Skip to main content

Observation and Geophysical Causes of Present-Day Sea-Level Rise

  • Chapter
  • First Online:

Abstract

The 2007 IPCC Fourth Assessment Report (FAR) sea-level assessment has significantly narrowed the gap between the observations and the geophysical causes of sea-level rise than the 2001 IPCC Third Assessment Report (TAR). The observed present-day (1900–current) sea-level rise is approximately 1.8–2.2 mm/year. The unexplained discrepancy (observed compared with the sum of all known geophysical contributions to sea-level rise) dropped from 1.83 to 1.29 mm/year. A post-2007 IPCC FAR sea-level assessment study covering modern satellite measurement data span (2003–2008) indicates significant narrowing of the sea-level budget disagreement over IPCC TAR, to 0.44 mm/year. However, a review of more recent studies including the mountain glacier and ice-sheet mass balance estimates and the estimated sea-level fall from human impoundment of water in reservoirs reveal that the discrepancy is now up to 1.42 mm/year, drastically larger than the current assessment (0.44 mm/year). The unexplained sea-level signal represents 71% of the observed sea-level rise (∼2.0 mm/year). Major geophysical contributors to sea-level rise identified which potentially have the largest errors include the ice-sheet mass balance, the knowledge of glacial isostatic adjustment forward models underneath the ice-sheets and the ocean, mountain glaciers and ice caps, and the anthropogenic effect of human impoundment of water in reservoirs and dams. Integrated analysis and interpretation using modern satellite and in situ measurements could narrow the uncertainty between the observations and the explained contributions from each of the geophysical sources to sea-level rise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

FAR:

Fourth Assessment Report

TAR:

Third Assessment Report

UNEP:

United Nations Environment Program

WMO:

World Meteorological Organization

GIA:

glacial isostatic adjustment

GRACE:

Gravity Recovery and Climate Experiment

MBT:

mechanical bathythermographs

PMSL:

permanent service for mean sea-level

LGM:

last glacial melt

References

  • Abdalati W, Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2001) Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet, J Geophys. Res 106(D24): 33, 729–33, 742

    Google Scholar 

  • Antonov J, Levitus S, Boyer T (2005) Steric variability of the world ocean, 1955–2003. Geophys Res Lett 32(12):L12602. doi:10.1029/2005GL023112

    Article  Google Scholar 

  • Arendt A, Echelmeyer K, Harrison W, Lingle C, Valentine V (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea-level. Science 297:383–386

    Article  Google Scholar 

  • Bindoff N, Willebrand J (Coordinating Lead Authors) Artable V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quere C, Levitus S, Nojiri Y, Shum CK, Talley L, Unnikrishnan A (Lead Authors) and 50 contributing authors (2007) Chapter 5: observations: oceanic climate change and sea-level, Intergovernmental Panel Climate Committee (IPCC) Working Group 1 (WG1) Fourth Assessment Report

  • Cazenave A, Nerem R (2004) Present-day sea-level change: observations and causes. Rev Geophys 42:RG3001. doi:10.1029/2003RG000139

    Article  Google Scholar 

  • Cazenave A (2009) Sea-level budget after IPCC AR4: a reevaluation from satellite altimetry, GRACE and Argo data over 2003–2008, AAAS Annual Meeting: Global Sea-Level Rise: Observation, Causes, and Prediction, Chicago, Illinois, Feb. 12–16

    Google Scholar 

  • Cazenave A, Shum C (2009) Sea-level budget after IPCC AR4: a reevaluation from satellite altimetry, GRACE and Argo data over 2003–2008, Joint IPCC-WCRP-IGBP Workshop: New Science Directions and Activities Relevant to the IPCC AR5, Hawaii, March 3–6

    Google Scholar 

  • Chambers D (2006a) Observing seasonal steric sea-level variations with GRACE and satellite altimetry. J Geophys Res 111:C03010. doi:10.1029/2005JC002914

    Article  Google Scholar 

  • Chambers D (2006b) Evaluation of new GRACE time-variable gravity data over the ocean. Geophys Res Letts 33:L17603. doi:10, 1029/2006GL027296

    Article  Google Scholar 

  • Chambers DP, Tamisiea ME, Nerem RS, Ries JC (2007) Effects of ice melting on GRACE observations of ocean mass trends. Geophys Res Lett 34:L05610. doi:10.1029/2006GL029171

    Article  Google Scholar 

  • Chao B, Wu Y, Li Y (2008) Impact of artificial reservoir water impoundment on global sea-level. Science. doi:10.1126/science.1154580

    Google Scholar 

  • Chen J, Wilson C, Blankenship D, Tapley B (2006a) Antarctic mass rates form GRACE. Geophys Res Lett 33:L11502. doi:10.1029/2006GL026369

    Article  Google Scholar 

  • Chen J, Wilson C, Tapley B (2006b) Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science 313:1958. doi:10.1126/science.1129007

    Article  CAS  Google Scholar 

  • Church J, Gregory J, Huybrechts P, Kuhn M, Lambeck K, Nhun M, Qin D, Woodworth P, 26 others (2001) Chapter 11: change in sea-level, Intergovernmental Panel Climate Committee (IPCC) Working Group 1 (WG1) Third Assessment Report

  • Church J, White N, Coleman R, Lambeck K, Mitrovica J (2004) Estimates of the regional distribution of sea-level rise over the 1950–2000 period. J Climate 17:2609–2625

    Article  Google Scholar 

  • Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50:96–100

    Google Scholar 

  • Crowell M, Edelman S, Coulton K, McAfee S (2007) How many people live in coastal areas? J Coast Res 23:5. doi:10.2112/07A-0017.1

    Google Scholar 

  • Davis C, Li Y, McConnell J, Frey M, Hanna E (2005) Snowfall-driven growth in east Antarctic Ice Sheet mitigates recent sea-level rise. Science 10.1126/science.1110662

    Google Scholar 

  • Dixon T, Amelung F, Ferretti A, Novali F, Rocca F, Dokka R, Sella G, Kim SW, Wdowinski S, Whitman D (2006) Subsidence and flooding in New Orleans, Nature, doi:10.1038/441587a

    Google Scholar 

  • Domingues C, Church J, White N, Gleckler P, Wijffels S, Barker P, Dunn J (2008) Upper-ocean warming and sea-level rise, Nature 453, doi:10.1038/nature07080

    Google Scholar 

  • Donnelly JP, Cleary P, Newby P, Ettinger R (2004) Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophys Res Lett 31:L05203. doi:10.1029/2003GL018933

    Article  Google Scholar 

  • Douglas B (2001) In: Douglas B, Kearney M, Leatherman S (eds) Sea-level rise: history and consequences, sea-level change in the era of the recording tide gauge. Academic, San Diego

    Google Scholar 

  • Duan XJ, Guo JY, Shum CK, van der Wal W (2009) On the post-processing removal of correlated errors in GRACE temporal gravity field solutions. J Geodesy. doi:10.1007/s00190-009-0327-0

    Google Scholar 

  • Dyurgerov M, Meier M (2005) Glaciers and changing Earth system: a 2004 snapshot. INSTAAR, Boulder

    Google Scholar 

  • Gehrels W, Marshall M, Larsen G, Kirby J, Eiríksson J, Heinemeier J, Shimield T (2006) Rapid sea-level rise in the North Atlantic Ocean since the first half of the nineteenth century. The Holocene 16:949–965

    Article  Google Scholar 

  • Gouretski V, Koltermann K (2007) How much is the ocean really warming? Geophys Res Lett 34:L01610. doi:10.1029/2006GL027834

    Article  Google Scholar 

  • Gregory J, Lowe J, Tett S (2006) Simulated global-mean sea-level changes over the last half-millennium. J Climate 19:4,576–4,591. doi:10.1175/JCLI3881.1

    Article  Google Scholar 

  • Guo JY, Shum C (2009) Application of the cos-Fourier expansion to data transformation between different latitude-longitude grids. Comput Geosci 35:1439–1444

    Article  Google Scholar 

  • Guo JY, Duan XJ, Shum CK (2010) Non-isotropic filtering and leakage reduction for determining mass changes over land and ocean using GRACE data. Geophys J Int 181: 290–302. doi: 10.111/j.1365-246X.2010.04534.x

    Google Scholar 

  • Han S, Shum C, Jekeli C, Kuo C, Wilson C, Seo K (2005) Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int 163(1):18–25. doi:10.1111/j.1365-246X.2005.02756.x

    Article  Google Scholar 

  • Helsen M, van den Broeke M, van de Wal R, van de Berg WJ, Meijaard E, Davis C, Li YH, Goodwin I (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Sciencexpress 10.1126/science.1153894, 1–4, May

    Google Scholar 

  • Hinrichsen, D (2009) Ocean planet in decline, peopleandplantet.net: People and coasts and oceans, http://www.peopleandplanet.net/doc.php%3Fid=429&section=6.html

    Google Scholar 

  • Holgate S (2007) On the decadal rates of sea-level change during the twentieth century. Geophys Res Lett 34:L01602. doi:10.1029/2006GL028492

    Article  Google Scholar 

  • IPCC (2007) Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis, Summary for Policymakers

    Google Scholar 

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea-level acceleration started over 200 years ago? Geophys Res Lett 35:L08715. doi:10.1029/2008GL03611

    Article  Google Scholar 

  • Johannessen O, Khvorostovsky K, Miles M, Bobylev L (2005) Recent ice-sheet growth in the interior of Greenland. Science 310:1013–1016

    Article  CAS  Google Scholar 

  • Kaser G, Cogley J, Dyurgerov M, Meier M, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33:L19501. doi:10.1029/2006GL027511

    Article  Google Scholar 

  • Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntage J, Swift R, Thomsa R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi:10.1029/2004GL021533

    Article  Google Scholar 

  • Kuo C (2006) Determination and characterization of 20th century global sea-level rise, OSU Report 478, ix + 158 pp

    Google Scholar 

  • Kuo C, Shum C, Braun A, Cheng K, Yi Y (2008) Vertical motion determined using satellite ­altimetry and tide gauges, Special Issue : satellite altimetry over land and coastal zones: challenges and applications. Terr Atmos Ocean Sci 19(1–2):21–35. doi:10.3319/TAO.2008.19.1-2.21(SA

    Article  Google Scholar 

  • Lambeck K, Esat T, Potter E (2002) Links between climate and sea-levels for the past three million years. Nature 419:199–206

    Article  CAS  Google Scholar 

  • Lemke P, Ren J, Alley R, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas R, Zhang TJ, and 44 contributing authors (2007) Chapter 4; Observations: changes in snow, ice and frozen ground, IPCC WG1 Fourth Assessment Report

  • Lettenmaier D, Milly C (2009) Land waters and sea-level. Nat Geosci 2:452–454

    Article  CAS  Google Scholar 

  • Leuliette EW, Miller L (2009) Closing the sea-level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36:L04608. doi:10.1029/2008GL036010

    Article  Google Scholar 

  • Levitus S, Antonov I, Boyer T, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229

    Article  CAS  Google Scholar 

  • Luthcke S, Zwally H, Abdalati W, Rowlands D, Ray R, Nerem R, Lemoine F, McCarthy J, Chinn D (2006) Recent ice sheet mass loss by drainage system from satellite gravity observations. Science. doi:10.1126/science.1130776

    Google Scholar 

  • Meier M, Dyurgerov M, Rick U, O’Neel S, Pfeffer W, Anderson R, Anderson S, Glazovsky A (2007) Glaciers dominate eustatic sea-level rise in the 21st century, Science, doi: 10.1126/science.1143906

    Google Scholar 

  • Merrifield MA, Merrifield ST (2009) An anomalous recent acceleration of global sea-level rise. J Climate, doi:10.1175/2009JCL12985.1, 2009

    Google Scholar 

  • Miller L, Douglas B (2006) On the rate and causes of twentieth century sea-level rise. Phil Trans R Soc A, doi:10.1098/rsta.2006.1738

    Google Scholar 

  • Milly P, Cazenave A, Gennero M (2003) Contribution of climate-driven change in continental water storage to recent sea-level rise. Proc Natl Acad Sci 100(23):13158–13161

    Article  CAS  Google Scholar 

  • Milly PCD, Cazenave A, Famiglietti J, Gornitz V, Laval K, Lettenmaier D, Sahagian D, Wahr J, Wilson C (2009) Terrestrial water storage contributions to sea-level rise and variability, Proceedings of the WCRP workshop ‘Understanding sea-level rise and variability’. In: Church J, Woodworth P, Aarup T, Wilson S, et al., Blackwell Publishing, Inc., New York

    Google Scholar 

  • Munk W (2002) Twentieth century sea-level: an enigma. Proc Natl Acad Sci 99(10):6550–6555

    Article  CAS  Google Scholar 

  • Ngo-Duc T, Laval K, Polcher Y, Lombard A, Cazenave A (2005) Effects of land water storage on the global mean sea-level over the last half century. Geophys Res Lett 32:L09704. doi:10.1029/2005GL022719

    Article  Google Scholar 

  • Nicholls RJ (2002) Rising sea-level: potential impacts and responses. In: Hester RE, Harrison RM (eds) Issues in environmental science and technology; global environmental change, vol 17., pp 83–107

    Google Scholar 

  • Nicholls RJ (2007) The impacts of sea-level rise. Ocean Challenge 15(1):13–17

    Google Scholar 

  • Overpeck J, Otto-Bliesner B, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750

    Article  CAS  Google Scholar 

  • Paulson A (2006) Inference of the Earth’s mantle viscosity from post-glacial rebound, PhD Dissertation, University of Colorado

    Google Scholar 

  • Peltier W (2001) Global glacial isostatic adjustment and modern instrumental records of relative sea-level history. In: Douglas B, Kearney M, Leatherman S (eds)., Sea-level rise: history and consequences, Chapter 4. Academic Press, New York, 65–93

  • Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  CAS  Google Scholar 

  • Peltier W (2009) Closure of the budget of global sea-level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment, Quatern Sci Rev, 28(17–18), 1658–1674

    Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  CAS  Google Scholar 

  • Ramillien G, Lombard A, Cazenave A, Ivins E, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet Change 53(3):198–208

    Article  Google Scholar 

  • Ramillien G, Bouhours S, Lombard A, Cazenave A, Flechtner F, Schmidt R (2008) Land water contributions from GRACE to sea-level rise over 2002–2006. Global Planet Change 60:381–392

    Article  Google Scholar 

  • Rignot E, Thomas R (2002) Mass balance of polar ice sheets. Science 297:1502–1506

    Article  CAS  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990

    Article  CAS  Google Scholar 

  • Rignot E, Bamber JL, van den Broeke MR, Davis C, Li YH, van de Berg WJ, Meijaard EV (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nature 1:106–110

    CAS  Google Scholar 

  • Schmidt M, Han C, Kusche J, Sanchez L, Shum C (2006) Regional high-resolution spatio-temporal gravity modeling from GRACE data using spherical wavelets. Geophys Res Lett 33:L08403. doi:10.1029/2005GL025509

    Article  Google Scholar 

  • Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315:1529–1532. doi:10.1126/science.1136776

    Article  CAS  Google Scholar 

  • Shum C, Ries J, Tapley B (1995) The accuracy and applications of satellite altimetry. Geophys J Int 121:321–336

    Article  Google Scholar 

  • Shum C, Yi Y, Cheng K, Kuo C, Braun A, Calmant S, Chamber D (2003) Calibration of Jason-1 altimeter over Lake Erie. Marine Geodesy 26:335–354. doi:10.1080/01490410390253487

    Article  Google Scholar 

  • Shum C, Kuo C, Guo J (2008) Role of Antarctic ice mass balances in present-day sea-level change. Polar Sci 2:149–161

    Article  Google Scholar 

  • Shum C, Cazenave A, Kuo CY (2009) Quantifying geophysical causes of present-day sea-level rise. Joint IPCC-WCRP-IGBP Workshop: New Science Directions and Activities Relevant to the IPCC AR5, Hawaii, March 3–6

    Google Scholar 

  • Siddall M, Stocker TS, Clark PU (2009) Constraints on future sea-level rise from past sea-level change. Nat Geosci, doi:10.1038/NGE0587

    Google Scholar 

  • Slobbe DC, Ditmar P, Lindenbergh RC (2009) Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys J Int 176:95–106

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 21–84

    Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries J, Thompson P, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505

    Article  CAS  Google Scholar 

  • Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederrick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306(5694):255–258

    Article  CAS  Google Scholar 

  • Velicogna I, Wahr J (2006a) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331

    Article  CAS  Google Scholar 

  • Velicogna I, Wahr J (2006b) Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754–1756

    Article  CAS  Google Scholar 

  • Wahr J, Han H, Trupin A (1995) Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic Earth. Geophys Res Lett 22(8):977–980

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30,205–30,229

    Article  Google Scholar 

  • Wahr J, Swenson S, Velicogna I (2006) Using GRACE to estimate changes in land water storage: present limitations and future potential, Proc. Understanding Sea-level Rise and Variability Workshop, Paris, France, 6–9 June

    Google Scholar 

  • Warrick R, Oerlemans J (1990) Sea-level rise. In: Houghton J, Jenkins G, Ephraums J (eds) Climate Change: the IPPC scientific assessment. Cambridge University Press, Cambridge, pp 257–281

    Google Scholar 

  • Warrick RA, Provost Le C, Meier M, Oerlemans J, Warrick RA, Provost Le C, Meier M, Oerlemans J, Woodworth P (1996) Changes in sea-level. In: In Climate change 1995, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Wijffels SE, Willis J, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church JA (2008) Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea-level rise. J Climate 21:5657–5672

    Article  Google Scholar 

  • Willis JK, Lyman JM, Johnson GC, Gilson J (2007) Correction to “Recent cooling of the upper ocean”. Geophys Res Lett 34:L16601. doi:10.1029/2007GL030323

    Article  Google Scholar 

  • Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea-level budget on seasonal to interannual timescales. J Geophys Res 113:C06015. doi:10.1029/2007JC004517

    Article  Google Scholar 

  • Wingham D, Shepherd A, Muir A, Marshall G (2006) Mass balance of the Antarctic ice sheet. Phil Trans R Soc A 364:627–1635. doi:10.1098/rsta.2006.1792

    Article  Google Scholar 

  • Woodworth P, Player R (2003) The permanent service for mean sea-level: an update to the 21st century. J Coastal Res 19:287–295

    Google Scholar 

  • Woodworth P, Jevrejeva S, Holgate S, Church J, White N, Gehrels R (2009) A review of the ­evidence for the recent accelerations of sea-level on multi-decade and century timescales. Int. J. Climatol. 29: 777–789

    Google Scholar 

  • World Climate Research Programme (WCRP) Workshop Summary Statement (2006 June) Understanding the sea-level rise and variability. UNESCO, Paris, France

    Google Scholar 

  • Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, Saba J, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002, J Glaciology, 51 (175): 509–527

    Google Scholar 

Download references

Acknowledgments

We acknowledge Philip Woodworth, UK’s Permanent Service for Mean Sea-Level (PSMSL), for providing the tide gauge records, NASA and CNES for the TOPEX/POSEIDON, Jason-1 radar altimetry data, ESA for the ERS-1/-2 and Envisat altimetry data, US Navy via NOAA’s Laboratory for Satellite Altimetry for the Geosat and GFO altimetry data, NASA and GFZ for the GRACE data via University of Texas Center for Space Research and JPL-PODAAC, M. Ishii at Frontier Research Center for Global Change, Japan, for the thermal sea-level data, D. Peliter, H. Wang, and P. Wu for providing the glacial isostatic adjustment models, and D. Wingham at University College London for the ERS-1/-2 altimetry derived Antarctic ­ice-sheet elevation data. This research is supported by grants from NASA and from the Ohio State University’s Climate, Water and Carbon Program. Chung-yen Kuo is supported by grants from the National Cheng Kung University, and from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Shum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shum, C.K., Kuo, CY. (2010). Observation and Geophysical Causes of Present-Day Sea-Level Rise. In: Lal, R., Sivakumar, M., Faiz, S., Mustafizur Rahman, A., Islam, K. (eds) Climate Change and Food Security in South Asia. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9516-9_7

Download citation

Publish with us

Policies and ethics