Skip to main content

Inter-annual Water Storage Changes in Asia from GRACE Data

  • Chapter
  • First Online:

Abstract

Time-varying gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been used to investigate the inter-annual changes of hydrologic water storage (∆ S) within Asia, focusing on the India–China–South Asia region. Instead of computing GRACE monthly ∆ S from geopotential coefficients, we choose to compute the annually averaged ∆ S before data smoothing, which improved the accuracy for the resulting inter-annual water storage changes. We then applied a novel method of decorrelation, filtering and land signal leakage reduction to the data, which yielded more accurate and higher spatial resolution (200 km or longer, half-wavelength) GRACE storage change observables over the study region. The technique provides a tool for future more in-depth studies of terrestrial hydrology in this region or globally. GRACE inter-annual variations in water storage change (2002–2007) exhibit large extremes over the region: droughts in Eastern China in 2004 and Indo-China and Bangladesh in 2005; and flooding in Indo-China and India in 2006. In general, GRACE inter-annual ∆ S variations have significantly larger amplitudes (increase or decrease of water storage change) than the values predicted by the Global Land Data Assimilation System (GLDAS) hydrologic model, and than the total precipitation observed by the Topical Rainfall Measurement Mission (TRMM).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

NASA:

National Aeronautics and Space Administration

DLR:

Deutsches Zentrum für Luft- und Raumfahrt joint satellite mission

GRACE:

Gravity Recovery and Climate Experiment

TRMM:

Topical Rainfall Measurement Mission

KBR:

K/Ka-band low-low inter-satellite ranging

ENSO:

El Niño-Southern Oscillation

GLDAS:

Global Land Data Assimilation System

GIA:

glacial isostatic adjustment

EOF:

empirical orthogonal functions

SCs:

Stokes coefficients

References

  • Andersen O, Berry P, Freeman J, Lemoine FG, Lutsckhe S, Jakobsen F, Butts M (2008) Satellite altimetry and GRACE gravimetry for studies of annual water storage variations in Bangladesh. Terr Atmos Ocean Sci 19(1–2):47–52

    Article  Google Scholar 

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Climate 12:3117–3132

    Article  Google Scholar 

  • Chambers DP (2006) Evaluation of New GRACE time-variable gravity data over the ocean, Geophys Res Lett 33:L17603, doi:10.1029/2006GL027296

    Google Scholar 

  • Chen JL, Wilson CR, Seo KW (2006) Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res 111:B06408. doi:10.1029/2005JB004064

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Grand S (2007) GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophys Res Lett 34:L13302. doi:10.1029/2007GL030356

    Article  Google Scholar 

  • Crowley JW, Mitrovica JX J, Bailey RC, Tamisiea ME, Davis JL (2006) Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys Res Lett 33:L19402. doi:10.1029/2006GL027070

    Article  Google Scholar 

  • Davis JL, Tamisiea ME, El’osegui P, Mitrovica JX, Hill EM (2008) A statistical filtering approach for Gravity Recovery and Climate Experiment (GRACE) gravity data. J Geophys Res 113:B04410. doi:10.1029/2007JB005043

    Article  Google Scholar 

  • Duan XJ, Guo JY, Shum CK, ven der Wal W (2009) On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J Geodesy. doi:10.1007/s00190-009-0327-0

    Google Scholar 

  • Guo JY, Li YB, Huang Y, Deng HT, Xu SQ, Ning JS (2004) Green’s function of the deforma-tion of the Earth as a result of atmospheric loading. Geophys J Int 159:53–68. doi:10.1111/j.1365-246X.2004.02410.x

    Article  Google Scholar 

  • Guo JY, Duan XJ, Shum CK (2010) Non-isotropic Gaussian smoothing and leakage reduction for determining mass changes over land and ocean using GRACE data. Geophys J Int 181:290–302, doi:10.111Vj.1365-246x.2010.04534.x

    Google Scholar 

  • Han SC, Shum CK, Jekeli CJ, Kuo CY, Wilson CR, Seo KW (2005a) Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int 163:18–25. doi:10.1111/j.1365-246X.2005.02756.x

    Article  Google Scholar 

  • Han SC, Shum CK, Jekeli CJ, Alsdof DA (2005b) Improved estimation of terrestrial water storage changes from GRACE. Geophys Res Letts 32:L07302. doi:10.1029/2005GL022382

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Rep. 327, Dept. of Geod. Sci. and Surv., Ohio State Univ., Columbus

    Google Scholar 

  • Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175:417–432. doi:10.1111/j.1365-246X.2008.03922.x

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159. doi:10.1126/science.284.5423.2156

    Article  CAS  Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81:733–749. doi:10.1007/s00190-007-0143-3

    Article  Google Scholar 

  • Misra AK, Saxena A, Yaduvanshi M, Mishra A, Bhauduriya Y, Takur A (2007) Proposed river linking project of India: boon or bane to nature? Environ Geol 51(8):1361–1376. doi:10.1007/s00254-006-0434-7

    Article  Google Scholar 

  • Nahar N, Hossain F, Hossain MD (2008) Health and socio-economic effects of groundwater arsenic contamination in rural Bangladesh: evidence from field surveys. Int Perspect J Environ Health 70(9):42–47

    CAS  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G(VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149

    Article  CAS  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Amer Meteor Soc 85(3):381–394

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimate of groundwater depletion in India, Nature, doi:10.1038/nature08238

    Google Scholar 

  • Schmidt M, Han S, Kusche J, Sanchez L, Shum C (2006) Regional high-resolution spatio-temporal gravity modeling from GRACE data using spherical wavelets. Geophys Res Lett 33:L08403. doi:10.1029/2005GL025509

    Article  Google Scholar 

  • Schmidt M, Seitz F, Shum CK (2008) Regional four-dimensional hydrological mass variations from GRACE, atmospheric flux convergence, and river gauge data. J Geophys Res 113:B10402. doi:10.1029/2008JB005575

    Article  Google Scholar 

  • Schrama EJO, Wouters B, Lavall´ee DA (2007) Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations. J Geophys Res 112:B08407. doi:10.1029/2006JB004882

    Article  Google Scholar 

  • Seitz F, Schmidt M, Shum C (2008) Signals of extreme weather conditions in Central Europe in GRACE 4D hydrological mass variations. Earth Planet Sci Lett 268(1–2):165–170. doi:10.1016/j.epsl.2008.01.001

    Article  CAS  Google Scholar 

  • Swenson S, Wahr J (2006) Postprocessing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402, doi:10.1029/2005GL025285

    Google Scholar 

  • Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32:L24404. doi:10.1029/2005GL024851

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004a) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries J, Thompson P, Watkins M (2004b) GRACE measurements of mass variability in the Earth system. Science 305:503–505

    Article  CAS  Google Scholar 

  • Vorosmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288. doi:10.1126/science.289.5477.284

    Article  CAS  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variablility of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229

    Article  Google Scholar 

  • Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33:L06401. doi:10.1029/2005GL025305

    Article  Google Scholar 

  • Wouters B, Schrama EJO (2007) Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics. Geophys Res Lett 34:L23711. doi:10.1029/2007GL032098

    Article  Google Scholar 

Download references

Acknowledgments

We used the monthly GLDAS data provided by the IERS Global Geophysical Fluids Center’s Special Bureau for Hydrology hosted by University of Texas at Austin Center for Space Research (UT/CSR). The GRACE data products are from the NASA/DLR GRACE project and we used the data products from UT/CSR. The TRMM data product is provided by NASA/GSFC. We thank Lóránt Földváry for his help in generating a figure in the paper and for valuable discussions. This research is supported by grants from NSF (EAR-0440007), from NASA (NG04GN19G), from National Geospatial-Intelligence Agency’s University Research Initiative (NURI) Program, and from the Ohio State University’s Climate, Water and Carbon Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Shum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shum, C.K. et al. (2010). Inter-annual Water Storage Changes in Asia from GRACE Data. In: Lal, R., Sivakumar, M., Faiz, S., Mustafizur Rahman, A., Islam, K. (eds) Climate Change and Food Security in South Asia. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9516-9_6

Download citation

Publish with us

Policies and ethics