Skip to main content

Insights into the Dynamics of Focal Adhesion Protein Trafficking in Invasive Cancer Cells and Clinical Implications

  • Chapter
  • First Online:
  • 1101 Accesses

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 15))

Abstract

The development of cancer metastases is multifactorial and can be affected by a wide range of host, cell, and tissue-microenvironment factors. A crucial cellular event by which primary cancer cells invade neighboring tissue structures and distant organs involves the acquisition of autonomous motile and invasive properties; these can be inherent to a specific cancer cell variant, possibly cancer stem-cell type, or can be acquired during the course of tumor progression. Several transmembrane receptors, focal contact proteins, cell cytoskeleton and motor proteins, and intracellular signaling molecules converge to regulate cell migration and invasion. In particular, great research efforts have pinpointed the central role of focal adhesion dynamics and turnover within distinct subcellular compartments in the regulation of cell traction and retraction forces that drive, essential cell locomotion and invasion of neighboring tissues. Of clinical relevance, several components of the signaling pathways that regulate focal adhesion trafficking and turnover are deregulated in human cancer tissues; overexpression and hyperactivation are more common in invasive cancers compared to benign disease. This chapter provides the reader with an abridged, updated, and clinically relevant overview of signaling pathways that regulate trafficking and turnover of focal adhesion proteins involved in cancer cell migration and invasion. Potential clinical implications of specific proteins that can be exploited as biomarkers and therapeutic targets for the management of metastatic disease are emphasized. For detailed molecular biology of trafficking signaling, we refer the reader to selected seminal reviews in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

TGN:

trans-golgi network

G:

Golgi

FA:

focal adhesion

ER:

endoplasmic reticulum

N:

nucleus

PM:

plasma membrane

ECM:

extracellular matrix

LE:

late endosome

EE:

early endosome

RE:

recycling endosome

Lys:

lysosome

References

  1. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the cancer microenvironment in breast cancer. Cancer Cell 2004; 6(1): 17–32.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson TW, Vaughan AN, Cramer LP. Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts. Mol. Biol. Cell 2008; 19(11): 5006–5018.

    Article  PubMed  CAS  Google Scholar 

  3. Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P. The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 2008; 19(8): 3357–3368.

    Article  PubMed  CAS  Google Scholar 

  4. Behmoaram E, Bijian K, Jie S, Xu Y, Darnel A, Bismar TA, Alaoui-Jamali MA. Focal adhesion kinase-related proline-rich tyrosine kinase 2 and focal adhesion kinase are co-overexpressed in early-stage and invasive ErbB-2-positive breast cancer and cooperate for breast cancer cell tumorigenesis and invasiveness. Am. J. Pathol. 2008; 173(5): 1540–1550.

    Article  PubMed  CAS  Google Scholar 

  5. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat. Rev. Cancer 2009; 9(2): 108–122. Review.

    Article  PubMed  CAS  Google Scholar 

  6. Cantalupo G, Alifano P, Roberti V, Bruni CB, Bucci C. Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J. 2001; 20(4): 683–693.

    Article  PubMed  CAS  Google Scholar 

  7. Caswell PT, Vadrevu S, Norman JC. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 2009; 10(12): 843–853.

    Article  PubMed  CAS  Google Scholar 

  8. Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, McCaffrey MW, Ozanne BW, Norman JC. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 2007; 13(4): 496–510.

    Article  PubMed  CAS  Google Scholar 

  9. Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman JC. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol. 2008; 183(1): 143–155.

    Article  PubMed  CAS  Google Scholar 

  10. Chardin P, McCormick F. Brefeldin A: the advantage of being uncompetitive. Cell 1999; 97(2): 153–155.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, Liu J, Smith-McCune K, Lu KH, Fishman D, Gray JW, Mills GB. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat. Med. 2004; 10(11): 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng KW, Lahad JP, Gray JW, Mills GB. Emerging role of RAB GTPases in cancer and human disease. Cancer Res. 2005; 65(7): 2516–2519.

    Article  PubMed  CAS  Google Scholar 

  13. Chibalina MV, Puri C, Kendrick-Jones J, Buss F. Potential roles of myosin VI in cell motility. Biochem. Soc. Trans. 2009; 37(Pt 5): 966–970.

    Article  PubMed  CAS  Google Scholar 

  14. Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 2003; 3(12): 921–930.

    Article  PubMed  CAS  Google Scholar 

  15. Corbeel L, Freson K. Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders. Eur. J. Pediatr. 2008; 167(7): 723–729.

    Article  PubMed  CAS  Google Scholar 

  16. Dulyaninova NG, Malashkevich VN, Almo SC, Bresnick AR. Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry 2005; 44(18): 6867–6876.

    Article  PubMed  CAS  Google Scholar 

  17. Dunphy JL, Moravec R, Ly K, Lasell TK, Melancon P, Casanova JE. The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of beta1 integrins. Curr. Biol. 2006; 16(3): 315–320.

    Article  PubMed  CAS  Google Scholar 

  18. Eathiraj S, Mishra A, Prekeris R, Lambright DG. Structural basis for Rab11-mediated recruitment of FIP3 to recycling endosomes. J. Mol. Biol. 2006; 364(2): 121–135.

    Article  PubMed  CAS  Google Scholar 

  19. Echard A, Jollivet F, Martinez O, Lacapère JJ, Rousselet A, Janoueix-Lerosey I, Goud B. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 1998; 279(5350): 580–585.

    Article  PubMed  CAS  Google Scholar 

  20. Elliott PJ, Ross JS. The proteasome: a new target for novel drug therapies. Am. J. Clin. Pathol. 2001; 116(5): 637–646.

    Article  PubMed  CAS  Google Scholar 

  21. Etienne-Manneville S, Hall A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol. 2003; 15(1): 67–72.

    Article  PubMed  CAS  Google Scholar 

  22. Ezratty EJ, Partridge MA, Gundersen GG. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat. Cell Biol. 2005; 7(6): 581–590.

    Article  PubMed  CAS  Google Scholar 

  23. Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA. Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A. Proc. Natl. Acad. Sci. USA 1994; 91(25): 11963–11967.

    Article  PubMed  CAS  Google Scholar 

  24. Folkman J, Kalluri R. Cancer without disease. Nature 2004; 427(6977): 787.

    Article  PubMed  CAS  Google Scholar 

  25. Friedland JC, Lee MH, Boettiger D. Mechanically activated integrin switch controls alpha5beta1 function. Science 2009; 323(5914): 642–644.

    Article  PubMed  CAS  Google Scholar 

  26. Fukui K, Tamura S, Wada A, Kamada Y, Igura T, Kiso S, Hayashi N. Expression of Rab5a in hepatocellular carcinoma: possible involvement in epidermal growth factor signaling. Hepatol. Res. 2007; 37(11): 957–965.

    Article  PubMed  CAS  Google Scholar 

  27. Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix—cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2001; 2(11): 793–805.

    Article  PubMed  CAS  Google Scholar 

  28. Gundersen GG, Bretscher A. Cell biology. Microtubule asymmetry. Science 2003; 300(5628): 2040–2041.

    Article  PubMed  CAS  Google Scholar 

  29. Hammer, JA, Wu XS. Rabs grab motors: defining the connections between Rab GTPases and motor proteins. Curr. Opin. Cell Biol. 2002; 14(1): 69–75.

    Article  PubMed  CAS  Google Scholar 

  30. Helms JB, Rothman JE. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 1992; 360(6402): 352–354.

    Article  PubMed  CAS  Google Scholar 

  31. Hervy M, Hoffman L, Beckerle MC. From the membrane to the nucleus and back again: bifunctional focal adhesion proteins. Curr. Opin. Cell Biol. 2006; 18(5): 524–532.

    Article  PubMed  CAS  Google Scholar 

  32. Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED, Phair RD, Lippincott-Schwartz J. Kinetic analysis of secretory protein traffic and characterization of golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 1998; 143(6): 1485–1503.

    Article  PubMed  CAS  Google Scholar 

  33. Ho WT, Exton JH, Williger BT. Arfaptin 1 inhibits ADP-ribosylation factor-dependent matrix metalloproteinase-9 secretion induced by phorbol ester in HT 1080 fibrosarcoma cells. FEBS Lett. 2003; 537(1–3): 91–95.

    Article  PubMed  CAS  Google Scholar 

  34. Hoffman BD, Crocker JC. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 2009; 11: 259–288.

    Article  PubMed  CAS  Google Scholar 

  35. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature 2009; 458(7237): 438–444.

    Article  PubMed  CAS  Google Scholar 

  36. Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat. Rev. Cancer 2006; 6(10): 776–788.

    Article  PubMed  CAS  Google Scholar 

  37. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2002; 2: 91–100.

    Article  PubMed  Google Scholar 

  38. Hooper S, Gaggioli C, Sahai E. A chemical biology screen reveals a role for Rab21-mediated control of actomyosin contractility in fibroblast-driven cancer invasion. Br. J. Cancer 2010; 102: 392–402.

    Article  PubMed  CAS  Google Scholar 

  39. Horgan CP, McCaffrey MW. The dynamic Rab11-FIPs. Biochem. Soc. Trans. 2009; 37(Pt 5): 1032–1036.

    Article  PubMed  CAS  Google Scholar 

  40. Ilić D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995; 377(6549): 539–544.

    Article  PubMed  Google Scholar 

  41. Ilić D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 1998; 279(5350): 580–585.

    Article  Google Scholar 

  42. Imamura H, Takaishi K, Nakano K, Kodama A, Oishi H, Shiozaki H, Monden M, Sasaki T, Takai Y. Rho and Rab small G proteins coordinately reorganize stress fibers and focal adhesions in MDCK cells. Mol. Biol. Cell 1998; 9(9): 2561–2575.

    PubMed  CAS  Google Scholar 

  43. Jackson CL. Mechanisms of transport through the Golgi complex. J. Cell Sci. 2009; 122(Pt 4): 443–452.

    Article  PubMed  CAS  Google Scholar 

  44. Janmey PA, Lindberg U. Cytoskeletal regulation: rich in lipids. Nat. Rev. Mol. Cell Biol. 2004; 5(8): 658–666.

    Article  PubMed  CAS  Google Scholar 

  45. Jones MC, Caswell PT, Norman JC. Endocytic recycling pathways: emerging regulators of cell migration. Curr. Opin. Cell Biol. 2006; 18(5): 549–557.

    Article  PubMed  CAS  Google Scholar 

  46. Jones SM, Howell KE, Henley JR, Cao H, McNiven MA. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 1998; 279(5350): 573–577.

    Article  PubMed  CAS  Google Scholar 

  47. Jordan MA, Wilson L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 1998; 10: 193–230.

    Google Scholar 

  48. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004; 4(4): 253–265.

    Article  PubMed  CAS  Google Scholar 

  49. Jordens I, Westbroek W, Marsman M, Rocha N, Mommaas M, Huizing M, Lambert J, Naeyaert JM, Neefjes J. Rab7 and Rab27a control two motor protein activities involved in melanosomal transport. Pigment Cell Res. 2006; 19(5): 412–423.

    Article  PubMed  CAS  Google Scholar 

  50. Juliano R. Movin’ on through with Cdc2. Nat. Cell Biol. 2003; 5(7): 589–590.

    Article  PubMed  CAS  Google Scholar 

  51. Kelly TA, Kim JA, Patrick R, Grundfest S, Crowe JP. Axillary lymph node metastases in patients with a final diagnosis of ductal carcinoma in situ. Am. J. Surg. 2003; 186(4): 368–370.

    Article  PubMed  Google Scholar 

  52. Kim EJ, Helfman DM. Characterization of the metastasis-associated protein, S100A4. Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J. Biol. Chem. 2003; 278(32): 30063–30073.

    Article  PubMed  CAS  Google Scholar 

  53. Krendel M, Mooseker MS. Myosins: tails (and heads) of functional diversity. Physiology (Bethesda) 2005; 20: 239–251.

    Article  CAS  Google Scholar 

  54. Lara JF, Young SM, Velilla RE, Santoro EJ, Templeton SF. The relevance of occult axillary micrometastasis in ductal carcinoma in situ: a clinicopathologic study with long-term follow-up. Cancer 2003; 98(10): 2105–2113.

    Article  PubMed  Google Scholar 

  55. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996; 84(3): 359–369.

    Article  PubMed  CAS  Google Scholar 

  56. Laukaitis CM, Webb DJ, Donais K, Horwitz AF. Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 2001; 153(7): 1427–1440.

    Article  PubMed  CAS  Google Scholar 

  57. Leung KF, Baron R, Seabra MC. Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. J. Lipid Res. 2006; 47(3): 467–475.

    Article  PubMed  CAS  Google Scholar 

  58. Li Y, Meng X, Feng H, Zhang G, Liu C, Li P. Over-expression of the RAB5 gene in human lung adenocarcinoma cells with high metastatic potential. Chin. Med. Sci. J. 1999; 14(2): 96–101.

    PubMed  CAS  Google Scholar 

  59. Li ZH, Bresnick AR. The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res. 2006; 66(10): 5173–5180.

    Article  PubMed  CAS  Google Scholar 

  60. Li ZH, Spektor A, Varlamova O, Bresnick AR. Mts1 regulates the assembly of nonmuscle myosin-IIA. Biochemistry 2003; 42(48): 14258–14266.

    Article  PubMed  CAS  Google Scholar 

  61. Lietha D, Cai X, Ceccarelli DF, Li Y, Schaller MD, Eck MJ. Structural basis for the autoinhibition of focal adhesion kinase. Cell 2007; 129(6): 1177–1187.

    Article  PubMed  CAS  Google Scholar 

  62. Lippincott-Schwartz J, Roberts TH, Hirschberg K. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 2000; 16: 557–589.

    Article  PubMed  CAS  Google Scholar 

  63. Lippincott-Schwartz J. Dynamics of secretory membrane trafficking. Ann. N. Y. Acad. Sci. 2004; 1038: 115–124.

    Article  PubMed  Google Scholar 

  64. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 2006; 10(6): 839–850.

    Article  PubMed  CAS  Google Scholar 

  65. Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev. 2003; 83(2): 337–376.

    PubMed  CAS  Google Scholar 

  66. Maxfield FR, McGraw TE. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 2004; 5(2): 121–132.

    Article  PubMed  CAS  Google Scholar 

  67. Mills GB, Jurisica I, Yarden Y, Norman JC. Genomic amplicons target vesicle recycling in breast cancer. J. Clin. Invest. 2009; 119(8): 2123–2127.

    PubMed  CAS  Google Scholar 

  68. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 2006; 18(5): 516–523.

    Article  PubMed  CAS  Google Scholar 

  69. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 2005; 6(1): 56–68.

    Article  PubMed  CAS  Google Scholar 

  70. Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 2009; 137(3): 433–444.

    Article  PubMed  CAS  Google Scholar 

  71. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 2006; 6(10): 764–775.

    Article  PubMed  CAS  Google Scholar 

  72. Mori Y, Yin J, Sato F, Sterian A, Simms LA, Selaru FM, Schulmann K, Xu Y, Olaru A, Wang S, Deacu E, Abraham JM, Young J, Leggett BA, Meltzer SJ. Identification of genes uniquely involved in frequent microsatellite instability colon carcinogenesis by expression profiling combined with epigenetic scanning. Cancer Res. 2004; 64(7): 2434–2438.

    Article  PubMed  CAS  Google Scholar 

  73. Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis: an emerging feature of cancer. Nat. Rev. Cancer 2008; 8(11): 835–850.

    Article  PubMed  CAS  Google Scholar 

  74. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat. Rev. Cancer 2004; 4(6): 448–456.

    Article  PubMed  CAS  Google Scholar 

  75. Pantel K, Woelfle U. Micrometastasis in breast cancer and other solid cancers. J. Biol. Regul. Homeost. Agents 2004; 18(2): 120–125.

    PubMed  CAS  Google Scholar 

  76. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8(3): 241–254.

    Article  PubMed  CAS  Google Scholar 

  77. Pei L, Peng Y, Yang Y, Ling XB, Van Eyndhoven WG, Nguyen KC, Rubin M, Hoey T, Powers S, Li J. PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res. 2002; 62(19): 5420–5424.

    PubMed  CAS  Google Scholar 

  78. Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 2005; 436(7047): 78–86.

    Article  PubMed  CAS  Google Scholar 

  79. Pellinen T, Ivaska J. Integrin traffic. J. Cell Sci. 2006; 119(Pt 18): 3723–3731.

    Article  PubMed  CAS  Google Scholar 

  80. Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JA, Ivaska J.. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J. Cell Biol. 2006; 173(5): 767–780.

    Article  PubMed  CAS  Google Scholar 

  81. Pellinen T, Tuomi S, Arjonen A, Wolf M, Edgren H, Meyer H, Grosse R, Kitzing T, Rantala JK, Kallioniemi O, Fässler R, Kallio M, Ivaska J. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev. Cell 2008; 15(3): 371–385.

    Article  PubMed  CAS  Google Scholar 

  82. Pereira-Leal JB, Seabra MC. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J. Mol. Biol. 2000; 301(4): 1077–1087.

    Article  PubMed  CAS  Google Scholar 

  83. Pereira-Leal JB, Seabra MC. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 2001; 313(4): 889–901.

    Article  PubMed  CAS  Google Scholar 

  84. Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 2009; 10(8): 538–549.

    Article  PubMed  CAS  Google Scholar 

  85. Powelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, Hsu VW. Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic 2004; 5(1): 20–36.

    Article  PubMed  CAS  Google Scholar 

  86. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid cancers. Nat. Genet. 2003; 33(1): 49–54.

    Article  PubMed  CAS  Google Scholar 

  87. Revenu C, Athman R, Robine S, Louvard D. The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 2004; 5(8): 635–646.

    Article  PubMed  CAS  Google Scholar 

  88. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back. Science 2003 5; 302(5651): 1704–1709.

    Article  CAS  Google Scholar 

  89. Riethmuller G, Klein CA. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin. Cancer Biol. 2001; 11(4): 307–311.

    Article  PubMed  CAS  Google Scholar 

  90. Ring A, Smith IE, Dowsett M. Circulating tumour cells in breast cancer. Lancet Oncol. 2004; 5(2): 79–88.

    Article  PubMed  Google Scholar 

  91. Sandquist JC, Means AR. The C-terminal tail region of nonmuscle myosin II directs isoform-specific distribution in migrating cells. Mol. Biol. Cell 2008; 19(12): 5156–5167.

    Article  PubMed  CAS  Google Scholar 

  92. Scapin SM, Carneiro FR, Alves AC, Medrano FJ, Guimarães BG, Zanchin NI. The crystal structure of the small GTPase Rab11b reveals critical differences relative to the Rab11a isoform. J. Struct. Biol. 2006; 154(3): 260–268.

    Article  PubMed  CAS  Google Scholar 

  93. Schimmöller F, Simon I, Pfeffer SR. Rab GTPases, directors of vesicle docking. J. Biol. Chem. 1998; 273(35): 22161–22164.

    Article  PubMed  Google Scholar 

  94. SeabraMC, Wasmeier C. Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol. 2004; 16(4): 451–457.

    Article  CAS  Google Scholar 

  95. Shimada K, Uzawa K, Kato M, Endo Y, Shiiba M, Bukawa H, Yokoe H, Seki N, Tanzawa H. Aberrant expression of RAB1A in human tongue cancer. Br. J. Cancer 2005; 92(10): 1915–1921.

    Article  PubMed  CAS  Google Scholar 

  96. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD. FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol. 2000; 2(5): 249–256.

    Article  PubMed  CAS  Google Scholar 

  97. Sorkin A, Goh LK. Internalization and intracellular sorting of the EGF receptor: a model for understanding the mechanisms of receptor trafficking. Exp. Cell Res. 2009; 315(4): 683–696.

    Article  PubMed  CAS  Google Scholar 

  98. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 2009; 10(8): 513–525.

    Article  PubMed  CAS  Google Scholar 

  99. Stenmark H, Olkkonen VM. The Rab GTPase family. Genome Biol. 2001; 2(5): S3007. Review.

    Article  Google Scholar 

  100. Tang BL, Ng EL. Rabs and cancer cell motility. Cell Motil. Cytoskel. 2009; 66(7): 365–370.

    Article  CAS  Google Scholar 

  101. Torres VA, Mielgo A, Barilà D, Anderson DH, Stupack D. Caspase 8 promotes peripheral localization and activation of Rab5. J. Biol. Chem. 2008; 283(52): 36280–36289.

    Article  PubMed  CAS  Google Scholar 

  102. Upla P, Marjomäki V, Kankaanpää P, Ivaska J, Hyypiä T, Van Der Goot FG, Heino J. Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell 2004; 15(2): 625–636.

    Article  PubMed  CAS  Google Scholar 

  103. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002; 347(25): 1999–2009.

    Article  PubMed  Google Scholar 

  104. van Nimwegen MJ, van de Water B. Focal adhesion kinase: a potential target in cancer therapy. Biochem. Pharmacol. 2007; 73(5): 597–609.

    Article  PubMed  CAS  Google Scholar 

  105. Vicente-Manzanares M, Koach MA, Whitmore L, Lamers ML, Horwitz AF. Segregation and activation of myosin IIB creates a rear in migrating cells. J. Cell Biol. 2008; 183(3): 543–554.

    Article  PubMed  CAS  Google Scholar 

  106. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 2009; 10(11): 778–790.

    Article  PubMed  CAS  Google Scholar 

  107. Wang JS, Wang FB, Zhang QG, Shen ZZ, Shao ZM. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol. Cancer Res. 2008; 6(3): 372–382.

    Article  PubMed  CAS  Google Scholar 

  108. Weaver DL. Occult “micrometastases” in ductal carcinoma in situ: investigative implications for sentinel lymph node biopsy. Cancer 2003; 98(10): 2083–2087.

    Article  PubMed  Google Scholar 

  109. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 2004; 6(2): 154–161.

    Article  PubMed  CAS  Google Scholar 

  110. Webb T. Microarray studies challenge theories of metastasis. J. Natl. Cancer Inst. 2003; 95(5): 350–351.

    Article  PubMed  Google Scholar 

  111. Webb DJ, Parsons JT, Horwitz AF. Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat. Cell Biol. 2002; 4(4): E97–E100.

    Article  PubMed  CAS  Google Scholar 

  112. Wlodkowic D, Skommer J, McGuinness D, Hillier C, Darzynkiewicz Z. ER-Golgi network—a future target for anti-cancer therapy. Leukemia Res. 2009; 33(11): 1440–1447.

    Article  CAS  Google Scholar 

  113. Wyckoff JB, Segall JE, Condeelis JS. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 2000; 60(9): 2504–2511.

    PubMed  CAS  Google Scholar 

  114. Wyckoff JB, Segall JE, Condeelis JS. The collection of the motile population of cells from a living tumor. Cancer Res. 2000; 60(19): 5401–5404.

    PubMed  CAS  Google Scholar 

  115. Xu FL, Saunders WS. Actin and microtubules: working together to control spindle polarity. Cancer Cell 2008; 14(3): 197–199.

    Article  PubMed  CAS  Google Scholar 

  116. Yamada H, Abe T, Li SA, Masuoka Y, Isoda M, Watanabe M, Nasu Y, Kumon H, Asai A, Takei K. Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. Biochem. Biophys. Res. Commun. 2009; 390(4): 1142–1148.

    Article  PubMed  CAS  Google Scholar 

  117. Yamana N, Arakawa Y, Nishino T, Kurokawa K, Tanji M, Itoh RE, Monypenny J, Ishizaki T, Bito H, Nozaki K, Hashimoto N, Matsuda M, Narumiya S. The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol. Cell Biol. 2006; 26(18): 6844–6858.

    Article  PubMed  CAS  Google Scholar 

  118. Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D, Liu J, Naora H. Lessons from border cell migration in the Drosophila ovary: a role for myosin VI in dissemination of human ovarian cancer. Proc. Natl. Acad. Sci. USA 2004; 101(21): 8144–8149.

    Article  PubMed  CAS  Google Scholar 

  119. Yu X, Miyamoto S, Mekada E.Chang L, Goldman RD. Intermediate filaments mediate cytoskeletal crosstalk. Nat. Rev. Mol. Cell Biol. 2004; 5(8): 601–613.

    Article  Google Scholar 

  120. Zaidel-Bar R, Cohen M, Addadi L, Geiger B. Hierarchical assembly of cell-matrix adhesion complexes. Biochem. Soc. Trans. 2004; 32(Pt3): 416–420.

    Article  PubMed  CAS  Google Scholar 

  121. Zamir E, Katz BZ, Aota S, Yamada KM, Geiger B, Kam Z. Molecular diversity of cell-matrix adhesions. J. Cell Sci. 1999; 112(Pt 11): 1655–1669.

    PubMed  CAS  Google Scholar 

  122. Zerial M, McBride H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2001; 2(2): 107–117.

    Article  PubMed  CAS  Google Scholar 

  123. Zhang J, Liu X, Datta A, Govindarajan K, Tam WL, Han J, George J, Wong C, Ramnarayanan K, Phua TY, Leong WY, Chan YS, Palanisamy N, Liu ET, Karuturi KM, Lim B, Miller LD. RCP is a human breast cancer-promoting gene with Ras-activating function. J. Clin. Invest. 2009; 119(8): 2171–2183.

    PubMed  CAS  Google Scholar 

  124. Zhu G, Liu J, Terzyan S, Zhai P, Li G, Zhang XC. High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop. J. Biol. Chem. 2003; 278(4): 2452–2460.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay A. Alaoui-Jamali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Alaoui-Jamali, M.A., Bijian, K., Toliopoulos, P. (2010). Insights into the Dynamics of Focal Adhesion Protein Trafficking in Invasive Cancer Cells and Clinical Implications. In: Wu, WS., Hu, CT. (eds) Signal Transduction in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9522-0_8

Download citation

Publish with us

Policies and ethics