Skip to main content

Microenvironment Triggers EMT, Migration and Invasion of Primary Tumor via Multiple Signal Pathways

  • Chapter
  • First Online:
Signal Transduction in Cancer Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 15))

  • 1168 Accesses

Abstract

In the tumor microenvironment, the primary tumor cells may recruit and interact with stromal cells and inflammatory cells including macrophages, mast cells and neutrophiles. A great multitude of growth factors, cytokines, chemokines and growth/motility factors may be secreted by aforementioned cells in the microenvironment to trigger epithelial-mesenchymal transition (EMT), migration and invasion of tumor cells and facilitate neovasculation and modifications of the ECM. Multiple signal pathway induced by various metastatic factors may be integrated to establish an amplified and sustained driving force for tumor progression. The first part of this review focus on the cellular and molecular processes occurring in the microenvironment that are fundamental for triggering the initiation stage of tumor metastasis. In the second part, altered signal pathways induced by several critical metastatic factors such as HGF, TGFβ and that elicited by integrin-ECM engagement are delineated. In the future, more effective cancer therapy can be developed by targeting the critical signal molecules responsible for the initiation stage of tumor metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell 2006; 127(4): 679–695.

    Article  PubMed  CAS  Google Scholar 

  2. Lorusso G, Rüegg C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem. Cell Biol. 2008; 130: 1091–1103.

    Article  PubMed  CAS  Google Scholar 

  3. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009; 119: 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  4. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  PubMed  CAS  Google Scholar 

  5. Prall F. Tumour budding in colorectal carcinoma. Histopathology 2007; 50: 151–162.

    Article  PubMed  CAS  Google Scholar 

  6. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007; 67: 2649–2656.

    Article  PubMed  CAS  Google Scholar 

  7. Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–1709.

    Article  PubMed  Google Scholar 

  8. Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res. 1991; 51: 5054 s–5059 s.

    Google Scholar 

  9. Kim J, Yu W, Kovalski K, Ossowski L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 1998; 94: 353–362.

    Article  PubMed  CAS  Google Scholar 

  10. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 1997; 91: 439–442.

    Article  PubMed  CAS  Google Scholar 

  11. Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer. Chem. Biol. 1996; 3: 895–904.

    Article  PubMed  CAS  Google Scholar 

  12. Kelly T, Yan Y, Osborne RL, Athota AB, Rozypal TL, Colclasure JC, Chu WS. Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin. Exp. Metastasis 1998; 16: 501–512.

    Article  PubMed  CAS  Google Scholar 

  13. Chambers AF, Matrisian LM. Changing views of the role of matrix mettaloproteinases in metastasis. J. Natl. Cancer Inst. 1997; 89: 1260–1270.

    Article  PubMed  CAS  Google Scholar 

  14. Liotta LA, Saidel MG, Kleinerman J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 1976; 36: 889–894.

    PubMed  CAS  Google Scholar 

  15. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980; 284: 67–68.

    Article  PubMed  CAS  Google Scholar 

  16. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001; 411: 375–379.

    Article  PubMed  CAS  Google Scholar 

  17. Park CC, Bissell MJ, Barcellos-Hoff MH. The influence of the microenvironment on the malignant phenotype. Mol. Med. Today 2000; 6: 324–329.

    Article  PubMed  CAS  Google Scholar 

  18. Rüegg C. Leukocytes, inflammation, and angiogenesis in cancer: fatal attractions. J. Leukoc. Biol. 2006; 80: 682–684.

    Article  PubMed  Google Scholar 

  19. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Robinson SC, Coussens LM. Soluble mediators of inflammation during tumor development. Adv. Cancer Res. 2005; 93: 159–187.

    Article  Google Scholar 

  20. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454: 436–444.

    Article  PubMed  CAS  Google Scholar 

  21. Zavadil J, Böttinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005; 24: 5764–5774. Review.

    Article  PubMed  CAS  Google Scholar 

  22. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol. 1997; 137: 1403–1419.

    Article  PubMed  CAS  Google Scholar 

  23. Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung MC. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 2007; 67: 9066–9076.

    Article  PubMed  CAS  Google Scholar 

  24. Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O’Regan RM. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2008; 68: 2479–2488.

    Article  PubMed  CAS  Google Scholar 

  25. Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 1998; 8: 404–410. Review.

    Article  PubMed  CAS  Google Scholar 

  26. Van der Voort R, Taher TE, Derksen PW, Spaargaren M, vander Neut R, Pals ST. The hepatocyte growth factor/Met pathway in development, tumorigenesis, and B-cell differentiation. Adv. Cancer Res. 2000; 79: 39–90. Review.

    Article  PubMed  Google Scholar 

  27. Benvenuti S, Comoglio PM. The MET receptor tyrosine kinase in invasion and metastasis. J. Cell Physiol. 2007; 213: 316–325. Review.

    Article  PubMed  CAS  Google Scholar 

  28. Lesko E, Majka M. The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci. 2008; 13: 1271–1280.

    Article  PubMed  CAS  Google Scholar 

  29. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 1994; 77: 261–271.

    Article  PubMed  CAS  Google Scholar 

  30. Pelicci G, Giordano S, Zhen Z, Salcini AE, Lanfrancone L, Bardelli A, Panayotou G, Waterfield MD, Ponzetto C, Pelicci PG. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene 1995; 10: 1631–1638.

    PubMed  CAS  Google Scholar 

  31. Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 1996; 384: 173–176.

    Article  PubMed  CAS  Google Scholar 

  32. Lee KH, Choi EY, Hyun MS, Jang BI, Kim TN, Kim SW, Song SK, Kim JH, Kim JR. Hepatocyte growth factor/c-met signaling in regulating urokinase plasminogen activator in human stomach cancer: a potential therapeutic target for human stomach cancer. Korean J. Intern. Med. 2006; 21: 20–27.

    Article  PubMed  CAS  Google Scholar 

  33. Zeng Q, Chen S, You Z, Yang F, Carey TE, Saims D, Wang CY. Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFkappa B. J. Biol. Chem. 2002; 277: 25203–25208.

    Article  PubMed  CAS  Google Scholar 

  34. Lee KH, Hyun MS, Kim JR. Growth factor-dependent activation of the MAPK pathway in human pancreatic cancer: MEK/ERK and p38 MAP kinase interaction in uPA synthesis. Clin. Exp. Metastasis 2003; 20: 499–505.

    Article  PubMed  CAS  Google Scholar 

  35. Recio JA, Merlino G. Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1. Oncogene 2002; 21: 1000–1008.

    Article  PubMed  CAS  Google Scholar 

  36. Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene 2003; 22: 8498–8508.

    Article  PubMed  CAS  Google Scholar 

  37. Kermorgant S, Parker PJ. c-Met signalling: spatio-temporal decisions. Cell Cycle 2005; 4: 352–355.

    Article  PubMed  CAS  Google Scholar 

  38. Rong S, Segal S, Anver M, Resau JH, Vande Woude GF. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl. Acad. Sci. USA 1994; 91: 4731–4735.

    Article  PubMed  CAS  Google Scholar 

  39. Takayama H, LaRochelle WJ, Sharp R, Otsuka T, Kriebel P, Anver M, Aaronson SA, Merlino G. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl. Acad. Sci. USA 1997; 94: 701–706.

    Article  PubMed  CAS  Google Scholar 

  40. Lu X, Yao W, Newton RC, Scherle PA. Targeting the c-Met signaling pathway for cancer therapy. Expert. Opin. Investig. Drug 2008; 17:997–1011.

    Article  Google Scholar 

  41. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 2003; 4: 915–925.

    Article  PubMed  CAS  Google Scholar 

  42. Jeffers M, Rong S, Woude GF. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med. 1996; 74: 505–513.

    Article  PubMed  CAS  Google Scholar 

  43. Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R. The role of hepatocyte growth factor (scatter factor) in epithelial-mesenchymal transition and breast cancer. Cytokine Growth Factor Rev. 2002; 13: 41–59. Review.

    Article  PubMed  CAS  Google Scholar 

  44. Vande Woude GF, Jeffers M, Cortner J, Alvord G, Tsarfaty I, Resau J. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found Symp. 1997; 212: 119–130; discussion 130–132, 148–154. Review.

    PubMed  CAS  Google Scholar 

  45. Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R. Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. Br. J. Cancer 2007; 97: 368–377.

    Article  PubMed  CAS  Google Scholar 

  46. Zhou HY, Pon YL, Wong AS, HGF/MET signaling in ovarian cancer. Curr. Mol. Med. 2008; 8: 469–480.

    Article  PubMed  CAS  Google Scholar 

  47. Herynk MH, Zhang J, Parikh NU, Gallick GE, Activation of Src by c-Met overexpression mediates metastatic properties of colorectal carcinoma cells. J. Exp. Ther. Oncol. 2007; 6: 205–217.

    PubMed  CAS  Google Scholar 

  48. MacDougall CA, Vargas M, Soares CR, Holzer RG, Ide AE, Jorcyk CL. Involvement of HGF/SF-Met signaling in prostate adenocarcinoma cells: evidence for alternative mechanisms leading to a metastatic phenotype in Pr-14c. Prostate 2005; 64: 139–148.

    Article  PubMed  CAS  Google Scholar 

  49. Cheng N, Chytil A, Shyr Y, Joly A, Moses HL. Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol. Cancer Res. 2008; 6: 1521–1533.

    Article  PubMed  CAS  Google Scholar 

  50. Kitajo H, Shibata T, Nagayasu H, Kawano T, Hamada J, Yamashita T, Arisue M. Rho regulates the hepatocyte growth factor/scatter factor-stimulated cell motility of human oral squamous cell carcinoma cells. Oncol. Rep. 2003; 10(5): 1351–1356.

    PubMed  CAS  Google Scholar 

  51. Nakamura T, Kanda S, Yamamoto K, Kohno T, Maeda K, Matsuyama T, Kanetake H. Increase in hepatocyte growth factor receptor tyrosine kinase activity in renal carcinoma cells is associated with increased motility partly through phosphoinositide 3-kinase activation. Oncogene 2001; 20: 7610–7623.

    Article  PubMed  CAS  Google Scholar 

  52. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006; 12: 3657–3660.

    Article  PubMed  CAS  Google Scholar 

  53. Matsumoto K, Nakamura T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 2003; 94: 321–327.

    Article  PubMed  CAS  Google Scholar 

  54. Toschi L, Jänne PA. Single-agent and combination therapeutic strategies to inhibit hepatocyte growth factor/MET signaling in cancer. Clin. Cancer Res. 2008; 14: 5941–5946. Review.

    Article  PubMed  CAS  Google Scholar 

  55. Massagué J. TGF-beta signal transduction. Annu. Rev. Biochem. 1998; 67: 753–791. Review.

    Article  PubMed  Google Scholar 

  56. Akhurst RJ, Derynck R. TGF-beta signaling in cancer – a double-edged sword. Trends Cell Biol. 2001; 11: S44–S51. Review.

    PubMed  CAS  Google Scholar 

  57. Leivonen SK, Kähäri VM. Transforming growth factor-beta signaling in cancer invasion and metastasis. Int. J. Cancer 2007; 121: 2119–2124. Review.

    Article  PubMed  CAS  Google Scholar 

  58. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700.

    Article  PubMed  CAS  Google Scholar 

  59. Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogenactivated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 2005; 24: 5742–5750.

    Article  PubMed  CAS  Google Scholar 

  60. Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-b-mediated transcription. J. Biol. Chem. 1999; 274: 37413–37420.

    Article  PubMed  CAS  Google Scholar 

  61. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 1994; 127: 2021–2036.

    Article  PubMed  CAS  Google Scholar 

  62. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996; 10: 2462–2477.

    Article  PubMed  CAS  Google Scholar 

  63. Wikström P, Stattin P, Franck-Lissbrant I, Damber JE, and Bergh A. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 1998; 37: 19–29.

    Article  PubMed  Google Scholar 

  64. Deckers M, van Dinther M, Buijs J, Que I, Löwik C, van der Pluijm G, ten Dijke P. The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 2006; 66: 2202–2209.

    Article  PubMed  CAS  Google Scholar 

  65. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massague J. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. USA 2005; 102: 13909–13914.

    Article  PubMed  CAS  Google Scholar 

  66. Leivonen SK, Alaaho R, Koli K, Grenman R, Peltonen J. Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene 2006; 25: 2588–2600.

    Article  PubMed  CAS  Google Scholar 

  67. Akhurst RJ. Large- and small-molecule inhibitors of transforming growth factor-beta signaling. Curr. Opin. Investig. Drugs 2006; 7: 513–521.

    PubMed  CAS  Google Scholar 

  68. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signaling inhibitors for cancer therapy. Nat. Rev. Drug Discov. 2004; 3: 1011–1022.

    Article  PubMed  CAS  Google Scholar 

  69. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285: 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  70. Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 2004; 5: 816–826.

    Article  PubMed  CAS  Google Scholar 

  71. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2002; 2: 91–100.

    Article  PubMed  Google Scholar 

  72. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.

    Article  PubMed  CAS  Google Scholar 

  73. Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J. Cell Biol. 1999; 146: 389–403.

    Article  PubMed  CAS  Google Scholar 

  74. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 1997; 137: 481–492.

    Article  PubMed  CAS  Google Scholar 

  75. Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K. JNK phosphorylates paxillin and regulates cell migration. Nature 2003; 424: 219–223.

    Article  PubMed  CAS  Google Scholar 

  76. Raftopoulou M, Hall A. Cell migration: rho GTPases lead the way. Dev. Biol. 2004; 265: 23–32.

    Article  PubMed  CAS  Google Scholar 

  77. Breuss JM, Gallo J, DeLisser HM, Klimanskaya IV, Folkesson HG, Pittet JF, Nishimura SL, Aldape K, Landers DV, Carpenter W. Expression of the β6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J. Cell Sci. 1995; 108: 2241–2251.

    PubMed  CAS  Google Scholar 

  78. Gladson CL, Cheresh DA. Glioblastoma expression of vitronectin and the αvβ3 integrin: adhesion mechanism for transformed glial cells. J. Clin. Invest. 1991; 88: 1924–1932.

    Article  PubMed  CAS  Google Scholar 

  79. Mercurio AM, Rabinovitz I. Towards a mechanistic understanding of tumor invasion – lessons from the α4β4 integrin. Semin. Cancer Biol. 2001; 11: 129–141. Review.

    Article  PubMed  CAS  Google Scholar 

  80. Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prévost N, Tarin D, Shattil SJ, Cheresh DA. An integrin αvα3–c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat. Med. 2009; 15: 1163–1169.

    Article  PubMed  CAS  Google Scholar 

  81. Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu. Rev. Cell Dev. Biol. 2003; 19: 173–206.

    Article  PubMed  CAS  Google Scholar 

  82. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat. Cell Biol. 2002; 4: E83–E90.

    Article  PubMed  CAS  Google Scholar 

  83. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet. 2001; 29: 117–129.

    Article  PubMed  CAS  Google Scholar 

  84. Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for α6β4 integrin in the control of HGFdependent invasive growth. Cell 2001; 107: 643–654.

    Article  PubMed  CAS  Google Scholar 

  85. Wu WS, Wu JR, Hu CT. Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev. 2008; 27: 303–314. Review.

    Article  PubMed  CAS  Google Scholar 

  86. Caswell P, Norman J. Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol. 2008; 18: 257–263.

    Article  PubMed  CAS  Google Scholar 

  87. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 2010; 10(1): 9–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Tan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wu, WS., Hu, CT. (2010). Microenvironment Triggers EMT, Migration and Invasion of Primary Tumor via Multiple Signal Pathways. In: Wu, WS., Hu, CT. (eds) Signal Transduction in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9522-0_2

Download citation

Publish with us

Policies and ethics