Skip to main content

The ERK1/2 MAP Kinase Signaling Pathway in Tumor Progression and Metastasis

  • Chapter
  • First Online:
Signal Transduction in Cancer Metastasis

Abstract

The extracellular signal-regulated kinase (ERK) 1/2 mitogen-activated protein (MAP) kinase module is a conserved signaling pathway that plays a major role in the control of cell proliferation, survival and differentiation. This pathway is typically turned on by engagement of growth factor receptors, which leads to the activation of the small GTPase Ras and to sequential phosphorylation and activation of Raf, MEK1/MEK2 and ERK1/ERK2 protein kinases. ERK1 and ERK2 are multifunctional Ser/Thr kinases that phosphorylate a panoply of substrates involved in multiple cellular processes. Hyperactivation of the ERK1/2 pathway is frequently observed in human malignancies as a result of aberrant activation of receptor tyrosine kinases or by gain-of-function mutations in RAS or RAF genes. This dysregulation is believed to provide a proliferation and survival advantage to cancer cells. Accumulating evidence suggest that the ERK1/2 signaling pathway also contributes to the increased motility, invasiveness and dissemination of tumor cells. In this chapter, we review the role of ERK1/2 MAP kinase signaling in the pathogenesis of tumor metastasis.

∗These authors contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre-Ghiso JA, Alonso DF, Farias EF, Gomez DE, de Kier Joffe EB. Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur. J. Biochem. 1999; 263: 295–304.

    Article  PubMed  CAS  Google Scholar 

  2. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 2001; 12: 863–879.

    PubMed  CAS  Google Scholar 

  3. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res. 2003; 63: 1684–1695.

    PubMed  CAS  Google Scholar 

  4. Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res. 2004; 64: 7336–7345.

    Article  PubMed  CAS  Google Scholar 

  5. Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J. Cell Biol. 2001; 152: 633–643.

    Article  PubMed  CAS  Google Scholar 

  6. Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 2001; 12: 397–408.

    PubMed  CAS  Google Scholar 

  7. Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 2009; 16: 368–377.

    Article  PubMed  CAS  Google Scholar 

  8. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003; 3: 401–410.

    Article  PubMed  CAS  Google Scholar 

  9. Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 2002; 3: 932–943.

    Article  PubMed  CAS  Google Scholar 

  10. Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 2007; 8: 444–448.

    Article  PubMed  CAS  Google Scholar 

  11. Brahmbhatt AA, Klemke RL. ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J. Biol. Chem. 2003; 278: 13016–13025.

    Article  PubMed  CAS  Google Scholar 

  12. Carragher NO, Westhoff MA, Fincham VJ, Schaller MD, Frame MC. A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr. Biol. 2003; 13: 1442–1450.

    Article  PubMed  CAS  Google Scholar 

  13. Chambard JC, Lefloch R, Pouyssegur J, Lenormand P. ERK implication in cell cycle regulation. Biochim. Biophys. Acta 2007; 1773: 1299–1310.

    Article  PubMed  CAS  Google Scholar 

  14. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2002; 2: 563–572.

    Article  PubMed  CAS  Google Scholar 

  15. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J. Cell. Biol. 2003; 163: 847–857.

    Article  PubMed  CAS  Google Scholar 

  16. Coulombe P, Meloche S. Atypical mitogen-activated protein kinases: structure, regulation and functions. Biochim. Biophys. Acta 2007; 1773: 1376–1387.

    Article  PubMed  CAS  Google Scholar 

  17. Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 1994; 77: 841–852.

    Article  PubMed  CAS  Google Scholar 

  18. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, Rosner MR. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 2009; 28: 347–358.

    Article  PubMed  CAS  Google Scholar 

  19. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  PubMed  CAS  Google Scholar 

  20. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006; 25: 9–34.

    Article  PubMed  CAS  Google Scholar 

  21. Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV, Cohen MS, Johansen JV, Winther BR, Lund LR, Winther O, Taunton J, Hansen SH, Frodin M. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol. Cell 2009; 35: 511–522.

    Article  PubMed  CAS  Google Scholar 

  22. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002; 2: 161–174.

    Article  PubMed  CAS  Google Scholar 

  23. Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G, Gress TM. Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001; 61: 4222–4228.

    PubMed  CAS  Google Scholar 

  24. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 2003; 3: 453–458.

    Article  PubMed  CAS  Google Scholar 

  25. Fincham VJ, James M, Frame MC, Winder SJ. Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. EMBO J. 2000; 19: 2911–2923.

    Article  PubMed  CAS  Google Scholar 

  26. Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A, Flanagan A, Teague J, Wooster R, Futreal PA, Stratton MR. Cosmic 2005. Br. J. Cancer 2006; 94: 318–322.

    Article  PubMed  CAS  Google Scholar 

  27. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 1994; 124: 619–626.

    Article  PubMed  CAS  Google Scholar 

  28. Geiger TR, Peeper DS. Metastasis mechanisms. Biochim. Biophys. Acta 2009; 1796: 293–308.

    PubMed  CAS  Google Scholar 

  29. Gilmore AP. Anoikis. Cell Death Differ. 2005; 12(Suppl 2): 1473–1477.

    Article  PubMed  CAS  Google Scholar 

  30. Glading A, Chang P, Lauffenburger DA, Wells A. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J Biol Chem 2000; 275: 2390–2398.

    Article  PubMed  CAS  Google Scholar 

  31. Grotegut S, von Schweinitz D, Christofori G, Lehembre F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 2006; 25: 3534–3545.

    Article  PubMed  CAS  Google Scholar 

  32. Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Biol. 2003; 4: 657–665.

    Article  PubMed  CAS  Google Scholar 

  33. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  34. Herrera R. Modulation of hepatocyte growth factor-induced scattering of HT29 colon carcinoma cells. Involvement of the MAPK pathway. J. Cell Sci. 1998; 111(Pt 8): 1039–1049.

    PubMed  CAS  Google Scholar 

  35. Hobbs RM, Silva-Vargas V, Groves R, Watt FM. Expression of activated MEK1 in differentiating epidermal cells is sufficient to generate hyperproliferative and inflammatory skin lesions. J. Invest. Dermatol. 2004; 123: 503–515.

    Article  PubMed  CAS  Google Scholar 

  36. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 1999; 18: 813–822.

    Article  PubMed  CAS  Google Scholar 

  37. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 2005; 5: 341–354.

    Article  PubMed  CAS  Google Scholar 

  38. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grunert S. Ras and TGF-β cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 2002; 156: 299–313.

    Article  PubMed  CAS  Google Scholar 

  39. Janulis M, Silberman S, Ambegaokar A, Gutkind JS, Schultz RM. Role of mitogen-activated protein kinases and c-Jun/AP-1 trans-activating activity in the regulation of protease mRNAs and the malignant phenotype in NIH 3T3 fibroblasts. J. Biol. Chem. 1999; 274: 801–813.

    Article  PubMed  CAS  Google Scholar 

  40. Jodele S, Blavier L, Yoon JM, DeClerck YA. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev. 2006; 25: 35–43.

    Article  PubMed  CAS  Google Scholar 

  41. Jost M, Huggett TM, Kari C, Rodeck U. Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Mol. Biol. Cell 2001; 12: 1519–1527.

    PubMed  CAS  Google Scholar 

  42. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009; 119: 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  43. Klein RM, Spofford LS, Abel EV, Ortiz A, Aplin AE. B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization. Mol. Biol. Cell 2008; 19: 498–508.

    Article  PubMed  CAS  Google Scholar 

  44. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 1997; 137: 481–492.

    Article  PubMed  CAS  Google Scholar 

  45. Komatsu K, Buchanan FG, Otaka M, Jin M, Odashima M, Horikawa Y, Watanabe S, Dubois RN. Gene expression profiling following constitutive activation of MEK1 and transformation of rat intestinal epithelial cells. Mol. Cancer 2006; 5: 63.

    Article  PubMed  CAS  Google Scholar 

  46. Koop S, Schmidt EE, MacDonald IC, Morris VL, Khokha R, Grattan M, Leone J, Chambers AF, Groom AC. Independence of metastatic ability and extravasation: metastatic ras-transformed and control fibroblasts extravasate equally well. Proc. Natl. Acad. Sci. USA 1996; 93: 11080–11084.

    Article  PubMed  CAS  Google Scholar 

  47. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 2001; 81: 807–869.

    PubMed  CAS  Google Scholar 

  48. Laufs S, Schumacher J, Allgayer H. Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 2006; 5: 1760–1771.

    Article  PubMed  CAS  Google Scholar 

  49. Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S, Chen W, Cobb MH. The roles of MAPKs in disease. Cell Res. 2008; 18: 436–442.

    Article  PubMed  CAS  Google Scholar 

  50. Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol. Biol. Cell 2000; 11: 1103–1112.

    PubMed  Google Scholar 

  51. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 2000; 14: 2610–2622.

    Article  PubMed  CAS  Google Scholar 

  52. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 1994; 265: 966–970.

    Article  PubMed  CAS  Google Scholar 

  53. Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, Ding L, Mardis ER, Wilson RK, Solit D, Levine R, Michel K, Thomas RK, Rusch VW, Ladanyi M, Pao W. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 2008; 68: 5524–5528.

    Article  PubMed  CAS  Google Scholar 

  54. Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26: 3227–3239.

    Article  PubMed  CAS  Google Scholar 

  55. Montesano R, Soriano JV, Hosseini G, Pepper MS, Schramek H. Constitutively active mitogen-activated protein kinase kinase MEK1 disrupts morphogenesis and induces an invasive phenotype in Madin-Darby canine kidney epithelial cells. Cell Growth Differ. 1999; 10: 317–332.

    PubMed  CAS  Google Scholar 

  56. Pages G, Pouyssegur J. Transcriptional regulation of the Vascular Endothelial Growth Factor gene--a concert of activating factors. Cardiovasc. Res. 2005; 65: 564–573.

    Article  PubMed  CAS  Google Scholar 

  57. Pawlak G, Helfman DM. Post-transcriptional down-regulation of ROCKI/Rho-kinase through an MEK-dependent pathway leads to cytoskeleton disruption in Ras-transformed fibroblasts. Mol. Biol. Cell 2002; 13: 336–347.

    Article  PubMed  CAS  Google Scholar 

  58. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 2001; 22: 153–183.

    Article  PubMed  CAS  Google Scholar 

  59. Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 2003; 278: 21113–21123.

    Article  PubMed  CAS  Google Scholar 

  60. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 2007; 7: 415–428.

    Article  PubMed  CAS  Google Scholar 

  61. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392: 190–193.

    Article  PubMed  CAS  Google Scholar 

  62. Petermann KB, Rozenberg GI, Zedek D, Groben P, McKinnon K, Buehler C, Kim WY, Shields JM, Penland S, Bear JE, Thomas NE, Serody JS, Sharpless NE. CD200 is induced by ERK and is a potential therapeutic target in melanoma. J. Clin. Invest. 2007; 117: 3922–3929.

    PubMed  CAS  Google Scholar 

  63. Pinkas J, Leder P. MEK1 signaling mediates transformation and metastasis of EpH4 mammary epithelial cells independent of an epithelial to mesenchymal transition. Cancer Res. 2002; 62: 4781–4790.

    PubMed  CAS  Google Scholar 

  64. Pivarcsi A, Muller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, Kubitza R, Pippirs U, Meller S, Gerber PA, Liersch R, Buenemann E, Sonkoly E, Wiesner U, Hoffmann TK, Schneider L, Piekorz R, Enderlein E, Reifenberger J, Rohr UP, Haas R, Boukamp P, Haase I, Nurnberg B, Ruzicka T, Zlotnik A, Homey B. Tumor immune escape by the loss of homeostatic chemokine expression. Proc. Natl. Acad. Sci. USA 2007; 104: 19055–19060.

    Article  PubMed  CAS  Google Scholar 

  65. Potempa S, Ridley AJ. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol. Biol. Cell 1998; 9: 2185–2200.

    PubMed  CAS  Google Scholar 

  66. Raftopoulou M, Hall A. Cell migration: rho GTPases lead the way. Dev. Biol. 2004; 265: 23–32.

    Article  PubMed  CAS  Google Scholar 

  67. Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene 2007; 26: 3100–3112.

    Article  PubMed  CAS  Google Scholar 

  68. Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003; 22: 395–403.

    Article  PubMed  CAS  Google Scholar 

  69. Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, Muthuswamy SK, Brugge JS. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat. Cell Biol. 2003; 5: 733–740.

    Article  PubMed  CAS  Google Scholar 

  70. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709.

    Article  PubMed  CAS  Google Scholar 

  71. Rosen K, Rak J, Leung T, Dean NM, Kerbel RS, Filmus J. Activated Ras prevents downregulation of Bcl-X(L) triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J. Cell Biol. 2000; 149: 447–456.

    Article  PubMed  CAS  Google Scholar 

  72. Sahai E, Olson MF, Marshall CJ. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 2001; 20: 755–766.

    Article  PubMed  CAS  Google Scholar 

  73. Sahai E. Mechanisms of cancer cell invasion. Curr. Opin. Genet. Dev. 2005; 15: 87–96.

    Article  PubMed  CAS  Google Scholar 

  74. Scholl FA, Dumesic PA, Khavari PA. Mek1 alters epidermal growth and differentiation. Cancer Res. 2004; 64: 6035–6040.

    Article  PubMed  CAS  Google Scholar 

  75. Schramek H, Feifel E, Healy E, Pollack V. Constitutively active mutant of the mitogen-activated protein kinase kinase MEK1 induces epithelial dedifferentiation and growth inhibition in madin-darby canine kidney-C7 cells. J. Biol. Chem. 1997; 272: 11426–11433.

    Article  PubMed  CAS  Google Scholar 

  76. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 2007; 7: 295–308.

    Article  PubMed  CAS  Google Scholar 

  77. Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 2001; 15: 981–994.

    Article  PubMed  CAS  Google Scholar 

  78. Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges A, Przybranowski S, Leopold WR, Saltiel AR. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med. 1999; 5: 810–816.

    Article  PubMed  CAS  Google Scholar 

  79. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer 2004; 4: 937–947.

    Article  PubMed  CAS  Google Scholar 

  80. Simon C, Juarez J, Nicolson GL, Boyd D. Effect of PD 098059, a specific inhibitor of mitogen-activated protein kinase kinase, on urokinase expression and in vitro invasion. Cancer Res. 1996; 56: 5369–5374.

    PubMed  CAS  Google Scholar 

  81. Steimle V, Otten LA, Zufferey M, Mach B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 1993; 75: 135–146.

    PubMed  CAS  Google Scholar 

  82. Tanimura S, Chatani Y, Hoshino R, Sato M, Watanabe S, Kataoka T, Nakamura T, Kohno M. Activation of the 41/43 kDa mitogen-activated protein kinase signaling pathway is required for hepatocyte growth factor-induced cell scattering. Oncogene 1998; 17: 57–65.

    Article  PubMed  CAS  Google Scholar 

  83. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2002; 2: 442–454.

    Article  PubMed  CAS  Google Scholar 

  84. Torii S, Yamamoto T, Tsuchiya Y, Nishida E. ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci. 2006; 97: 697–702.

    Article  PubMed  CAS  Google Scholar 

  85. Tremblay PL, Huot J, Auger FA. Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res. 2008; 68: 5167–5176.

    Article  PubMed  CAS  Google Scholar 

  86. Varghese HJ, Davidson MT, MacDonald IC, Wilson SM, Nadkarni KV, Groom AC, Chambers AF. Activated ras regulates the proliferation/apoptosis balance and early survival of developing micrometastases. Cancer Res. 2002; 62: 887–891.

    PubMed  CAS  Google Scholar 

  87. Vial E, Sahai E, Marshall CJ. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 2003; 4: 67–79.

    Article  PubMed  CAS  Google Scholar 

  88. Viala E, Pouyssegur J. Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann. N. Y. Acad. Sci. 2004; 1030: 208–218.

    Article  PubMed  CAS  Google Scholar 

  89. Vincenti MP, Brinckerhoff CE. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J. Cell Physiol. 2007; 213: 355–364.

    Article  PubMed  CAS  Google Scholar 

  90. Voisin L, Julien C, Duhamel S, Gopalbhai K, Claveau I, Saba-El-Leil MK, Rodrigue-Gervais IG, Gaboury L, Lamarre D, Basik M, Meloche S. Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer 2008; 8: 337.

    Article  PubMed  CAS  Google Scholar 

  91. Voong LN, Slater AR, Kratovac S, Cressman DE. Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator. J. Biol. Chem. 2008; 283: 9031–9039.

    Article  PubMed  CAS  Google Scholar 

  92. Wang XQ, Li H, Van Putten V, Winn RA, Heasley LE, Nemenoff RA. Oncogenic K-Ras regulates proliferation and cell junctions in lung epithelial cells through induction of cyclooxygenase-2 and activation of metalloproteinase-9. Mol. Biol. Cell 2009; 20: 791–800.

    Article  PubMed  CAS  Google Scholar 

  93. Webb CP, Van Aelst L, Wigler MH, Woude GF. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc. Natl. Acad. Sci. USA 1998; 95: 8773–8778.

    Article  PubMed  CAS  Google Scholar 

  94. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 2004; 6: 154–161.

    Article  PubMed  CAS  Google Scholar 

  95. Welch DR, Sakamaki T, Pioquinto R, Leonard TO, Goldberg SF, Hon Q, Erikson RL, Rieber M, Rieber MS, Hicks DJ, Bonventre JV, Alessandrini A. Transfection of constitutively active mitogen-activated protein/extracellular signal-regulated kinase kinase confers tumorigenic and metastatic potentials to NIH3T3 cells. Cancer Res. 2000; 60: 1552–1556.

    PubMed  CAS  Google Scholar 

  96. Witz IP. The selectin-selectin ligand axis in tumor progression. Cancer Metastasis Rev. 2008; 27: 19–30.

    Article  PubMed  CAS  Google Scholar 

  97. Xie H, Pallero MA, Gupta K, Chang P, Ware MF, Witke W, Kwiatkowski DJ, Lauffenburger DA, Murphy-Ullrich JE, Wells A. EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLCgamma signaling pathway. J. Cell Sci. 1998; 111(Pt 5): 615–624.

    PubMed  CAS  Google Scholar 

  98. Yao Y, Xu Q, Kwon MJ, Matta R, Liu Y, Hong SC, Chang CH. ERK and p38 MAPK signaling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages. J. Immunol. 2006; 177: 70–76.

    PubMed  CAS  Google Scholar 

  99. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006; 24: 21–44.

    Article  PubMed  CAS  Google Scholar 

  100. Yue J, Mulder KM. Requirement of Ras/MAPK pathway activation by transforming growth factor beta for transforming growth factor beta 1 production in a Smad-dependent pathway. J. Biol. Chem. 2000; 275: 30765–30773.

    Article  PubMed  CAS  Google Scholar 

  101. Zheng Y, Xia Y, Hawke D, Halle M, Tremblay ML, Gao X, Zhou XZ, Aldape K, Cobb MH, Xie K, He J, Lu Z. FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol. Cell 2009; 35: 11–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory was supported by grants from the National Cancer Institute of Canada and the Cancer Research Society. S. Duhamel is recipient of a studentship from the Canadian Institutes for Health Research. S. Meloche holds the Canada Research Chair in Cellular Signaling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Meloche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Voisin∗, L., Duhamel∗, S., Meloche, S. (2010). The ERK1/2 MAP Kinase Signaling Pathway in Tumor Progression and Metastasis. In: Wu, WS., Hu, CT. (eds) Signal Transduction in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9522-0_3

Download citation

Publish with us

Policies and ethics