Skip to main content

Conservation Tillage and Sustainable Agriculture in Semi-arid Dryland Farming

  • Chapter
  • First Online:
Biodiversity, Biofuels, Agroforestry and Conservation Agriculture

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 5))

Abstract

One major crop production type in semi-arid area is dryland ­farming dependent on rainfall. The major factors that constrain semi-arid soil fertility and sustainable agriculture are low rainfall, low nutrient capital, moisture stress, soil erosion, high P fixation, high alkalinity, and low soil biodiversity. The water stress, low rainfall and shallow depth of many semi-arid soils limit food production in annual cropping systems. The management of beneficial microorganisms in the rhizosphere has emerged as an alternative to chemical fertilizers to increase soil fertility and crop production in sustainable agroecosystems; but it seems that major agricultural practices that strongly affect every approach to sustainable ­dryland farming in this area are affected by the choice of soil tillage practices. Crop response to tillage systems is diverse due to the complex interactions between tillage-induced soil, edaphic crop requirements and weather. The use of crop rotation, earthworms and mycorrhizae give several benefits in this area, and could be improved by adopting the best soil tillage system. This review treats the role of conservation tillage practices in enhancing soil water retention and infiltration, as well as physical, chemical and biological soil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Omar SA, Karanxha S (2000) The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14:191–200

    Google Scholar 

  • Aboudrare A, Debaeke P, Bouaziz A, Chekli H (2006) Effects of soil tillage and fallow management on soil water storage and sunflower production in a semi-arid Mediterranean climate. Agric Water Manage 83:183–196

    Google Scholar 

  • Acosta-Martinez V, Mikha MM, Vigil MF (2007) Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains. Appl Soil Ecol 37:41–52

    Google Scholar 

  • Ahl C, Joergensen RG, Kandeler E, Meyer B, Woehler V (1998) Microbial biomass and activity in silt and sand loams after long-term shallow tillage in central Germany. Soil Till Res 49:93–104

    Google Scholar 

  • Alexander M (1980) Introducción a la microbiología del suelo. AGT Editor, México

    Google Scholar 

  • Al-Kaisi M, Kwaw-Mensah D (2007) Effect of tillage and nitrogen rate on corn yield and nitrogen and phosphorus uptake in a corn-soybean rotation. Agron J 99:1548–1558

    CAS  Google Scholar 

  • Allaire-Leung SE, Gupta SC, Moncrief JF (2000) Water and solute movement in soil as influenced by macropore characteristics. 1. Macropore continuity. J Contam Hydrol 41:283–301

    CAS  Google Scholar 

  • Allen-Morley CR, Coleman DC (1989) Resilience of soil biota in various food webs to freezing perturbations. Ecology 70:1127–1141

    Google Scholar 

  • Allen EB, West NE (1993) Nontarget effects of the herbicide tebuthiuron on mycorrhizal fungi in sagebrush semidesert. Mycorrhiza 3:75–78

    CAS  Google Scholar 

  • Allmaras RR, Schomberg HH, Douglas CL, Dao TH (2000) Soil organic carbon sequestration potential of adopting conservation tillage in US croplands. J Soil Water Conserv 55:365–373

    Google Scholar 

  • Amezketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14:83–151

    Google Scholar 

  • Anken T, Weisskopf P, Zihlmann U, Forrer H, Jansa J, Perhacova K (2004) Longterm tillage systems under moist cool conditions in Switzerland. Soil Till Res 78:171–183

    Google Scholar 

  • Arruda JS, Lopes NF, Bacarin MA (2001) Nodulação e fixação do dinitrogênio em soja tratada com sulfentrazone. Pesqui Agropec Bras 36:325–330

    Google Scholar 

  • Arshad MA, Franzluebbers AJ, Azooz RH (1999) Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil Till Res 53:41–47

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Bachthaler G (1974) The development of the weed flora after several years’ direct drilling in cereal rotations on different soils. In: Proceedings the 12th British weed control conference, 18–21 Nov 1974, Brighton, England, pp 1063–1071

    Google Scholar 

  • Baker DB (1985) Regional water quality impacts of intensive row-crop agriculture: a Lake Erie Basin case study. J Water Conserv 40:125–132

    Google Scholar 

  • Ball DA (1992) Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci 40:654–659

    Google Scholar 

  • Baltruschat H (1987) Evaluation of the suitability of expanded clay as a carrier material for VA mycorrhiza spores in field inoculation of maize. Ang Bot 61:163–169

    Google Scholar 

  • Barberi P, Cascio BL (2000) Long-term tillage and crop rotation effects on weed seedbank size and composition. Weed Res 41:325–340

    Google Scholar 

  • Bardgett RD, Cook R (1998) Functional aspects of soil animal diversity in agricultural grasslands. Appl Soil Ecol 10:263–276

    Google Scholar 

  • Bardgett RD, Lovell RD, Hobbs PJ, Jarvis SC (1999) Seasonal changes in soil microbial ­communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31:1021–1030

    CAS  Google Scholar 

  • Barzegar AR, Nadian H, Heidari F, Herbert SJ, Hashemi AM (2006) Interaction of soil compaction, phosphorus and zinc on clover growth and accumulation of phosphorus. Soil Till Res 87:155–162

    Google Scholar 

  • Baumgartner K, Smith RF, Bettiga L (2005) Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard. Mycorrhiza 15:111–119

    PubMed  CAS  Google Scholar 

  • Beare MH, Parmalee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA Jr (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591

    Google Scholar 

  • Beare MH, Cabrera ML, Handrix PF, Coleman DC (1994a) Aggregate protected and unprotected organic matter pools in conventional and no-tillage soils. Soil Sci Soc Am J 58:787–795

    Google Scholar 

  • Beare MH, Cabrera ML, Handrix PF, Coleman DC (1994b) Water stable aggregates and organic matter fractions in conventional and no-tillage soils. Soil Sci Soc Am J 58:777–786

    Google Scholar 

  • Belde M, Mattheis A, Sprenger B, Albrecht H (2000) Langfristige Entwicklung ertragsrelevanter Ackerwildpflanzen nach Umstellung von konventionellen auf integrierten und ökologischen Landbau. Z PflKrankh PflSchutz Sonderheft XVII:291–301

    Google Scholar 

  • Benbrook C (2001) Troubled times amid commercial success for Roundup Ready soybeans; glyphosate efficacy is slipping and unstable transgene expression erodes plant defences and yields. AgBioTech InfoNet Technical Paper 4. http://www.biotech-info.net/troubledtimes.html. Accessed 11 Jan 2002

    Google Scholar 

  • Benjamin JG (1993) Tillage effects on near-surface soil hydraulic properties. Soil Till Res 26:277–288

    Google Scholar 

  • Bescansa P, Imaz MJ, Virto I, Enrique A, Hoogmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid. Spain Soil Till Res 87:19–27

    Google Scholar 

  • Bethlenfalvay GJ, Mihara KL, Schreiner RP, McDaniel H (1996) Mycorrhizae, biocides, and iocontrol. 1. Herbicide-mycorrhiza interactions in soybean and cocklebur treated with bentazon. Appl Soil Ecol 3:197–204

    Google Scholar 

  • Binet F, Fayolle L, Pussard M (1998) Significance of earthworms in stimulating soil microbial activity. Biol Fertil Soils 27:79–84

    Google Scholar 

  • Birkas M, Antal J, Dorogi I (1989) Conventional and reduced tillage in Hungary – a review. Soil Till Res 13:233–252

    Google Scholar 

  • Blaise D, Ravindran CD (April 2003) Influence of tillage and residue management on growth and yield of cotton grown on a vertisol over 5 years in a semi-arid region of India. Soil Till Res 70(2):163–173

    Google Scholar 

  • Blanchart E, Albrecht A, Alegre J, Duboisset A, Gilot C, Pashanasi B, Lavelle P, Brussaard L (1999) Effects of earthworms on soil structure and physical properties. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CAB International, Wallingford, pp 149–172

    Google Scholar 

  • Blevins RL, Cook D, Phillips SH, Phillips RE (1971) Influence of no-tillage on soil moisture. Agron J 63:593–596

    Google Scholar 

  • Blevins RL, Frye WW (1993) Conservation tillage: an ecological approach to soil management. Adv Agron 51:33–78

    Google Scholar 

  • Bloom P (2000) Soil pH and pH buffering. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, FL, pp B333–B350

    Google Scholar 

  • Blouin M, Zuily-Fodil Y, Pham-Thi AT, Laffray D, Reversat G, Pando A, Tondoh J, Lavelle P (2005) Belowground organismactivities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol Lett 8:202–208

    Google Scholar 

  • Boglárka O, Brière C, Bécard G, Dénarié C, Gough G (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    Google Scholar 

  • Bollich PK, Dunigan EP, Kitchen LM, Taylor V (1988) The influence of trifluralin and pendimethalin on nodulation, N2 (C2H2) fixation, and seed yield of field grown soybeans (Glycine max). Weed Sci 36:15–19

    CAS  Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular­ mycorrhizal symbiosis? Field Crops Res 108:14–31

    Google Scholar 

  • Bossuyt H, Six J, Hendrix PF (2002) Aggregate-protected carbon in no-tillage and conventional tillage agroecosystems using carbon-14 labeled plant residue. Soil Sci Soc Am J 66:1965–1973

    CAS  Google Scholar 

  • Bouquard C, Ouzzani J, Promé J-C, Michael-Briand Y, Plésiat P (1997) Dechlorination of atrazine by a Rhizobium sp. isolate. Appl Environ Microbiol 63:862–866

    PubMed  CAS  Google Scholar 

  • Bradford JM, Peterson GA (2000) Conservation tillage. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, FL, pp G247–G298

    Google Scholar 

  • Brown GG, Edwards CA, Brussaard L (2004) How earthworms affect plant growth: burrowing into the mechanisms. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, FL, pp 13–49

    Google Scholar 

  • Buckerfield JC, Lee KE, Davoren CW, Hannay JN (1997) Earthworms as indicators of sustainable production in dryland cropping in Southern Australia. Soil Biol Biochem 29:547–554

    CAS  Google Scholar 

  • Buczko U, Kuchenbuch RO (2007) Phosphorus indices as risk-assessment tools in the U.S.A. and Europe – a review. J Plant Nutr Soil Sci 170:445–460

    CAS  Google Scholar 

  • Buhler DD, Stoltenberg DE, Becker RL, Gunsolus JL (1994) Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Sci 42:205–209

    Google Scholar 

  • Buhler DD (1995) Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Sci 35:1247–1258

    Google Scholar 

  • Buhler DD, Mester TC, Kohler KA (1996) Effect of tillage and maize residue on the emergence of four annual weed species. Weed Res 40:153–165

    Google Scholar 

  • Buhler DD, Hartzler RG, Forcella F (1997) Implications of weed seedbank dynamics to weed management. Weed Sci 45:329–336

    CAS  Google Scholar 

  • Buschiazzo DE, Zobeckd TM, Abascal SA (2007) Wind erosion quantity and quality of an Entic Haplustoll of the semi-arid pampas of Argentina. J Arid Environ 69:29–39

    Google Scholar 

  • Cannell RQ, Hawes JD (1994) Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil Till Res 30:245–282

    Google Scholar 

  • Cardina J, Regnier E, Harrison K (1991) Long-term tillage effects on seed banks in three Ohio soils. Weed Sci 39:186–194

    Google Scholar 

  • Cardina J, Herms CP, Doohan DJ (2002) Crop rotation and tillage system effects on weed seedbanks. Weed Sci 50:448–460

    CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Google Scholar 

  • Carney KM, Matson PA (2006) The influence of tropical plant diversity and composition on soil microbial communities. Microb Ecol 52:226–238

    PubMed  Google Scholar 

  • Carter MR, Rennie DA (1984) Dynamics of soil microbial N under zero and shallow tillage for spring wheat, using 15N urea. Plant Soil 76:157–164

    CAS  Google Scholar 

  • Carter MR (1991) The influence of tillage on the proportion of organic carbon and nitrogen in the microbial biomass of medium-textured soils in a humid climate. Biol Fertil Soils 11:135–139

    CAS  Google Scholar 

  • Carter MR (2002) Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agron J 94:38–47

    Google Scholar 

  • Cereti CF, Rossini F (1995) Effect of reduced tillage on physical properties of soils continuously cropped with wheat (Triticum aestivum L.) and maize (Zea mays L.) under dryland cultivation. Riv Agro 29:382–387

    Google Scholar 

  • Chan KY, Roberts WP, Heenan DP (1992) Organic carbon and associated soil properties after 10 years of rotation under different stubble tillage practices. Aust J Soil Res 30:71–83

    Google Scholar 

  • Chan KY (2001) An overview of some tillage impacts on earthworm population abundance and diversity – implications for functioning in soils. Soil Till Res 57:179–191

    Google Scholar 

  • Chan KY, Heenan DP, Oates A (2002) Soil carbon fraction and relationship to soil quality under different tillage and stubble management. Soil Till Res 63:133–139

    Google Scholar 

  • Chan KY, Heenan DP, So HB (2003) Sequestration of carbon and changes in soil quality under conservation tillage on light-textured soil in Australia: a review. Aust J Exp Agric 43:325–334

    Google Scholar 

  • Chan KY (2004) Impact of tillage practices and burrows of a native Australian anecic earthworm on soil hydrology. Appl Soil Ecol 27:89–96

    Google Scholar 

  • Chalk PM, de F Souza R, Urquiaga S, Alves BJR, Boddey RM (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944–2951

    CAS  Google Scholar 

  • Changjin D, Bin Z (2004) Impact of herbicides on infection and hyphal enzyme activity on AM fungus. Acta Pedol Sin 41:750–755

    Google Scholar 

  • Chen MM, Zhu YG, Su YH, Chen BD, Fu BJ, Marschner P (2007) Effects of soil moisture and plant interactions on the soil microbial community structure. Eur J Soil Biol 43:31–38

    CAS  Google Scholar 

  • Chio H, Sanborn JR (1978) The metabolism of Atrazine, Chloramben, and Dicamba in earthworms (Lumbricus terrestris) from treated and untreated plots. Weed Sci Soc Am 26(4):331

    CAS  Google Scholar 

  • Christensen BT, Sorensen LH (1985) The distribution of native and labeled carbon between soil particle size fractions isolated from long-term incubation experiments. J Soil Sci 36:219–229

    CAS  Google Scholar 

  • Clapperton MJ, Lee NO, Binet F, Conner RL (2001) Earthworms indirectly reduce the effects of take-all (Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticum aestivum cv. Fielder). Soil Biol Biochem 33:1531–1538

    CAS  Google Scholar 

  • Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55

    Google Scholar 

  • Corwin DL (2003) Soil salinity measurement. In: Stewart BA, Howell TA (eds) Encyclopedia of water science. Marcel Dekker, NewYork, NY, pp 852–860

    Google Scholar 

  • Corwin DL, Lesch SM (2005) Apparent soil electrical conductivity measurements in agriculture. Comp Electron Agric 46:11–43

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in coupled climate model. Nature 408:184–187

    PubMed  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer-Verlag, Berlin/New York

    Google Scholar 

  • Curry JP, Byrne D (1992) The role of earthworms in straw decomposition and nitrogen turnover in arable land in Ireland. Soil Biol Biochem 24:1409–1412

    Google Scholar 

  • Cycoń M, Piotrowska-Seget Z (2009) Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicology 18:632–642

    PubMed  Google Scholar 

  • D’Haene K, Vermang J, Cornelis WM, Leroy BLM, Schiettecatte W, De Neve S, Gabriels D, Hofman G (2008) Reduced tillage effects on physical properties of silt loam soils growing root crops. Soil Till Res 99:279–290

    Google Scholar 

  • De Vita P, Di Paolo E, Fecondo G, Di Fonzo N, Pisante M (2007) No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Till Res 92:69–78

    Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    CAS  Google Scholar 

  • Derpsch R (1999) New paradigms in Agricultural Production, Tillage Research conducted by ISTRO Member Rolf Derpsch. In: ISTRO – INFO EXTRA, Volume 4, Issue 1, Springer

    Google Scholar 

  • Dick WA (1983) Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity. Soil Sci Soc Am J 47:102–107

    CAS  Google Scholar 

  • Dickey EC, Peterson TR, Gilley JR, Mielke LN (1983) Yield comparisons between continuous no-till and tillage rotations. Trans ASAE 26:1682–1686

    Google Scholar 

  • Dimanche PH, Hoogmoed WB (2002) Soil tillage and water infiltration in semi-arid Morocco: the role of surface and sub-surface soil conditions. Soil Till Res 66:13–21

    Google Scholar 

  • Dinelli G, Vicari A, Acinelli C (1998) Degradation and side effects of three sulfonylurea herbicides in soil. J Environ Qual 27:1459–1464

    CAS  Google Scholar 

  • Doles JL, Zimmerman RJ, Moore JC (2001) Soil microarthropod community structure and dynamics in organic and conventionally managed apple orchards in Western Colorado, USA. Appl Soil Ecol 18:83–96

    Google Scholar 

  • Doran J (1987) Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biol Fertil Soils 5:68–75

    Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America, Madison, WI, pp 3–21

    Google Scholar 

  • Doube BM, Williams PML, Willmott PJ (1997) The influence of two species of earthworm (Aporrectodea trapezoids and Aporrectoedea rosea) on the growth of wheat, barley and faba beans in three soil types in the greenhouse. Soil Biol Biochem 29:503–509

    CAS  Google Scholar 

  • Douds DD, Reider C (2003) Inoculation with mycorrhizal fungi increases the yield of green ­peppers in a high P soil. Biol Agric Hortic 21:91–102

    Google Scholar 

  • Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem 32:1419–1430

    CAS  Google Scholar 

  • Edwards CA, Thompson AR (1973) Pesticides and the soil fauna. Residue Rev 45:1–79

    PubMed  CAS  Google Scholar 

  • Edwards WM, vander Ploeg RR, Ehlers W (1979) A numerical study of the effects of noncapillary-sized pores upon infiltration. Soil Sci Soc Am J 43:851–856

    Google Scholar 

  • Edwards CA, Lofty JR (1982) The effect of direct drilling and minimal cultivation on earthworm populations. J Appl Ecol 19:723–734

    Google Scholar 

  • Edwards CA (1983) Earthworm ecology in cultivated soils. In: Satchell JE (ed) Earthworm ecology: from Darwin to vermiculture. Chapman & Hall, London, pp 123–137

    Google Scholar 

  • Edwards WM, Shipitalo MJ, Owens LB, Norton LD (1990) Effect of Lumbricus terrestris L. burrows on hydrology of continuous no-till corn fields. Geoderma 46:73–84

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, London, 426 pp

    Google Scholar 

  • Edwards CA (1998) Earthworm ecology. Soil and water conservation society, Ankeny, IA

    Google Scholar 

  • Edwards WM, Shipitalo MJ (1998) Consequences of earthworms in agricultural soils: aggregation and porosity. In: Edwards CA (ed) Earthworm ecology. Soil and water conservation society, St Lucie Press, IA, pp 147–161

    Google Scholar 

  • Ehlers W (1975) Observations on earthworm channels and infiltration in a tilled and untilled loess soil. Soil Sci 119:242–249

    Google Scholar 

  • Ehlers W, Köpke U, Hesse F, Böhm W (1983) Penetration resistance and root growth of oats in tilled and untilled loess soil. Soil Till Res 3:261–275

    Google Scholar 

  • Elfstrand S, Bath B, Martensson A (2007) Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl Soil Ecol 36:70–82

    Google Scholar 

  • Ellouze W, Hanson K, Nayyar A, Perez JC, Hamel C (2008) Intertwined existence: the life of plant symbiotic fungi in agricultural soils. In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, Heidelberg, pp 507–528

    Google Scholar 

  • Etchevers J, Fisher R, Vidal I, Sayre K, Sandoval M, Oleshsko K, Román S (2000) Labranza de conservación, índices de calidad del suelo y captura de carbono. In: Memorias del Simposio Internacional de labranza de conservación. InstitutoNacional de Investigaciones Forestales y Agro Pecuarias–Produce, Mazatlán, Sinaloa

    Google Scholar 

  • Fan XL, Zhang FS (2000) Soil water, fertility and sustainable agricultural production in arid and semiarid regions on the Loess plateau. J Plant Nutr Soil Sci 163:107–113

    CAS  Google Scholar 

  • Farage PK, Ardo J, Olsson L, Rienzi EA, Ball AS, Pretty JN (2007) The potential for soil carbon sequestration in the tropic dryland farming systems of Africa and Latin America: a modelling approach. Soil Till Res 94:457–472

    Google Scholar 

  • Feldman SR, Alzugaray C, Torres PS, Lewis P (1997) The effect of different tillage systems on the composition of the seedbank. Weed Res 37:71–76

    Google Scholar 

  • Fernández-Ugalde O, Virto I, Bescansa P, Imaz MJ, Enrique A, Karlen DL (2009) No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Till Res 106:29–35

    Google Scholar 

  • Ferrero A, Maggiore T (1994) Leaching of slurries and herbicides in subsurface water under field conditions. In: Borin M, Sattin M (eds) Proceedings of the third congress of the European society for agronomy. Padova University, Abano-Padova, Italy, pp 794–795

    Google Scholar 

  • Fischer RA, Santiveri F, Vidal IR (2002) Crop rotation, tillage and crop residue management for wheat and maize in the subhumid tropical highland. I. Wheat and legume performance. Field Crops Res 79:107–122

    Google Scholar 

  • Fowler R, Rockstrom J (2001) Conservation tillage for sustainable agriculture: an agrarian revolution gathers momentum in Africa. Soil Till Res 61:93–108

    Google Scholar 

  • Frankenberger WT, Dick WA (1983) Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am J 47:945–951

    CAS  Google Scholar 

  • Franzluebbers AJ, Arshad MA (1996) Soil organic matter pools with conventional and zero tillage in a cold, semiarid climate. Soil Till Res 39:1–11

    Google Scholar 

  • Franzluebbers AJ, Haney RL, Hons FM, Zuberer DA (October–November 1996) Active fractions of organic matter in soils with different texture. Soil Biol Biochem 28(10–11):1367–1372

    CAS  Google Scholar 

  • Franzluebbers AJ, Arshad AM (1997) Soil microbial biomass and mineralization of carbon of water stable aggregates. Soil Sci Soc Am J 61:1090–1097

    CAS  Google Scholar 

  • Frey SD, Six J, Elliott ET (2003) Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil–litter interface. Soil Biol Biochem 35:1001–1004

    CAS  Google Scholar 

  • Friend JJ, Chan KY (1995) Influence of cropping on the population of a native earthworm and consequent effects on hydraulic properties of Vertisols. Aust J Soil Res 33:995–1006

    Google Scholar 

  • Froud-Williams RJ (1988) Changes in weed flora with different tillage and agronomic management systems. In: Altieri MA, Liebman M (eds) Weed management in agroecosystems: ecological approaches. CRC Press, Boca Raton, FL, pp 213–236

    Google Scholar 

  • Fuentes M, Govaerts B, De Leónc F, Hidalgo C, Dendooven L, Sayre KD, Etchevers J (2009) Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur J Agron 30:228–237

    CAS  Google Scholar 

  • Furlong MA, Singleton DR, Coleman DC, Whitman WB (2002) Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol 68:1265–1279

    PubMed  CAS  Google Scholar 

  • Galantini JM, Landriscini MR, Iglesias JO, Miglierina AM, Rosell RA (2000) The effects of crop rotation and fertilization on wheat productivity in the Pampean semi-arid region of Argentina. 2. Nutrient balance, yield and grain quality. Soil Till Res 53:137–144

    Google Scholar 

  • Gange AC (1993) Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol Biochem 25:1021–1026

    Google Scholar 

  • Gebregziabher S, Mouazena AM, van Brussel H, Ramon H, Nyssen J, Verplancke H, Behailu M, Deckers J, de Baerdemaeker J (2006) Animal drawn tillage, the Ethiopian ard plough, maresha: a review. Soil Till Res 89:129–143

    Google Scholar 

  • Ghaffarzadeh M, García F, Cruse RM (1994) Grain of corn, soybean, and oat grown in a strip intercropping system. Am J Altern Agric 9:171–177

    Google Scholar 

  • Ghosheh H, Al-Hajaj N (2005) Weed seed bank response to tillage and crop rotation in a semi-arid environment. Soil Till Res 84:184–191

    Google Scholar 

  • Gianfreda L, Antonietta RM, Piotrowska A, Palumbo G, Colombo C (2005) Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ 341:265–279

    PubMed  CAS  Google Scholar 

  • Gicheru P, Gachene C, Mbuvi J, Marea E (2004) Effects of soil management practices and tillage systems on surface soil water conservation and crust formation on a sandy loam in semi-arid Kenya. Soil Till Res 75:173–184

    Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup herbicide. Rev Environ Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI Publishing, Wallingford

    Google Scholar 

  • Gilman AP, Vardanis A (1974) Carbofuran comparative toxicity and metabolism in the worms Lumbricus terrestris and Eisenia fetida. J Food Chem 22:625–628

    CAS  Google Scholar 

  • Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborn AM (2004) Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microbiol 70:2692–2701

    PubMed  CAS  Google Scholar 

  • Goe MR (1987) Animal traction on smallholder farms in the Ethiopian highlands. Ph.D. thesis, Cornell University, pp 127, 160

    Google Scholar 

  • Gonzalez N, Eyherabide JJ, Barcellona MI, Gaspari A, Sanmartino S (1999) Effect of soil interacting herbicides on soybean nodulation in Balcarce, Argentina. Pesqui Agropec Bras 34:1167–1173

    Google Scholar 

  • Gonzalez MG, Conti ME, Palma RM, Arrigo NM (2003) Dynamics of humic fractions and ­microbial activity under no-tillage or reduced tillage, as compared with native pasture (Pampa argentina). Biol Fertil Soils 39:135–138

    Google Scholar 

  • Govaerts B, Fuentes M, Sayre KD, Mezzalama M, Nicol JM, Deckers J, Etchevers J, ­Figueroa-Sandoval B (2007) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Till Res 94:209–219

    Google Scholar 

  • Govaerts B, Mezzalama M, Sayre KD, Crossa J, Lichter K, Katrien VT, De Corte VP, Deckers J (2008) Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Appl Soil Ecol 38:197–210

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Hairu J, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435/9. doi:10.1038/nature03610

  • Granatstein DM, Bezdicek DF, Cochran VL, Elliott LF, Hammel J (1987) Long term tillage and rotation effects on soil microbial biomass, carbon and nitrogen. Biol Fertil Soils 5:265–270

    Google Scholar 

  • Grandy AS, Robertson GP (2006) Aggregation and organic matter protection following tillage of a previously uncultivated. Soil Sci Soc Am J 70:1398–1406

    CAS  Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Birch ANE, Cortet J, Andersen MN, Krogh PH (2007) Microbial and microfaunal community structure in cropping systems with genetically modified plants. Pedobiologia 51:195–206

    Google Scholar 

  • Grigera MS, Drijber RA, Eskridge KM, Wienhold BJ (2006) Soil microbial biomass relationships with organic matter fractions in a Nebraska corn field mapped using apparent electrical conductivity. Soil Sci Soc Am J 70:1480–1488

    CAS  Google Scholar 

  • Ha KV, Marschner P, Bünemann EK (2008) Dynamics of C, N P and microbial community composition in particular soil organic matter during residue decomposition. Plant Soil 303:253–264

    CAS  Google Scholar 

  • Halvorson AD, Black AL, Krupinsky JM, Merill SD, Wienhold BJ, Tanaka DL (2000) Spring wheat response to tillage system and nitrogen fertilization in rotation with sunflower and winter wheat. Agron J 92:136–144

    Google Scholar 

  • Hassall M, Adl S, Berg M, Griffiths B, Scheu S (2006) Soil fauna–microbe interactions: towards a conceptual framework for research. Eur J Soil Biol 42:S54–S60

    Google Scholar 

  • Haukka J (1988) Effect of various cultivation methods on earthworm biomasses and communities on different soil types. Ann Agric Fenniae 27:263–269

    Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (1999) Soil fertility and fertilizers. An introduction to nutrient management. Prentice Hall, Upper Saddle River, NJ, p 499

    Google Scholar 

  • Haynes RJ, Fraser PM, Williams PH (1995) Earthworm population size and composition, and microbial biomass: effect of pastoral and arable management in Canterbury, New Zealand. The significance and regulation of soil biodiversity. In: Proceedings of the international symposium on soil biodiversity, Michigan State University, East Lansing, MI, May 3–6, Kluwer, Dordrecht, pp 279–285

    Google Scholar 

  • He X-H, Critchley CH, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Google Scholar 

  • Heenan DP, Chan KY, Knight PG (2004) Long-term impact of rotation, tillage and stubble management on the loss of organic carbon and nitrogen from a Chromic Luvisol. Soil Till Res 76:59–68

    Google Scholar 

  • Hendrix PF, Parmelee RW, Crossley DA Jr, Coleman DC, Odum EP, Groffman PM (1986) Detritus food webs in conventional and no-tillage agroecosystems. BioScience 36:374–380

    Google Scholar 

  • Hendrix PF, Mueller BR, Bruce RR, Langdale GW, Parmelee RW (1992) Abundance and distribution of earthworms in relation to landscape factors on the Georgia Piedmont, USA. Soil Biol Biochem 24:1357–1361

    Google Scholar 

  • Hendrix PF, Franzluebbersm AJ, McCracken DV (1998) Management effects on carbon accumulation and loss in soils on the southern Appalachian Piedmont of Georgia, USA. Soil Till Res 47:245–251

    Google Scholar 

  • Hernández-Hernández RM, López-Hernández D (2002) Microbial biomass, mineral nitrogen and carbon content in savanna soil aggregates under conventional and no-tillage. Soil Biol Biochem 34:1563–1570

    Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25

    Google Scholar 

  • Hubbard VC, Jordan D, Stecker JA (1999) Earthworm response to rotation and tillage in a Missouri claypan soil. Biol Fert Soils 29:343–347

    Google Scholar 

  • Hulugalle NR, Lobry de Bruyn LA, Entwistle P (1997) Residual effects of tillage and crop ­rotation on soil properties, soil invertebrate numbers and nutrient uptake in an irrigated vertisol sown to cotton. Appl Soil Ecol 7:11–30

    Google Scholar 

  • Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott ET, Moore JC, Rose SL, Reid CPP, Morley CR (1987) The detrital food web in a shortgrass prairie. Biol Fertil Soils 3:57–68

    Google Scholar 

  • Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143:259–266

    CAS  Google Scholar 

  • Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects of nutrient cycling and plant growth. Ecol Monogr 55:119–140

    Google Scholar 

  • Jacobs A, Rauber R, Ludwig B (2009) Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil Till Res 102:158–164

    Google Scholar 

  • Jacobson AR, Dousset S, Guichard N, Baveye P, Andreux F (2005) Diuron mobility through vineyard soils contaminated with copper. Environ Pollut 138:250–259

    PubMed  CAS  Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:665–676

    CAS  Google Scholar 

  • Jeffries P (1987) Use of mycorrhizae in agriculture. Crit Rev Biotechnol 5:319–357

    Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emission from soil in response to global warming. Nature 351:304–306

    CAS  Google Scholar 

  • Jin K, Sleutel S, Buchan D, De Neve S, Cai DX, Gabriels D, Jin JY (2009) Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil Till Res 104:115–120

    Google Scholar 

  • Johnston AM, Clayton GW, Wall PC, Sayre KD (2002) Sustainable cropping systems for semiarid regions. Paper presented at the international conference on environmentally sustainable agriculture for dry areas for the 2nd millennium, Shijiazhuang, Hebei Province, P.R.C, 15–19 Sept 2002

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    PubMed  CAS  Google Scholar 

  • Johnston AE (1997) The value of long-term field experiments in agricultural, ecological, and environmental research. Adv Agron 59:291–333

    Google Scholar 

  • Jones C, McConnell C, Coleman K, Cox P, Falloon P, Jenkinson D, Powlson D (2005) Global climate change and soil carbon stock; predictions from two contrasting models for turnover of organic carbon in soil. Global Change Biol 11:154–166

    Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 7(9):153–1159

    Google Scholar 

  • Jordan D, Kremer R (1994) Potential microbial methods as indicators of soil quality in historical agricultural fields. In: Pankhurst C (ed) Management of soil biota. CSIRO, South Adelaide, pp 245–249

    Google Scholar 

  • Jordan D, Stecker JA, Hubbard VC, Li F, Gantzer CJ, Brown JR (1997) Earthworm activity in notillage and conventional tillage systems in Missouri soils: a preliminary study. Soil Biol Biochem 29:489–491

    CAS  Google Scholar 

  • Jordan D, Milesb RJ, Hubbardc VC, Lorenz T (2004) Effect of management practices and cropping systems on earthworm abundance and microbial activity in Sanborn Field: a 115-year-old agricultural field. Pedobiologia 48:99–110

    Google Scholar 

  • Jurion F, Henry J (1969) Can primitive farming be modernized? Publication INEAC, Hors Série, Bruxelles, 457 pp

    Google Scholar 

  • Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2, 4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63:2266–2272

    PubMed  CAS  Google Scholar 

  • Kandeler E, Murer E (1993) Aggregate stability and soil microbial processes in a soil with different cultivation. Geoderma 56(1–4):503–513

    Google Scholar 

  • Kandeler E, Palli S, Stemmer M, Gerzabek MH (1999a) Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biol Biochem 31:1253–1264

    CAS  Google Scholar 

  • Kandeler E, Tscherko D, Spiegel H (1999b) Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a Chernozem under different tillage management. Biol Fertil Soils 28:343–351

    CAS  Google Scholar 

  • Kandeler E, Tscherko D, Stemmer M, Schwarz S, Gerzabek MH (2001) Organic matter and soil microorganisms – investigations from the micro- to the macroscale. Bodenkultur 52:117–131

    CAS  Google Scholar 

  • Kara EE, Arli M, Uygur V (2004) Effects of the herbicide Topogard on soil respiration, nitrification, and denitrification in potato-cultivated soils differing in pH. Biol Fertil Soils 39:474–478

    CAS  Google Scholar 

  • Karlen DL, Varvel GE, Bullock DG, Cruse RM (1994) Crops rotations for the 21st century. Adv Agron 53:1–45

    Google Scholar 

  • Karlen DL, Andrews SS, Doran JW (2001) Soil quality: current concepts and applications. Adv Agron 74:1–40

    CAS  Google Scholar 

  • Kern JS, Johnson MG (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci Soc Am J 57:200–210

    Google Scholar 

  • Kettler TA, Lyon DJ, Doran JW, Powers WL, Stroup WW (2000) Soil quality assessment after weed-control tillage in a no-till wheat-fallow cropping system. Soil Sci Soc Am J 64:339–346

    CAS  Google Scholar 

  • Kiepe P (1995) Effects of Cassia siamea hedgerow barriers on soil physical properties. Geoderma 66:113–120

    Google Scholar 

  • Kitur BK, Smith MS, Blevins RL, Frye WW (1984) Fate of 15N-depleted ammonium nitrate applied to no-tillage and conventional tillage corn. Agron J 76:240–242

    Google Scholar 

  • Kladivko EJ, Akhouri NM, Weesies G (1997) Earthworm populations and species distributions under no-till and conventional tillage in Indiana and Illinois. Soil Biol Biochem 29:613–615

    CAS  Google Scholar 

  • Knab W, Hurle K (1986) Enfluss der Grundbodenbearbeitung auf die Verunkrautung – ein Beitrag zur Prognose der Verunkrautung. In: Proceedings EWRS symposium economic weed control, Stuttgart, pp 309–316

    Google Scholar 

  • Kramer PJ, Boyer JS (1997) Water relations of plants and soils. Academic, San Diego, CA

    Google Scholar 

  • Kribaa M, Hallaire V, Curmi P, Lahmar R (2001) Effect of various cultivation methods on the structure and hydraulic properties of a soil in a semi-arid climate. Soil Till Res 60:43–53

    Google Scholar 

  • Kristoffersen A, Riley H (2005) Effects of soil compaction and moisture regime on the root and shoot growth and phosphorus uptake of barley plants growing on soils with varying phosphorus status. Nutr Cyc Agroecosyst 72:135–146

    Google Scholar 

  • Kushwaha CP, Tripathi SK, Singh KP (2001) Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Appl Soil Ecol 16:229–241

    Google Scholar 

  • Kwesiga FR, Franzel S, Place F, Phiri D, Simwanza CP (1999) Sesbania sesban improved fallow in Eastern Zambia: their conception, development and farmer enthusiasm. Agrofor Syst 47:49–66

    Google Scholar 

  • La Scala N, Bolonhezi D, Pereira GT (2006) Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil Till Res 91:244–248

    Google Scholar 

  • Lal R (1989) Agroforestry systems and soil management of a tropical alfisol. IV. Effects of soil physical and soil mechanical properties. Agrofor Syst 8:197–215

    Google Scholar 

  • Lal R, Kimble JM, Follet RF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, MI

    Google Scholar 

  • Lavelle P, Melendez G, Pashanasi B, Schaefer R (1992) Nitrogen mineralization and reorganization in casts of the geophagous tropical earthworm Pontoscolex corethrurus (Glossoscolecidae). Biol Fertil Soils 14:49–53

    CAS  Google Scholar 

  • Lee KE (1985) Earthworms: their ecology and relationship with soils and land use. Academic, Sydney

    Google Scholar 

  • Lee KE (1995) Earthworms and sustainable land use. In: Hendrix PF (ed) Earthworms ecology and biogeography in North America. Lewis, Boca Raton, FL, pp 215–234

    Google Scholar 

  • Li HW, Gao HW, Wu HD, Li WY, Wang XY, He J (2007) Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aust J Soil Res 45(5):344–350

    Google Scholar 

  • Li J, Kremer RJ (2000) Rhizobacteria associated with weed seedlings in different cropping systems. Weed Sci 48:734–741

    CAS  Google Scholar 

  • Liebig M, Carpenter-Boggs L, Johnson JMF, Wright S, Barbour N (2006) Cropping system effects on soil biological characteristics in the Great Plains. Renew Agric Food Syst 21:36–48

    Google Scholar 

  • Liu B, Zeng Q, Yan F, Xu H, Xu C (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13

    CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000a) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Smith DL (2000b) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166

    CAS  Google Scholar 

  • Liu A, Plenchette C, Hamel C (2007) Soil nutrient and water providers: how arbuscular mycorrhizal mycelia support plant performance in a resourcelimited world. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth Food & Agricultural Products Press, Binghamton, NY, pp 37–66

    Google Scholar 

  • Lofs-Holmin A (1983) Influence of agricultural practices on earthworms (Lumbricidae). Acta Agric Scand 33:225–234

    Google Scholar 

  • López-Fando C, Bello A (1995) Variability in soil nematode populations due to tillage and crop rotation in semi-arid Mediterranean agrosystems. Soil Till Res 36:59–72

    Google Scholar 

  • López-Fando C, Dorado J, Pardo MT (2007) Pardo Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain. Soil Till Res 95:266–276

    Google Scholar 

  • Lynch JM, Panting LM (1980) Cultivation and the soil biomass. Soil Biol Biochem 12:29–33

    Google Scholar 

  • Lynch JM, Panting LM (1982) Effects of season, cultivation and nitrogen fertilizer on the size of the soil microbial biomass. J Sci Food Agric 33:249–252

    CAS  Google Scholar 

  • Madejón E, Moreno F, Murillo JM, Pelegrín F (2007) Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions. Soil Till Res 94:346–352

    Google Scholar 

  • Mafongoya PL, Dzowela BH (1999) Biomass production of tree fallows and their residual effect on maize in Zimbabwe. Agrofor Syst 47:139–151

    Google Scholar 

  • Mallik MAB, Tesfai K (1985) Pesticidal effect on soybean – rhizobia symbioses. Plant Soil 85:33–41

    CAS  Google Scholar 

  • Malty JS, Siqueira JO, Moreira FMS (2006) Efeitos do glifosato sobre microrganismos simbiotroficos de soja, em meio de cultura e casa de vergetacao. Pessq Agropec Bras Brasilia 41:285–291

    Google Scholar 

  • Mapfumo P, Mtambanengwe F, Giller KE, Mpepereki S (2005) Tapping indigenous herbaceous legumes for soil fertility management by resource-poor farmers in Zimbabwe Agriculture. Ecosyst Environ 109:221–233

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego, CA

    Google Scholar 

  • McCarty GW, Meisinger JJ, Jenniskens FMM (1995) Relationships between total-N, biomass-N and active-N in soil under different tillage and N fertilizer treatments. Soil Biol Biochem 27:1245–1250

    CAS  Google Scholar 

  • McGonigle TP, Evans DG, Miller MH (1990) Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in the growth chamber and field experiments. New Phytol 116:629–636

    CAS  Google Scholar 

  • McGonigle TP, Miller MH (1993) Mycorrhizal development and phosphorus absorption in maize under conventional and reduced tillage. Soil Sci Soc Am J 57:1002–1006

    CAS  Google Scholar 

  • McGonigle TP, Miller MH (1996) Development of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol Biochem 28:263–269

    CAS  Google Scholar 

  • Meisinger JJ, Bandel VA, Stanford G, Legg JO (1985) Nitrogen utilization of corn under minimal tillage and moldboard plow tillage: I. Four year results using labeled N fertilizer on an Atlantic Coastal Plain soil. Agron J 77:602–611

    Google Scholar 

  • Meyer K, Joergensen RG, Meyer B (1996) The effects of reduced tillage on microbial biomass C and P in sandy loess soils. Appl Soil Ecol 5:71–79

    Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2006) Evaluating the effects of arbuscular mycorrhiza on corn nutrient uptake and yield in a compacted soil under field conditions and nutrient. Soil Water Res 20:106–121 (in Persian abstract in English)

    Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. J. Plant Nutr 30:1967–1992

    CAS  Google Scholar 

  • Miransari M, Smith DL (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean–Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295

    Google Scholar 

  • Miransari M, Smith D (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.) Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152

    CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

    Google Scholar 

  • Moore JC (1988) The influence of microarthropods on symbiotic and non-symbiotic mutualism in detrital-based belowground food webs. Agric Ecosyst Environ 24:147–159

    Google Scholar 

  • Moore JC, de Ruiter PC (1991) Temporal and spatial heterogeneity of trophic interactions within belowground food webs. Agric Ecosyst Environ 34:371–397

    Google Scholar 

  • Moore JC, McCann K, Setälä H, deRuiter PC (2003) Topdown is bottom up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857

    Google Scholar 

  • Morse R, Elkner T, Groff S (2001) No-till Pumpkin production principles and practices. Pennsylvania Marketing and Research Program, College Station, TX, p 16

    Google Scholar 

  • Moyer JR, Roman ES, Lindwall CW, Blackshaw RE (1994) Weed management in conservation tillage systems for wheat production in North and South America. Crop Prot 13:243–259

    Google Scholar 

  • Mujica MT, Fracchia S, Menendez A, Ocampo JA, Godeas A (1998) Influence of chlorsulfuron herbicide on arbuscular mycorrhizas and plant growth of Glycine max intercropped with the weeds Brassica campestris. In: Proceedings of the 2nd international conference on mycorrhiza, Uppsala, Sweden, pp 5–10

    Google Scholar 

  • Muñoz A, López-Piñeiro A, Ramírez M (2007) Soil quality attributes of conservation management regimes in a semi-arid region of south western Spain. Soil Till Res 95:255–265

    Google Scholar 

  • Munch JC, Gloth B, Henneberger C (1989) The effect of terbuthylazine on soil microorganisms of the nitrogen cycle. Einfluss Eines Terbutylazine Praparates Bodenmikroorganizmen des Stickstoff Kreislaufs. Mitt Dtsch Bodenkd Ges 59:603–606

    Google Scholar 

  • Munkholm LJ (2001) Non-inversion tillage effects on soil mechanical properties of a humid sandy loam. Soil Till Res 62:1–14

    Google Scholar 

  • Nadian H, Smith SE, Alston AM, Murray RS (1997) Effects of soil compaction on plant growth, phosphorus uptake and morphological characteristics of vesicular-arbuscular mycorrhizal colonization of Trifolium subterraneum. New Phytol 135:303–311

    Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34:1527–1536

    CAS  Google Scholar 

  • Nasr AA (1993) The effect of cytokinin and thidiazuron on tomato inoculated with endomycorrhiza. Mycorrhiza 3:179–182

    Google Scholar 

  • Nielsen HJ, Pinnerup SP (1982) Reduceret jordbehandling og ukrudt. In: Ogr.as och ogr.asbek.ampning, 23:e svenska ogr-.askonferensen, Del 2.Rapporter, Uppsala, Sweden, 27–29 Jan 1982, pp 381–395

    Google Scholar 

  • Niemi R, Vepsä läinen M, Wallenius M, Simpanen K, Alakukkub S, Pietola L (2005) Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Soil Biol Ecol 30:113–125

    Google Scholar 

  • Nuutinen V (1992) Earthworm community response to tillage and residue management on different soil types in southern Finland. Soil Till Res 23:221–239

    Google Scholar 

  • Nyakatawa EZ, Reddy KC, Mays DC (2000) Tillage, cover cropping and poultry litter effects of cotton. II. Growth and Yield parameters. Agron J 92:1000–1007

    Google Scholar 

  • Nyamadzawo G, Nyamugafata P, Chikowo R, Giller KE (2007) Soil organic carbon dynamics of improved fallow-maize rotation systems under conventional and no-tillage in Central Zimbabwe. Nutr Cycl Agroecosyst 81:85–93

    Google Scholar 

  • Nyamadzawo G, Nyamangara J, Nyamugafata P, Muzulu A (2009) Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe. Soil Till Res 102:151–157

    Google Scholar 

  • Oorts K, Bossuyt H, Labreuche J, Merckx R, Nicolardot B (2007) Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France. Eur J Soil Sci 58:248–259

    CAS  Google Scholar 

  • Osunbitan JA, Oyedele DJ, Adeklu KO (2005) Tillage effects on bulk density, hydraulic ­conductivity and strength of a loamy sandy soil in southwestern Nigeria. Soil Till Res 82:57–64

    Google Scholar 

  • Ouèdraogo E, Mando A, Stroosnijder L (2006) Effects of tillage, organic resources and nitrogen fertilizer on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa. Soil Till Res 91:57–67

    Google Scholar 

  • Oyedele DJ, Schjonning P, Sibbesen E, Debosz K (1999) Aggregation and organic matter fractions of three Nigerian soils as affected by soil disturbance and incorporation of plant material. Soil Till Res 50:105–114

    Google Scholar 

  • Ozpinar S, Baytekin H (2006) Effects of tillage on biomass, roots, N-accumulation of vetch (Vicia sativa L.) on a clay loam soil in semi-arid conditions. Field Crops Res 96:235–242

    Google Scholar 

  • Ozpinar S, Cay A (2006) Effect of different tillage systems on the quality and crop productivity of a clay–loam soil in semi-arid north-western Turkey. Soil Till Res 88:95–106

    Google Scholar 

  • Pagliai M, Vignozzi N, Pellegrini S (2004) Soil structure and the effect of management practices. Soil Till Res 79:131–143

    Google Scholar 

  • Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Fertil Soils 33:204–217

    CAS  Google Scholar 

  • Papendick RI (2004) Farming with the wind II: Wind erosion and air quality control on the Columbia Plateau and Columbia Basin. Special Report by the Columbia Plateau PM10 Project. Washington Agricultural Experiment Station. Report XB 1042, Pullman, WA

    Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Meyer RE (1992) Soil quality: attributes and relationship to alternative and sustainable agriculture. Am J Altern Agric 7:5–11

    Google Scholar 

  • Passioura JB (2002) Soil conditions and plant growth. Plant Cell Environ 25:311–318

    PubMed  Google Scholar 

  • Paula TJ, Zambolim L (1994) Efeito de fungicidas e de herbicidas sobre a micorrização de Eucalyptus grandis por Glomus etunicatum. Fitopatol Bras 19:173–177

    Google Scholar 

  • Paustian K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Paustian K, Elliott ET, Cole CV (eds) Soil organic matter in temperate agroecosystems: longterm experiments in North America. CRC Press, Boca Raton, FL, pp 15–49

    Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163

    CAS  Google Scholar 

  • Phatak SC, Reed R, Fussell W, Lewis WJ, Harris GH (1999) Crimson clover cotton relay cropping with conservation tillage system. In: Hook JE (ed) Proceedings of the 22nd Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Tifton, GA, pp 184–188

    Google Scholar 

  • Picone C (2003) Managing mycorrhizae for sustainable agriculture in the tropics. In: Vandermeer JH (ed) Tropical agroecosystems. CRC Press, Boca Raton, FL, pp 95–132

    Google Scholar 

  • Pitkänen J, Nuutinen V (1998) Earthworm contribution to infiltration and surface runoff after 15 years of different soil management. Appl Soil Ecol 9:411–415

    Google Scholar 

  • Pleasant JM, McCollum RE, Coble HD (1990) Weed population dynamics and weed control in the Peruvian Amazon. Agron J 82:102–112

    Google Scholar 

  • Porta J, López-Acevado M, Roquero C (1999) Edafología para la agricultura y el medio ambiente. Mundi Prensa, Espãna, p 849

    Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55:803–813

    PubMed  CAS  Google Scholar 

  • Rao SC, Dao TH (1996) Nitrogen placement and tillage effect on dry matter and nitrogen accumulation and redistribution in winter wheat. Agron J 88:365–371

    Google Scholar 

  • Raper RL, Reeves DW, Burmester CH, Schwab EB (2000) Tillage depth, tillage timing and cover crop effects on cotton yield, soil strength, and tillage energy requirements. Appl Eng Agric 16:379–385

    Google Scholar 

  • Rapp HS, Bellinder RR, Wien HC, Vermeylen FM (2004) Reduced tillage, rye residues, and herbicides influence weed suppression and yield of pumpkins. Weed Technol 18:953–961

    Google Scholar 

  • Rasmussen KJ (1999) Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil Till Res 53:3–14

    Google Scholar 

  • Rejon A, Garcia-Romera I, Ocampo JA, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence ­competition in a wheat-ryegrass association treated with the herbicide diclofop. Appl Soil Ecol 7:51–57

    Google Scholar 

  • Rhoton FE (2000) Influence of time on soil responses to no-till practices. Soil Sci Soc Am J 64:700–709

    CAS  Google Scholar 

  • Rieger SB (2001) Impacts of tillage systems and crop rotation on crop development, yield and nitrogen efficiency. Ph.D. dissertation, ETH 14124, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 139 pp

    Google Scholar 

  • Riffaldi R, Saviozzi A, Levi-Minzi R, Cardelli R (2002) Biochemical properties of a Mediterranean soil as affected by long-term crop management systems. Soil Till Res 67:109–114

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    PubMed  CAS  Google Scholar 

  • Roldán A, Salinas-García JR, Alguacil MM, Caravaca F (2005a) Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by onservation tillage practices and water regime in a maize field. Appl Soil Ecol 30:11–20

    Google Scholar 

  • Roldán A, Salinas-García JR, Alguacil MM, Caravaca F (2005b) Soil enzyme activities suggest advantage of conservation tillage practices in sorghum ultivation under subtropical conditions. Geodema 129:178–185

    Google Scholar 

  • Romkens MJM, Nelson DW (1974) Phosphorus relationships in runoff from fertilized soils. J Environ Qual 3:10–13

    CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Russo VM, Kindiger B, Webber CL III (2006) Pumpkin yield and weed populations following annual ryegrass. J Sustain Agric 28:85–96

    Google Scholar 

  • Sadeghi AM, Isensee AR, Shelton DR (1998) Effect of tillage age on herbicide dissipation: a side-by-side comparison using microplots. Soil Sci 163:883–890

    CAS  Google Scholar 

  • Sadowsky MJ, Graham PH (1998) Soil biology of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Kluwer, Dordrecht, The Netherlands, pp 155–172

    Google Scholar 

  • Salinas-Garcia JR, Hons FM, Matocha JE, Zuberer DA (1997) Soil carbon and nitrogen dynamics as affected by long-termtillage. Biol Fertil Soils 25:182–188

    Google Scholar 

  • Sánchez-Díaz M, Honrubia M (1994) Water relations and alleviation of drought stress in mycorrhizal plants. In: Gianinazzi S, Schü epp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, Switzerland, pp 167–178

    Google Scholar 

  • Santos JB, Jakelaitis A, Silva AA, Costa MD, Manabe A, Silva MCS (2006) Action of two herbicides on the microbial activity of soil cultivated with common bean (Phaseolus vulgaris) in conventional-till and no-till systems. Weed Res 46:284–289

    CAS  Google Scholar 

  • Satchell JE (1958) Earthworm biology and soil fertility. Soils Fertil 21:209–219

    Google Scholar 

  • Sauer TJ, Clothier BE, Daniel TC (1990) Surface measurements of the hydraulic character of tilled and untilled soil. Soil Till Res 15:359–369

    Google Scholar 

  • Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–856

    Google Scholar 

  • Schjonning P, Rasmussen KJ (1989) Long-term reduced cultivation. I. Soil strength and stability. Soil Till Res 15:79–90

    Google Scholar 

  • Schmidt O, Clements RO, Donaldson G (2003) Why do cereal-legume intercrops support large earthworm populations? Appl Soil Ecol 22:181–190

    Google Scholar 

  • Scholz G, Quinton JN, Strauss P (2008) Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. Catena 72:91–105

    Google Scholar 

  • Schreiner RP, Ivors KL, Pinkerton JN (2001) Soil solarization reduces arbuscular mycorrhizal fungi as a consequence of weed suppression. Mycorrhiza 11:273–277

    CAS  Google Scholar 

  • Schütte G (2003) Herbicide resistance: promises and prospects of biodiversity for European agriculture. Agric Hum Values 20:217–230

    Google Scholar 

  • Schutter ME, Sandeno JM, Dick RP (2001) Seasonal, soil type, and alternative agriculture ­management influences on microbial communities of vegetable cropping systems. Biol Fertil Soils 34:397–410

    CAS  Google Scholar 

  • Schutter ME, Dick RP (2002) Microbial community profiles and activities among aggregates of winter fallow and covercropped soil. Soil Sci Soc Am J 66:142–153

    CAS  Google Scholar 

  • Schwab SM, Johnson ELV, Menge JA (1982) Influence of simazine on formation of vesiculararbuscular mycorrhizae in Chenopodium quinona Willd. Plant Soil 64:283–287

    CAS  Google Scholar 

  • Schwerdtle F (1977) Der Einfluss des Direkts.averfahrens auf die Verunkrautung. Z PflKrankh PflSchutz Sonderheft 8:155–163

    Google Scholar 

  • Scullion J, Malik A (2001) Organic matter in restored soils as affected by earthworms and land use. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of organic matter. CAB International Publishing, Wallingford, UK, pp 377–384

    Google Scholar 

  • Selles F, McConkey BG, Campbell CA (1999) Distribution and forms of P under cultivator- and zero-tillage for continuous- and fallow-wheat cropping systems in the semi-arid Canadian prairies. Soil Till Res 51:47–59

    Google Scholar 

  • Shaver TM, Peterson GA, Ahuja LR, Westfall DG, Sherrod LA, Dunn G (2002) Surface soil properties after twelve years of dryland no-till management. Soil Sci Soc Am J 66:1292–1303

    Google Scholar 

  • Shipitalo MJ, Butt KR (1999) Occupancy and geometrical properties of Lumbricus terrestris L. burrows affecting infiltration. Pedobiologia 43:782–794

    Google Scholar 

  • Shipitalo MJ, Le Bayon RC (2004) Quantifying the effects of earthworms on soil aggregation and porosity. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, p 441

    Google Scholar 

  • Sieling K, Schröder H, Finck M, Hanus H (1998) Yield, N uptake, and apparent N-use efficiency of winter wheat and winter barley grown in different cropping systems. J Agric Sci 131:375–387

    Google Scholar 

  • Sieverding E (1991) Vesicular–arbuscular mycorrhiza management in tropical agroecosystems. Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, Esebborn, Germany

    Google Scholar 

  • Sievert M (2000) Aspekte des Pflanzenschutzes in Winterraps, Winterweizen und Wintergerste bei nichtwendender Bodenbearbeitung, Dissertation, Fakultät für Agrarwissenschaften, Georg-August Universität Göttingen, Germany

    Google Scholar 

  • Sime M (1986) Field Performance of the Maresha plow and Nazret plow. AIRIC Test Report No. 14, Agricultural Implements Research and Improvement Centre, Eth/82/004. Institute of Agricultural Research, Addis Ababa, 12 pp

    Google Scholar 

  • Simmons BL, Coleman DC (2008) Microbial community response to transition from conventional to conservation tillage in cotton fields. Appl Soil Ecol 40:518–528

    Google Scholar 

  • Singh G, Wright D (1999) Effects of herbicides on nodulation, symbiotic nitrogen fixation, growth and yield of pea (Pisum sativum). J Agric Sci 133:21–30

    CAS  Google Scholar 

  • Singh G, Wright D (2002) In vitro studies on the effects of herbicides on the growth of rhizobia. Lett Appl Microbiol 35:12–16

    PubMed  CAS  Google Scholar 

  • Siquiera JO, Safir GR, Nair MG (1991) VA-mycorrhizae and mycorrhiza stimulating isoflavanoid compounds reduce plant herbicide injury. Plant Soil 134:233–242

    Google Scholar 

  • Six J, Elliot ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional tillage and no-tillage systems. Soil Sci Soc Am J 63:1350–1358

    CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, de Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils – effects of notillage. Agronomie 22:755–775

    Google Scholar 

  • Smettem KRJ, Collis-George N (1985) The influence of cylindrical macropores on steady state infiltration in a soil under pasture. J Hydrol 79:107–114

    Google Scholar 

  • Smettem KRJ (1992) The relation of earthworms to soil hydraulic properties. Soil Biol Biochem 24:1539–1543

    Google Scholar 

  • Soane BD, van Ouwerkerk C (1995) Implications of soil compaction in crop production for the quality of the environment. Soil Till Res 35:5–22

    Google Scholar 

  • Spedding TA, Hamel C, Mehuys GR, Madramootoo CA (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem 36: 499–512

    CAS  Google Scholar 

  • Staley TE, Edwards WM, Scott CL, Owens LB (1988) Soil microbial biomass and organic component alterations in a no-tillage chronosequence. Soil Sci Soc Am J 52:998–1005

    Google Scholar 

  • Stenersen J, Gilman A, Vardanis A (1974) Carbofuran: its toxicity to and metabolism by earthworm (Lumbricus terrestris). J Agric Food Chem 22:342–347

    Google Scholar 

  • Stockfisch N, Forstreuter T, Ehlers W (1999) Ploughing effects on soil organic matter after twenty years of conservation tillage in Lower Saxony Germany. Soil Till Res 52:91–101

    Google Scholar 

  • Streit B, Rieger SB, Stamp P, Richner W (2002) The effect of tillage intensity and time of herbicide application on weed communities and populations in maize in central Europe. Agric Ecosyst Environ 92:211–224

    Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behavior in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37:204–2054

    Google Scholar 

  • Stromberger M, Shah Z, Westfall D (2007) Soil microbial communities of no-till dryland ­agroecosystems across an evapotranspiration gradient. Appl Soil Ecol 35:94–106

    Google Scholar 

  • Sturz AV, Carter MR, Johnston HW (1997) A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil Till Res 41:169–189

    Google Scholar 

  • Subler S, Baranski CM, Edwards CA (1997) Earthworm additions increased short-term nitrogen availability and leaching in two graincrop agroecosystems. Soil Biol Biochem 29:413–421

    CAS  Google Scholar 

  • Sun RL, Zhao BQ, Zhu LSh, Xu J, Zhang FD (2003) Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility. Plant Nutr Fertil 9:406–410

    Google Scholar 

  • Swanton CJ, Clements DR, Derksen DA (1993) Weed succession under conservation tillage: a hierarchical framework for research and management. Weed Technol 7:286–297

    Google Scholar 

  • Sylvia DE, Hammond LC, Bennet JM, Hass JH, Linda SB (1993) Field response of maize to a VAM fungus and water management. Agron J 85:193–198

    CAS  Google Scholar 

  • Tardieu F (1994) Growth and functioning of roots and root systems subjected to soil compaction. Towards a system with multiple signaling? Soil Till Res 30:217–243

    Google Scholar 

  • Tebrügge F, Böhrnsen A (2001) Farmers and ‘experts’ opinion on no-tillage in West-Europe and Nebraska (USA). In: Torres G et al (eds) Conservation agriculture, aworldwide challenge. Proceedings of the First World Congress on Conservation Agriculture of FAO-ECAF, vol. I, Madrid, Spain, pp 61–69, 1–5 Oct 2001

    Google Scholar 

  • Temesgen M, Hoogmoed WB, Rockstrom J, Savenije HHG (2009) Conservation tillage implements and systems for smallholder farmers in semi-arid Ethiopia. Soil Till Res 104:185–191

    Google Scholar 

  • Tessier S, Peru M, Dyck FB, Zentner FP, Campbell CA (1990) Conservation tillage for spring wheat production in semi-arid Saskatchewan. Soil Till Res 18:73–89

    Google Scholar 

  • Thomas AG, Frick BL (1993) Influence of tillage systems on weed abundance in Southwestern Ontario. Weed Technol 7:699–705

    Google Scholar 

  • Thomas GA, Dalal RC, Standley J (2007) No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Till Res 94:295–304

    Google Scholar 

  • Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic-matter in sustaining soil fertility. Nature 371:783–785

    CAS  Google Scholar 

  • Tisdal JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–161

    Google Scholar 

  • Tobar RM, Azćon R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhizae under water-stressed conditions. New Phytol 126:119–122

    Google Scholar 

  • Tomlin C (2003) The pesticide manual, 13th edn. British Crop Protection Council, UK, p 347

    Google Scholar 

  • Tørresen KS, Skuterud R (2002) Plant protection in spring cereal production with reduced tillage. IV. Changes in the weed flora and weed seedbank. Crop Prot 21:179–193

    Google Scholar 

  • Trasar-Cepeda C, Leiros MC, Seoane S, Gil-Sotres F (2000) Limitation of soil enzymes as indicators of soil pollution. Soil Biol Biochem 32:1867–1875

    CAS  Google Scholar 

  • Tuffen F, Eason WR, Scullion J (2002) The effect of earthworm and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porrum plants. Soil Biol Biochem 34:1027–1036

    CAS  Google Scholar 

  • Van Gestel M, Ladd JN, Amato M (1992) Microbial biomass responses to seasonal change and imposed drying regimes at in creasing depths of undisturbed topsoil profiles. Soil Biol Biochem 24:103–111

    Google Scholar 

  • Vasil’chenko LG, Khromonygina VV, Koroleva OV, Landesman EO, Gaponenko VV, Kovaleva TA, Kozlov Yu P, Rabinovich ML (2002) Prikl Biokhim Mikrobiol 38:534–539

    PubMed  Google Scholar 

  • Vieira RF, Silva CMMS, Silveira APD (2007) Soil microbial biomass C and symbiotic processes associated with soybean after sulfentrazone herbicide application. Plant Soil 300:95–103

    CAS  Google Scholar 

  • Visser S, Parkinson D (1992) Soil biological criteria as indicators of soil quality: soil organisms. Am J Altern Agric 7:33–37

    Google Scholar 

  • Vogeler I, Rogasik J, Funder U, Panten K, Schnug E (2009) Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Till Res 103:137–143

    Google Scholar 

  • Vullioud PA (2000) 30 years ploughless tillage experiment at Changins (Switzerland). In: Proceedings of the 15th ISTRO conference, Forth Worth, TX, 10 pp

    Google Scholar 

  • Walters SA, Young BG, Krausz RF (2008) Influence of tillage, cover crop, and preemergence herbicides on weed control and pumpkin yield. Int J Veg Sci 14:148–161

    Google Scholar 

  • Wang J, Hesketh JD, Woolley JT (1986) Preexisting channels and soybean rooting patterns. Soil Sci 141:432–437

    Google Scholar 

  • Wang D, Norman JM, Lowery B, McSweeney K (1994) Non-destructive determination of hydrogeometrical characteristics of soil macropores. Soil Sci Soc Am J 58:294–303

    Google Scholar 

  • Wardle DA, Yeates GW, Watson RN, Nicholson KS (1993) Response of soil microbial biomass and plant litter decomposition to weed management strategies in maize and asparagus ­cropping systems. Soil Biol Biochem 25:857–868

    Google Scholar 

  • Wardle DA (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv Ecol Res 26:105–185

    Google Scholar 

  • Weil RR, Lowell KA, Shade HM (1993) Effects of intensity of agronomic practices on a soil ecosystem. Am J Altern Agric 8:5–14

    Google Scholar 

  • Wershaw RL (1993) Model for humus in soils and sediment. Environ Sci Technol 27:814–816

    Google Scholar 

  • Westwood J (1997) Growers endorse herbicide resistant crops, recognize need for responsible use. ISB News 3:7–10

    Google Scholar 

  • Widmer F (2007) Assessing effects of transgenic crops on soil microbial communities. Green Gene Technology. Res Area Soc Confl 107:207–234

    CAS  Google Scholar 

  • Wright AL, Hons FM, Matocha JE Jr (2005) Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Appl Soil Ecol 29(1):85–92

    Google Scholar 

  • Xu J, Qiu X, Dai J, Cao H, Yang M, Zhang J, Xu M (2006) Isolation and characterization of a Pseudomonas oleovorans degrading the chloroacetamide herbicide acetochlor. Biodegradation 17:219–225

    PubMed  CAS  Google Scholar 

  • Yao HY, Jiao XD, Wu FZ (2006) Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant Soil 284:195–203

    CAS  Google Scholar 

  • Zabaloy C, Anahí Gómez M (2005) Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol Fertil Soils 42:83–88

    Google Scholar 

  • Zaidi A, Khan MS, Rizvi PQ (2005) Effect of herbicides on growth, nodulation and nitrogen content of greengram. Agron Sustain Dev 25:497–504

    CAS  Google Scholar 

  • Zandstra BH, Chase WR, Masabni JG (1998) Interplanted small grain cover crops in pickling cucumbers. HortTechnology 8:356–360

    Google Scholar 

  • Zhang GS, Chan KY, Oates A, Heenan DP, Huang GB (2007) Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Till Res 92:122–128

    Google Scholar 

  • Zibilske LM, Bradford JM, Smart JR (2002) Conservation tillage induced changes in organic carbon, total nitrogen and available phosphorus in a semi-arid alkaline subtropical soil. Soil Till Res 66:153–163

    Google Scholar 

  • Zotarelli L, Alves BJR, Urquiaga S, Torres E, dos Santos HP, Paustian K, Boddey RM, Six J (2005) Impact of tillage and crop rotation on aggregateassociated carbon in two oxisols. Soil Sci Soc Am J 69:482–491

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad J. Zarea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zarea, M.J. (2010). Conservation Tillage and Sustainable Agriculture in Semi-arid Dryland Farming. In: Lichtfouse, E. (eds) Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. Sustainable Agriculture Reviews, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9513-8_7

Download citation

Publish with us

Policies and ethics