PubMed  CAS  Google Scholar 

  118. Chandrasekar B, Bysani S, Mummidi S (2004) CXCL16 signals via Gi, phosphatidylinositol 3-kinase, Akt, IκB kinase, and nuclear factor-κB and induces cell-cell adhesion and aortic smooth muscle cell proliferation. J Biol Chem 279:3188–3196

    Article  PubMed  CAS  Google Scholar 

  119. Ko J, Kim IS, Jang SW et al (2002) Leukotactin-1/CCL15-induced chemotaxis signaling through CCR1 in HOS cells. FEBS Lett 515:159–164

    Article  PubMed  CAS  Google Scholar 

  120. Viedt C, Dechend R, Fei J et al (2002) MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-κB and activating protein-1. J Am Soc Nephrol 13:1534–1547

    Article  PubMed  CAS  Google Scholar 

  121. Viedt C, Vogel J, Athanasiou T et al (2002) Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-κB and activator protein-1. Arterioscler Thromb Vasc Biol 22:914–920

    Article  PubMed  CAS  Google Scholar 

  122. Shepard LW, Yang M, Xie P et al (2001) Constitutive activation of NF-κB and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus involve Gα13 and RhoA. J Biol Chem 276:45979–45987

    Article  PubMed  CAS  Google Scholar 

  123. Miyamasu M, Hirai K, Takahashi Y et al (1995) Chemotactic agonists induce cytokine generation in eosinophils. J Immunol 154:1339–1349

    PubMed  CAS  Google Scholar 

  124. Hsu MH, Wang M, Browning DD et al (1999) NF-κB activation is required for C5a-induced interleukin-8 gene expression in mononuclear cells. Blood 93:3241–3249

    PubMed  CAS  Google Scholar 

  125. Kastl SP, Speidl WS, Kaun C et al (2006) The complement component C5a induces the expression of plasminogen activator inhibitor-1 in human macrophages via NF-κB activation. J Thromb Haemost 4:1790–1797

    Article  PubMed  CAS  Google Scholar 

  126. Arbour N, Tremblay P, Oth D (1996) N-formyl-methionyl-leucyl-phenylalanine induces and modulates IL-1 and IL-6 in human PBMC. Cytokine 8:468–475

    Article  PubMed  CAS  Google Scholar 

  127. Sodhi A, Biswas SK (2002) fMLP-induced in vitro nitric oxide production and its regulation in murine peritoneal macrophages. J Leukoc Biol 71:262–270

    PubMed  CAS  Google Scholar 

  128. Sanchez-Galan E, Gomez-Hernandez A, Vidal C et al (2009) Leukotriene B enhances the activity of nuclear factor-κB pathway through BLT1 and BLT2 receptors in atherosclerosis. Cardiovasc Res 81:216–225

    Article  PubMed  CAS  Google Scholar 

  129. Huang L, Zhao A, Wong F et al (2004) Leukotriene B4 strongly increases monocyte chemoattractant protein-1 in human monocytes. Arterioscler Thromb Vasc Biol 24:1783–1788

    Article  PubMed  CAS  Google Scholar 

  130. Matsubara M, Tamura T, Ohmori K et al (2005) Histamine H1 receptor antagonist blocks histamine-induced proinflammatory cytokine production through inhibition of Ca2+-dependent protein kinase C, Raf/MEK/ERK and IKK/IκB/NF-κB signal cascades. Biochem Pharmacol 69:433–449

    Article  PubMed  CAS  Google Scholar 

  131. Zhou W, Blackwell TS, Goleniewska K et al (2007) Prostaglandin I2 analogs inhibit Th1 and Th2 effector cytokine production by CD4 T cells. J Leukoc Biol 81:809–817

    Article  PubMed  CAS  Google Scholar 

  132. Zhou W, Hashimoto K, Goleniewska K et al (2007) Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. J Immunol 178:702–710

    PubMed  CAS  Google Scholar 

  133. Minami M, Shimizu K, Okamoto Y et al (2008) Prostaglandin E receptor type 4-associated protein interacts directly with NF-κB1 and attenuates macrophage activation. J Biol Chem 283:9692–9703

    Article  PubMed  CAS  Google Scholar 

  134. Liu AM, Wong YH (2005) Activation of nuclear factor κB by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves Gα14 and multiple signaling components: a mechanism requiring protein kinase C, calmodulin-dependent kinase II, ERK, and c-Src. J Biol Chem 280:34617–34625

    Article  PubMed  CAS  Google Scholar 

  135. Kaur J, Woodman RC, Kubes P (2003) P38 MAPK: critical molecule in thrombin-induced NF-κB-dependent leukocyte recruitment. Am J Physiol Heart Circ Physiol 284:H1095–1103

    PubMed  CAS  Google Scholar 

  136. Minhajuddin M, Bijli KM, Fazal F et al (2009) Protein kinase C-δ and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-κB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. J Biol Chem 284:4052–4061

    Article  PubMed  CAS  Google Scholar 

  137. Rahman A, Anwar KN, True AL et al (1999) Thrombin-induced p65 homodimer binding to downstream NF-κB site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J Immunol 162:5466–5476

    PubMed  CAS  Google Scholar 

  138. Rahman A, True AL, Anwar KN et al (2002) Gαq and Gβγ regulate PAR-1 signaling of thrombin-induced NF-κB activation and ICAM-1 transcription in endothelial cells. Circ Res 91:398–405

    Article  PubMed  CAS  Google Scholar 

  139. Shin H, Kitajima I, Nakajima T et al (1999) Thrombin receptor mediated signals induce expressions of interleukin 6 and granulocyte colony stimulating factor via NF-κB activation in synovial fibroblasts. Ann Rheum Dis 58:55–60

    Article  PubMed  CAS  Google Scholar 

  140. Ishizuka T, Sawada S, Sugama K et al (2000) Thromboxane A2 (TXA2) receptor blockade suppresses monocyte chemoattractant protein-1 (MCP-1) expression by stimulated vascular endothelial cells. Clin Exp Immunol 120:71–78

    Article  PubMed  CAS  Google Scholar 

  141. Zhong H, Murphy TJ, Minneman KP (2000) Activation of signal transducers and activators of transcription by α1A-adrenergic receptor stimulation in PC12 cells. Mol Pharmacol 57:961–967

    PubMed  CAS  Google Scholar 

  142. Ju H, Venema VJ, Liang H et al (2000) Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signalling proteins in plasmalemmal caveolae. Biochem J 351:257–264

    Article  PubMed  CAS  Google Scholar 

  143. Gao H, Priebe W, Glod J et al (2009) Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 27:857–865

    Article  PubMed  CAS  Google Scholar 

  144. Wong M, Uddin S, Majchrzak B et al (2001) Rantes activates Jak2 and Jak3 to regulate engagement of multiple signaling pathways in T cells. J Biol Chem 276:11427–11431

    Article  PubMed  CAS  Google Scholar 

  145. Mellado M, Rodriguez-Frade JM, Aragay A et al (1998) The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol 161:805–813

    PubMed  CAS  Google Scholar 

  146. Biswas SK, Sodhi A (2002) Tyrosine phosphorylation-mediated signal transduction in MCP-1-induced macrophage activation: role for receptor dimerization, focal adhesion protein complex and JAK/STAT pathway. Int Immunopharmacol 2:1095–1107

    Article  PubMed  CAS  Google Scholar 

  147. Arvanitakis L, Geras-Raaka E, Varma A et al (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–350

    Article  PubMed  CAS  Google Scholar 

  148. Kuroki M, O’Flaherty JT (1999) Extracellular signal-regulated protein kinase (ERK)-dependent and ERK-independent pathways target STAT3 on serine-727 in human neutrophils stimulated by chemotactic factors and cytokines. Biochem J 341:691–696

    Article  PubMed  CAS  Google Scholar 

  149. Wu EH, Lo RK, Wong YH (2003) Regulation of STAT3 activity by G16-coupled receptors. Biochem Biophys Res Commun 303:920–925

    Article  PubMed  CAS  Google Scholar 

  150. Ishikawa T, Kanda N, Hau CS et al (2009) Histamine induces human β-defensin-3 production in human keratinocytes. J Dermatol Sci 56:121–127

    Article  PubMed  CAS  Google Scholar 

  151. Elliott KA, Osna NA, Scofield MA et al (2001) Regulation of IL-13 production by histamine in cloned murine T helper type 2 cells. Int Immunopharmacol 1:1923–1937

    Article  PubMed  CAS  Google Scholar 

  152. Sellers LA, Feniuk W, Humphrey PP et al (1999) Activated G protein-coupled receptor induces tyrosine phosphorylation of STAT3 and agonist-selective serine phosphorylation via sustained stimulation of mitogen-activated protein kinase. Resultant effects on cell proliferation. J Biol Chem 274:16423–16430

    Article  PubMed  CAS  Google Scholar 

  153. Huang C, Ma R, Sun S et al (2008) JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. J Neuroimmunol 204:118–125

    Article  PubMed  CAS  Google Scholar 

  154. Wang L, Luo J, He S (2007) Induction of MMP-9 release from human dermal fibroblasts by thrombin: involvement of JAK/STAT3 signaling pathway in MMP-9 release. BMC Cell Biol 8:14

    Article  PubMed  CAS  Google Scholar 

  155. Nemeth ZH, Leibovich SJ, Deitch EA et al (2003) Adenosine stimulates CREB activation in macrophages via a p38 MAPK-mediated mechanism. Biochem Biophys Res Commun 312:883–888

    Article  PubMed  CAS  Google Scholar 

  156. Bshesh K, Zhao B, Spight D et al (2002) The A2A receptor mediates an endogenous regulatory pathway of cytokine expression in THP-1 cells. J Leukoc Biol 72:1027–1036

    PubMed  CAS  Google Scholar 

  157. Schulte G, Fredholm BB (2003) The Gs-coupled adenosine A2B receptor recruits divergent pathways to regulate ERK1/2 and p38. Exp Cell Res 290:168–176

    Article  PubMed  CAS  Google Scholar 

  158. Das S, Cordis GA, Maulik N et al (2005) Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol 288:H328–335

    Article  PubMed  CAS  Google Scholar 

  159. Das S, Tosaki A, Bagchi D et al (2005) Resveratrol-mediated activation of cAMP response element-binding protein through adenosine A3 receptor by Akt-dependent and -independent pathways. J Pharmacol Exp Ther 314:762–769

    Article  PubMed  CAS  Google Scholar 

  160. Yin F, Wang YY, Du JH et al (2006) Noncanonical cAMP pathway and p38 MAPK mediate β2-adrenergic receptor-induced IL-6 production in neonatal mouse cardiac fibroblasts. J Mol Cell Cardiol 40:384–393

    Article  PubMed  CAS  Google Scholar 

  161. Kondo A, Mogi M, Koshihara Y et al (2001) Signal transduction system for interleukin-6 and interleukin-11 synthesis stimulated by epinephrine in human osteoblasts and human osteogenic sarcoma cells. Biochem Pharmacol 61:319–326

    Article  PubMed  CAS  Google Scholar 

  162. Shen B, Harrison-Bernard LM, Fuller AJ et al (2007) The Bradykinin B2 receptor gene is a target of angiotensin II type 1 receptor signaling. J Am Soc Nephrol 18:1140–1149

    Article  PubMed  CAS  Google Scholar 

  163. Tan Y, Hutchison FN, Jaffa AA (2004) Mechanisms of angiotensin II-induced expression of B2 kinin receptors. Am J Physiol Heart Circ Physiol 286:H926–932

    Article  PubMed  CAS  Google Scholar 

  164. Rosethorne EM, Nahorski SR, Challiss RA (2008) Regulation of cyclic AMP response-­element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuroblastoma cells. Biochem Pharmacol 75:942–955

    Article  PubMed  CAS  Google Scholar 

  165. Nie M, Pang L, Inoue H et al (2003) Transcriptional regulation of cyclooxygenase 2 by bradykinin and interleukin-1β in human airway smooth muscle cells: involvement of different promoter elements, transcription factors, and histone H4 acetylation. Mol Cell Biol 23:9233–9244

    Article  PubMed  CAS  Google Scholar 

  166. Corral RS, Iniguez MA, Duque J et al (2007) Bombesin induces cyclooxygenase-2 expression through the activation of the nuclear factor of activated T cells and enhances cell migration in Caco-2 colon carcinoma cells. Oncogene 26:958–969

    Article  PubMed  CAS  Google Scholar 

  167. Guo YS, Hellmich MR, Wen XD et al (2001) Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J Biol Chem 276:22941–22947

    Article  PubMed  CAS  Google Scholar 

  168. Joo EK, Broxmeyer HE, Kwon HJ et al (2004) Enhancement of cell survival by stromal cell-derived factor-1/CXCL12 involves activation of CREB and induction of Mcl-1 and c-Fos in factor-dependent human cell line MO7e. Stem Cells Dev 13:563–570

    Article  PubMed  CAS  Google Scholar 

  169. Corcoran KE, Malhotra A, Molina CA et al (2008) Stromal-derived factor-1α induces a non-canonical pathway to activate the endocrine-linked Tac1 gene in non-tumorigenic breast cells. J Mol Endocrinol 40:113–123

    Article  PubMed  CAS  Google Scholar 

  170. Chu CY, Cha ST, Chang CC et al (2007) Involvement of matrix metalloproteinase-13 in stromal-cell-derived factor 1α-directed invasion of human basal cell carcinoma cells. Oncogene 26:2491–2501

    Article  PubMed  CAS  Google Scholar 

  171. Chiu YC, Yang RS, Hsieh KH et al (2007) Stromal cell-derived factor-1 induces matrix metalloprotease-13 expression in human chondrocytes. Mol Pharmacol 72:695–703

    Article  PubMed  CAS  Google Scholar 

  172. Tan CT, Chu CY, Lu YC et al (2008) CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 pathway. Carcinogenesis 29:1519–1527

    Article  PubMed  CAS  Google Scholar 

  173. Camargo JF, Quinones MP, Mummidi S et al (2009) CCR5 expression levels influence NFAT translocation, IL-2 production, and subsequent signaling events during T lymphocyte activation. J Immunol 182:171–182

    PubMed  CAS  Google Scholar 

  174. Perianayagam MC, Madias NE, Pereira BJ et al (2006) CREB transcription factor modulates Bcl2 transcription in response to C5a in HL-60-derived neutrophils. Eur J Clin Invest 36:353–361

    Article  PubMed  CAS  Google Scholar 

  175. Kastl SP, Speidl WS, Kaun C et al (2008) In human macrophages the complement component C5a induces the expression of oncostatin M via AP-1 activation. Arterioscler Thromb Vasc Biol 28:498–503

    Article  PubMed  CAS  Google Scholar 

  176. Ali H, Ahamed J, Hernandez-Munain C et al (2000) Chemokine production by G protein-coupled receptor activation in a human mast cell line: roles of extracellular signal-regulated kinase and NFAT. J Immunol 165:7215–7223

    PubMed  CAS  Google Scholar 

  177. Petrin D, Turcotte S, Gilbert AK et al (2006) The anti-apoptotic effect of leukotriene B4 in neutrophils: a role for phosphatidylinositol 3-kinase, extracellular signal-regulated kinase and Mcl-1. Cell Signal 18:479–487

    Article  PubMed  CAS  Google Scholar 

  178. Stankova J, Rola-Pleszczynski M (1992) Leukotriene B4 stimulates c-fos and c-jun gene transcription and AP-1 binding activity in human monocytes. Biochem J 282 (Pt 3):625–629

    PubMed  CAS  Google Scholar 

  179. Boss V, Wang X, Koppelman LF et al (1998) Histamine induces nuclear factor of activated T cell-mediated transcription and cyclosporin A-sensitive interleukin-8 mRNA expression in human umbilical vein endothelial cells. Mol Pharmacol 54:264–272

    PubMed  CAS  Google Scholar 

  180. Ansari KM, Sung YM, He G et al (2007) Prostaglandin receptor EP2 is responsible for cyclooxygenase-2 induction by prostaglandin E2 in mouse skin. Carcinogenesis 28:2063–2068

    Article  PubMed  CAS  Google Scholar 

  181. Pino MS, Nawrocki ST, Cognetti F et al (2005) Prostaglandin E2 drives cyclooxygenase-2 expression via cyclic AMP response element activation in human pancreatic cancer cells. Cancer Biol Ther 4:1263–1269

    Article  PubMed  CAS  Google Scholar 

  182. Steinert D, Kuper C, Bartels H et al (2009) PGE2 potentiates tonicity-induced COX-2 expression in renal medullary cells in a positive feedback loop involving EP2-cAMP-PKA signaling. Am J Physiol Cell Physiol 296:C75–87

    Article  PubMed  CAS  Google Scholar 

  183. Zatelli MC, Tagliati F, Piccin D et al (2002) Somatostatin receptor subtype 1-selective activation reduces cell growth and calcitonin secretion in a human medullary thyroid carcinoma cell line. Biochem Biophys Res Commun 297:828–834

    Article  PubMed  CAS  Google Scholar 

  184. Marin V, Farnarier C, Gres S et al (2001) The p38 mitogen-activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment. Blood 98:667–673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Studies by the authors are supported in part by the Hong Kong Jockey Club, Research Grant Council (HKUST 644306, 643306 and 663108) and University Grant Council of Hong Kong (AoE/B-15/01) to YHW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung Hou Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Yeung, W.W.S., Ho, M.K.C., Wong, Y.H. (2010). Functional Impacts of Signal Integration: Regulation of Inflammation-Related Transcription Factors by Heterotrimeric G Proteins. In: Reichle, A. (eds) From Molecular to Modular Tumor Therapy. The Tumor Microenvironment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9531-2_9

Download citation

Publish with us

Policies and ethics