Skip to main content

Hyperthermia Results and Challenges

  • Chapter
  • First Online:
Oncothermia: Principles and Practices

Abstract

Hyperthermia is not a widely acknowledged treatment, and there is no consensus even among its users. Its effects are mostly acknowledged, but the clinical studies have many challenging problems. Numerous supporters believe hyperthermia is the future miracle of oncology, and more believe the complete opposite, regarding hyperthermia as ineffective and a dead-end among the methods of oncology. Both approaches are basically wrong. Hyperthermia is one of the tools of oncology, having many problems and requesting detailed research in labs and in clinics. Both believers, positive and negative are annoying: believers must not be the basis of any serious medical approach. The facts are necessary! In this book we try to collect these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Streffer C, Van Beuningen D, Dietzerl F et al (1978) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, MD

    Google Scholar 

  2. Urano M, Douple E (eds) (1989) Hyperthermia and oncology, Vol. 2. Biology of thermal potentiation of radiotherapy. VSP BV Utrecht, The Netherlands

    Google Scholar 

  3. Matsuda T (ed) (1993) Cancer treatment by hyperthermia, radiation and drugs. Taylor & Francis, Washington, DC

    Google Scholar 

  4. Urano M, Douple E (eds) (1994) Hyperthermia and oncology, vol. 4. Chemopotentiation by hyperthermia. VSP BV, Utrecht, The Netherlands

    Google Scholar 

  5. Seegenschmiedt MH, Fessenden P, Vernon CC (eds) (1996) Thermo-radiotherapy and thermo-chemotherapy, Vol. 2. Clinical applications. Springer, Berlin

    Google Scholar 

  6. Kosaka M, Sugahara T, Schmidt KL et al (eds) (2001) Thermotherapy for neoplasia, inflammation, and pain. Springer, Tokyo

    Google Scholar 

  7. Ellis LM, Curley SA, Tanabe KK (2004) Radiofrequency ablation of cancer. Springer, Berlin

    Google Scholar 

  8. Baronzio GF, Hager ED (eds) (2006) Hyperthermia in cancer treatment: a primer. Springer, Berlin; Landes Bioscience, Austin, TX

    Google Scholar 

  9. Perez CA, Brady LW, Halperin EC et al (2004) Principles and practice of radiation oncology. 4th ed. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  10. DeVita VT, Hellman S Jr, Rosenberg SA (2004) Cancer: principles and practice of oncology. 7th edition. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  11. Harima Y, Nagata K, Harima K et al (2001) A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperthermia 17(2):97–105

    Article  CAS  PubMed  Google Scholar 

  12. Medical dictionary (2008) http://www.medterms.com/script/main/art.asp?articlekey=3848

  13. The free dictionary (2008) http://ww.thefreedictionary.com/hyperthermia

  14. National Cancer Institute (2008) http://www.cancer.gov/Templates/db_alpha.aspx?CdrID=468790

  15. Oncology Encyclopedia (2008) http://www.answers.com/topic/hyperthermia

  16. Free Medical Dictionary (2008) http://www.free-medical-dictionary.com

  17. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas with a report of ten original cases. Am J Med Sci 105:487–511

    Article  Google Scholar 

  18. Medline Plus. http://www.nlm.nih.gov/medlineplus/ency/article/001315.htm. Cited 02 October 2007

  19. Dewhirst MW, Prosnitz L, Thrall D et al (1997) Hyperthermic Treatment of Malignant Diseases: Current Status and a View Toward the Future. Sem Oncol 24(6):616–625

    CAS  Google Scholar 

  20. Urano M, Douple E (eds) Hyperthermia and Oncology: Vol. 1. (1988) Thermal effects on cells and tissues. VSP BV Utrecht, The Netherlands. Vol. 2. (1989) Biology of thermal potentiation of radiotherapy, VSP BV Utrecht The Netherlands Vol. 3. (1992) Interstitial Hyperthermia: Physics, biology and clinical aspects, VSP BV Utrecht The Netherlands. (1994) Vol. 4. Chemopotentiation by hyperthermia VSP BV Utrecht The Netherlands

    Google Scholar 

  21. Seegenschmiedt MH, Fessenden P, Vernon CC (eds) (1996) Thermo-radiotherapy and Thermo-chemotherapy, Vol. 1. Biology, physiology and physics. Vol. 2. Clinical application. Springer, Berlin

    Google Scholar 

  22. International Journal of Hyperthermia. (The official Journal of the North American Hyperthermia Society, European Society for Hyperthermic Oncology, Asian Society of Hyperthermic Oncology) Taylor & Francis, ISSN 0265–6736

    Google Scholar 

  23. van der Zee J, Gonzalez Gonzalez D, van Rhoon GC et al (2000) Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumors: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355(9210):1119–1125

    Article  PubMed  Google Scholar 

  24. Wust P, Hildebrandt B, Sreenivasa G et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    Article  CAS  PubMed  Google Scholar 

  25. Overgaard J, Gonzalez Gonzalez D, Hulshof MC et al (1995) Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 345(8949):540–543

    Article  CAS  PubMed  Google Scholar 

  26. PubMed (2007) http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed. search profile: (cancer OR tumor OR oncology OR neoplasm OR malignant) AND (hyperthermia OR heat-therapy OR thermotherapy) NOT (malignant-hyperthermia OR fever); limits: (clinical trial OR randomized controlled trial) Sept 2007

  27. Kufe DW, Bast RC, Hait W et al (2006) (eds) Cancer Medicine Holland-Frei – Cancer Medicine 7. American Association for Cancer Research, BC Decker, Philadelphia, PA

    Google Scholar 

  28. Ara G, Anderson RR, Mandel KG (1989) Irradiation of pigmented melanoma cells with high-intensity pulsed radiation generates acoustic waves and kills the cells. Laser Surg Med 10:52–59

    Article  Google Scholar 

  29. Findlay RP, Dimbylow PJ (2005) Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body. Phys Med Biol 50:3825–3835

    Article  CAS  PubMed  Google Scholar 

  30. Joo E, Szasz A, Szendro P (2005) Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz. Electromagn Biol Med 25(2):103–112

    Article  Google Scholar 

  31. Jianging W, Mukaide N, Fujiwara O (2003) FTDT calculation of organ resonance characteristics in an anatomically based human model for plane-wave exposure. Proc Conf Environ Electromagn 4–7 November 2003, pp 126–129

    Google Scholar 

  32. Radiofrequency radiation dosimetry handbook (1997) Armstrong Laboratory, USAF School of Aerospace Medicine, AFSC. http://niremf.ifac.cnr.it/docs/HANDBOOK/chp1.htm. Cited 02 October 2007

  33. Nielsen OS, Horsman M, Overgard J (2001) A future for hyperthermia in cancer treatment? Eur J Cancer 37(13):1587–1589

    Article  CAS  PubMed  Google Scholar 

  34. van der Zee J (2002) Heating the patient: a promising approach? Annals of Oncology 13:1173–1184

    Article  PubMed  Google Scholar 

  35. Devrient W (1950) Überwärmungsbäder. A. Marcus & E. Weber’s Verlag, Berlin

    Google Scholar 

  36. Schmidt KL (1987) Hyperthermie und Fieber. Hippokrates, Stuttgart

    Google Scholar 

  37. Heckel M (1990) Ganzkörperhyperthermie und Fiebertherapie – Grundlagen und Praxis. Hippokrates, Stuttgart

    Google Scholar 

  38. Heckel M (1992) Fiebertherapie und Ganzkörper-HT, Bessere Verträglichkeit und Effizienz durch thermoegulatorisch ausgewogene, kombinierte Anwendung beider Verfahren. ThermoMed 14–19

    Google Scholar 

  39. Hildebrandt B, Drager J, Kerner T et al (2004) Whole-body hyperthermia in the scope of von Ardenne’s systemic cancer multistep therapy (sCMT) combined with chemotherapy in patients with metastatic colorectal cancer: a phase I/II study. Int J Hyperthermia 20:317–333

    Article  CAS  PubMed  Google Scholar 

  40. Wust P, Riess H, Hildebrandt B (2000) Feasibility and analysis of thermal parameters for the whole-body hyperthermia system IRATHERM. Int J Hyperthermia 4:325–339

    Google Scholar 

  41. Dahl O, Dalene R, Schem BC (1999) Status of clinical hyperthermia. Acta Oncol 38(7):863–873

    Article  PubMed  Google Scholar 

  42. Senior K (2001) Hyperthermia and hypoxia for cancer-cell destruction. Lancet Oncology 2:524–525

    Article  Google Scholar 

  43. Szasz A, Szasz O, Szasz N (2001) Electro-hyperthermia: a new paradigm in cancer therapy. Deutsche Zeitschrift fur Onkologie 33:91–99

    Article  Google Scholar 

  44. Abe M, Hiraoka M, Takahashi M et al (1986) Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (thermotron RF-8) in combination with radiation for cancer therapy. Cancer 58:1589–1595

    Article  CAS  PubMed  Google Scholar 

  45. Szasz A, Szasz O, Szasz N (2006) Physical background and technical realization of hyperthermia. In: Baronzio GF, Hager ED (2006) Hyperthermia in cancer treatment: a primer. Springer, Landes Bioscience, Austin, TX

    Google Scholar 

  46. Seegenschmiedt MH, Vernon CC (1995) A Historical Perspective on Hyperthermia in Oncology. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) (1995) Thermoradiotherapy and Thermochemotherapy Vol. 2: Clinical Applications, Springer, Berlin, pp 3–46

    Google Scholar 

  47. Holt JAG. 1988, Microwaves are not hyperthermia. Radiograp 35(4):151–162

    Google Scholar 

  48. Shinc J (Chairman) (2005). Review of the use of microwave therapy for the treatment of patients with cancer. Final report to the minister for health and ageing, http://www.nhmrc.gov.au/_files_nhmrc/file/publications/synopses/nh67exec.pdf

  49. Liboff AR (2003) Ion Cyclotron Resonance in Biological Systems: Experimental Evidence. In: Stavroulakis P (ed) Biological effects of electromagnetic fields. Springer, Berlin

    Google Scholar 

  50. Szendro P, Vincze G, Szasz A (2001) Pink noise behaviour of the bio-systems. Eur Biophys J 30(3):227–231

    Article  CAS  PubMed  Google Scholar 

  51. Rosch PJ, Markov MS, (2004) Bioelectromagnetic medicine. Marcel Dekker, New York, NY

    Google Scholar 

  52. Torchilin VP, (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    Article  CAS  PubMed  Google Scholar 

  53. Brannon-Peppas L, Blanchette JO. (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    Article  CAS  PubMed  Google Scholar 

  54. Henderson MA, Pettigrew RT (1971) Induction of controlled hyperthermia in treatment of cancer. The Lancet 1275–1277

    Google Scholar 

  55. Gebbers N, Hirt-Burri N, Scaletta C, Hoffmann G, Applegate LA. (2007) Water-filtered infrared-A radiation (wIRA) is not implicated in cellular degeneration of human skin. GMS German Med Sci 5:1–14

    Google Scholar 

  56. Heckel M. (1990) Ganzkörperhyperthermie und Fiebertherapie – Grundlagen und Praxis, Hippokrates, Stuttgart

    Google Scholar 

  57. Ardenne von A, Wehner H, (2005) Extreme Whole-Body Hyperthermia with Water-Filtered Infrared-A Radiation NCBI Bookshelf, Landes Bioscience, Madame Curie Bioscience database, http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=eurekah&part=A46701

  58. Srobl B. (2006) 6 Jahre Ganzkörperhyperthermie kombiniert mit Chemotherapie beim Ovarialkarzinom, Dolphin-0- und -1-Studie, Hyperthermia Symposium, 22–23, September

    Google Scholar 

  59. Kelleher DK, Thews O, Rzeznik J, Scherz A, Salomon Y, Vaupel P (1999) Water-filtered infrared-A radiation: a novel technique for localized hyperthermia in combination with bacteriochlorophyll-based photodynamic therapy. In J Hyperthermia 15:467–474

    Article  CAS  Google Scholar 

  60. Granmt D, (1904) The Galvano-Cautery in the Treatment of Intra-Laryngeal Growths. J Laryngol Rhinol Ontol 19:294–297

    Google Scholar 

  61. Short History of Bioelectrics, http://www.pulsedpower.eu/bioelectrics/bio_02_main.html

  62. Kratzer GL, Onsanit T. (2007) Fulguration of selected cancers of the rectum. Report of 27 cases. Diseases of Colon and Rectum, 15:431–435

    Article  Google Scholar 

  63. LeVeen HH, Wapnick S, Piccone V et al (1976) Tumor eradication by radiofrequency therapy. JAMA 235(20):2198–2200

    Article  CAS  PubMed  Google Scholar 

  64. Short JG, Turner PF (1980) Physical Hyperthermia and cancer therapy. Proc IEEE 68:133–142

    Article  Google Scholar 

  65. Storm FK, Morton DL, Kaiser LR (1982) Clinical radiofrequency hyperthermia: a review. Natl Cancer Inst Monogr 61:343–350

    PubMed  Google Scholar 

  66. Jo S, Sugahara T, Yamamoto I (1994) Clinical response of hyperthermia using heating equipment Thermotron-RF8 in Japan. Biomed Eng Appl Basis Commun 6:340–362

    Google Scholar 

  67. Lee CK, Song CW, Rhee JG et al (1995) Clinical experience using 8 MHz radiofrequency capacitive hyperthermia in combination with radiotherapy: results of a phase I/II study. Int J Radiat Oncol Biol Phys 32(3):733–745

    PubMed  Google Scholar 

  68. Masunaga SI, Hiraoka M, Akuta K et al (1994) Phase I/II trial of preoperative thermoradiotherapy in the treatment of urinary bladder cancer. Int J Hyperthermia 10(1):31–40

    Article  CAS  PubMed  Google Scholar 

  69. Weiss TF (1996) Cellular Biophysics. Bradford Book, MIT Press, Cambridge, MA

    Google Scholar 

  70. Rand RW, Snow HD, Brown WJ (1982) Thermomagnetic Surgery for Cancer. J Surg Res 33:177–183

    Article  CAS  PubMed  Google Scholar 

  71. Matsuki H, Satoh T, Murakami K (1990) Local hyperthermia based on soft heating method utilizing temperature sensitive ferrite-rod. IEEE Trans Magn 26:1551–1553

    Article  Google Scholar 

  72. Gilchrist RK, Medal R, Shorey WD et al (1957) Selective inductive heating of lymph nodes. Ann Surg 146(4):596–606

    Article  CAS  PubMed  Google Scholar 

  73. Hoshino T, Sato T, Masai A (1994) Conduction System Ablation using Ferrite rod for cardiac arrhythmia. IEEE Trans Magn 30:4689–4691

    Article  Google Scholar 

  74. Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alteration. Med Hypotheses 5(1):83–102

    Article  CAS  PubMed  Google Scholar 

  75. Rabin Y (2002) Is intracellular hyperthermia superior to extracellular in the thermal sense? Int. J. Hyperthermia 18(3):194–202

    Article  CAS  PubMed  Google Scholar 

  76. Jordan A, Scholz R, Wust P, Faehling H., Felix R (1999) Magnetic fluid hyperthermia (MFH): Caner treatment with AC magnetic field induced excitation of biocompatible supermagnetic nanoparticles. J Magn Magnetic Materials 201:413–419

    Article  CAS  Google Scholar 

  77. Nishide Oleson JR (1985) The role of magnetic induction techniques for producing hyperthermia. In: Anghileri LJ, Robert J (eds) Hyperthermia in Cancer Treatment, Vol. II. CRC Press, Boca Raton, Fl, pp 141–154

    Google Scholar 

  78. Jojo M, Murakami A, Sato F et al (2001) Consideration of handy excitation apparatus for the inductive hyperthermia. IEEE Trans Magn 37(1):2944–2946

    Article  Google Scholar 

  79. Taylor LS (1978) Devices for microwave hyperthermia. In: Streffer C, vanBeuningen D, Dietzel F (eds) Cancer Therapy by Hyperthermia and Radiation, Urban & Schwarzenberg, Baltimore, MD, pp 115–121

    Google Scholar 

  80. Turner PF (1984) Regional hyperthermia with an annular phase array. IEEE Trans Biomed Eng BME-31:106–111

    Google Scholar 

  81. Gonzalez-Gonzalez D, van Dijk JDP, Oldenburger F (1992) Results of combined treatment with radiation and hyperthermia in 111 patients with large of deep-seated tumors. In: Germeg EW (ed) Hyperthermia oncology, Vol. 1, Vol. 2. Tucson, AZ, p 415

    Google Scholar 

  82. Myerson RJ, Leybovich L, Emami B et al (1991) Phantom studies and preliminary clinical experience with the BSD2000. Int J Hyperthermia 7(6):937–951

    Article  CAS  PubMed  Google Scholar 

  83. Wust P, Fahling H, Wlodarczyk W (2001) Antenna arrays in the sigma-eye applicator: Interactions and transforming networks. Med. Phys 28, 1793–1805

    Article  CAS  PubMed  Google Scholar 

  84. Wust P, Felix R, Deuflhard P (1999) Kunstliches Fieber gegen Krebs. Spektrum der Wissenschaft Dezember 78–84

    Google Scholar 

  85. Issels R (1999) Hyperthermia combined with chemotherapy – biological rationale, clinical application, and treatment results. Onkologie 22(5):374–381

    Article  Google Scholar 

  86. Issels RD, Adbel-Rahman S, Wendtner C-M et al (2001) Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study. Eur J Cancer 37:1599–1608

    Article  CAS  PubMed  Google Scholar 

  87. Head JF, Wang F, Lipari CA et al (2000) The important role of Infrared Imaging in Breast cancer. IEEE Engineering in Medicine and Biology Magazine 19(3):52–57

    Article  CAS  PubMed  Google Scholar 

  88. Weiss TF (1996) Cellular Biophysics. Transport, Vol. 1. MIT Press, Cambridge

    Google Scholar 

  89. Matay G, Zombory L (2000) Physiological effects of radiofrequency radiation and their application for medical biology. Muegyetemi Kiado, Budapest, p 80

    Google Scholar 

  90. Gautherie M (1982) Temperature and blood-flow patterns in breast cancer during natural evolution and following radiotherapy. Biomedical Thermology, Alan R. Liss, New York, NY, pp 21–24

    Google Scholar 

  91. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465

    PubMed  Google Scholar 

  92. Dudar TE, Jain RK (1984) Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res 44(2):605–612

    CAS  PubMed  Google Scholar 

  93. Song CW, Lokshina A, Rhee JG et al (1984) Implication of blood-flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 31(1):9–16

    Article  CAS  PubMed  Google Scholar 

  94. Song CW, Choi IB, Nah BS et al (1995) Microvasculature and Perfusion in Normal Tissues and Tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiomet Thermochemother 1:139–156

    Google Scholar 

  95. Song CW, Park H, Griffin RJ (2001) Theoretical and experimental basis of hyperthermia. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Thermotherapy for neoplasia, inflammation, and pain, Springer, Tokyo, pp 394–407

    Google Scholar 

  96. Takana Y (2001) Thermal responses of microcirculation and modification of tumor blood flow in treating the tumors. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Theoretical and experimental basis of Hyperthermia. Thermotherapy for neoplasia, inflammation, and pain. Springer, Tokyo, pp 408–419

    Google Scholar 

  97. Guy AW, Chou CK (1983) Physical aspects of localized heating by radio-waves and microwaves. In: Storm, K.F. (ed.) Hyperthermia in cancer therapy, GK Hall Medical Publishers, Boston, MA

    Google Scholar 

  98. Vaupel P (1990) Pathophysiological mechanism of hyperthermia in cancer therapy. In: Gautherie M (ed) Methods of hyperthermia control, clinical thermology, Springer, Berlin, pp 73–134

    Google Scholar 

  99. Gottstein U (1969) Störungen des Hirnkreislaufes und zerebralen Stoffwechsels durch Hypoglykämie. In: Quandt J (ed) Die zerebralen Durchblutungsstörungen des Erwachsenenalters, Volk und Gesundheit, Berlin, pp 857–867

    Google Scholar 

  100. Song CW, Choi IB, Nah BS et al (1996) Microvasculature and perfusion in Normal tissues and tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermo-radiotherapy and thermo-chemotherapy, vol. 1, pp. 139–156. Biology, physiology and physics. Springer, Berlin

    Google Scholar 

  101. Ardenne M von, Reitnauer PG (1980) Vergleichende photoelektronische Registrierung des Einstromes von Evanslbau in das Blutgefäßsystem von Normalgewebe und von Tumoren mit selektiv ausgelöster Hämostase. Arch Geschwulstforsch. 50:443–462

    Google Scholar 

  102. Vaupel PW, Kelleher DK (1996) Metabolic status and reaction to heat of normal and tumor tissue. In: Seegenschmiedt, M-H-, Fessenden, P. Vernon, C.C. (eds) Thermo-radiotherapy and Thermo-chemotherapy. Biology, physiology and physics, Vol. 1. Springer, Berlin, pp 157–176

    Google Scholar 

  103. Dewey WC, Hopwood LE, Sapareto SA et al (1977) Cellular response to combination of hyperthermia and radiation. Radiology 123(2):463–474

    CAS  PubMed  Google Scholar 

  104. Lindholm C-E (1992) Hyperthermia and radiotherapy. Ph.D. Thesis, Lund University, Malmo, Sweden

    Google Scholar 

  105. Hafstrom L, Rudenstam CM, Blomquist E et al (1991) Regional hyperthermic perfusion with melphalan after surgery for recurrent malignant melanoma of the extremities. J Clin Oncol 9:2091–2094

    CAS  PubMed  Google Scholar 

  106. Pence DM, Song CW (1986) Effect of heat on blood-flow. In: Anghileri LJ, Robert J (eds) Hyperthermia in cancer treatment, Vol. II. CRC Press, Boca Raton, FL, pp 1–17

    Google Scholar 

  107. Reinhold HS (1987) Effects of hyperthermia on tumor microcirculation. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia, No. 1270, NATO ASI Series, Series E: Applied Sciences, Martinus Nijhoff Publishers, Dordrecht, pp 458–469

    Google Scholar 

  108. Doi O, Kodama K, Higashiyama M et al (1193) Postoperative chemothermotherapy for locally advanced lung cancer with carcinomatous pleuritis. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs, Taylor & Francis, London; Washington, Chapter 31, pp.338–352

    Google Scholar 

  109. Ardenne M von, Reitnauer PG (1977) Krebs-Mehrschritt-Therapie und Mikrozirkulation. Krebsgeschehen 9:134–149

    Google Scholar 

  110. Streffer C (1990) Biological basis of thermotherapy (with special reference to Oncology). In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin, pp 1–72

    Google Scholar 

  111. Prescott DM (1996) Manipulation of physiological parameters during hyperthermia. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermo-radiotherapy and Thermo-chemotherapy, Vol. 1. Biology, physiology and physics, Springer, Berlin, pp 177–189

    Google Scholar 

  112. Baronzio GF, Gramaglia A, Baronzio A et al (2006) Influence of tumor microenvironment on thermoresponse: biologic and clinical implications. In: Baronzio GF, Hager ED (eds) Hyperthermia in cancer treatment: a primer, Landes Bioscience, Springer, New York, NY, pp 62–86

    Google Scholar 

  113. Kelleher DK, Vaupel P (2006) Vascular effects of localized hyperthermia. In: Baronzio GF, Hager ED (eds) Hyperthermia in Cancer treatment: a primer, Landes Bioscience, Springer, New York, NY, pp 94–104

    Google Scholar 

  114. Ardenne M von (1975) Gesetzmäßigkeiten der Substratversorgung, der Zellkinetik und der Therapiemechanismen im Interkapillarraum der Krebsgewebe. Z Naturforsch 30c:91–106

    Google Scholar 

  115. Overgaard J, Nielsen OS, Lindegaard JC (1987) Biological basis for rational design of clinical treatment with combined hyperthermia and radiation. In: Field, S.B., Franconi, C., (eds) Physics and Technology of Hyperthermia, No. 127. NATO ASI Series, E: Applied Sciences, Martinus Nijhoff Publ. Dordrecht, Boston, pp 54–79

    Google Scholar 

  116. Ardenne M von (1986) The present developmental state of cancer multistep therapy (CMT): selective occlusion of cancer tissue capillaries by combining hyperglycemia with two-stage regional or local hyperthermia using the CMT Selectrotherm technique. In: Anghileri LJ, Robert J (eds) Hyperthermia in Cancer Treatment, Vol. III., CRC Press Inc., Boca Raton, FL, pp 1–24

    Google Scholar 

  117. Ardenne M von (1990) Oxygen Multistep Therapy, Physiological and Technical Foundations. Georg Thieme Verlag, Thieme Medical Publishers, Stuttgart, NY

    Google Scholar 

  118. Ardenne M von (1997) Systemische Krebs-Mehrschritt-Therapie, Hyperthermie und Hypergykamie als Therapiebasis, Grundlagen, Konzeption, Technik, Klinik. HippoctaresVerlag, Stuttgart

    Google Scholar 

  119. McGuire BJ, Secomb TW (2003) Estimation of capillary density in human skeletal muscle based on maximal oxygen consumption rates. Am J Physiol Heart Circ Physiol 285:H2382–H2391

    CAS  PubMed  Google Scholar 

  120. Heilbrunn LV (1923) The colloid chemistry of protoplasm. Am J Physiol 64:481–498

    CAS  Google Scholar 

  121. Yatvin MB, Dennis WH (1978) Membrane lipid composition and sensitivity to killing by hyperthermia, Procaine and Radiation. In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer Therapy by Hyperthermia and Radiation, Urban & Schwarzenberg, Baltimore, Munich, pp 157–159

    Google Scholar 

  122. Bowler K, Duncan CJ, Gladwell RT et al (1973) Cellular heat injury. Comp Biochem Physiol 45A:441–450

    Article  Google Scholar 

  123. Belehradek J (1957) Physiological aspects of heat and cold. Annu Rev Physiol 19:59–82

    Article  CAS  PubMed  Google Scholar 

  124. Wallach DFH (1978) Action of Hyperthermia and ionizing radiation on plasma membranes In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer therapy by hyperthermia and radiation. Urban & Schwarzenberg, Baltimore, MD, pp 19–28

    Google Scholar 

  125. Nishida T, Akagi K, Tanaka Y (1997) Correlation between cell killing effect and cell-membrane potential after heat treatment: analysis using fluorescent dye and flow cytometry. Int J Hyperthermia 13(2):227–234

    Article  CAS  PubMed  Google Scholar 

  126. Weiss TF (1996) Cellular Biophysics. Electrical properties, Vol. 2. MIT Press, Cambridge

    Google Scholar 

  127. Ricardo R, Gonzalez-Mendez R, Hahn GM (1989) Effects of hyperthermia on the intercellular pH and membrane potential of Chinese hamster ovary cells. Int J Hyperthermia 5:69–84

    Article  Google Scholar 

  128. Mikkelsen RB, Verma SP, Wallach DFH (1978) Hyperthermia and the membrane potential of erythrocyte membranes as studied by Raman Spectroscopy. In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer Therapy by Hyperthermia and Radiation. Urban & Schwarzenberg, Baltimore, MD, pp 160–162

    Google Scholar 

  129. Hahn GM (1990) The heat-shock response: effects before, during and after gene activation. In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin, pp 135–159

    Google Scholar 

  130. Hodgkin AL, Katz B (1949) The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol 108:37–77

    CAS  PubMed  Google Scholar 

  131. Kabakov AE, Gabai VL (1997) Heat shock proteins and cytoprotection: ATP-deprived mammalian cells. (Series: Molecular Biology Intelligence Unit). Springer, Heidelberg

    Google Scholar 

  132. Keszler G, Csapo Z, Spasokoutskaja T et al (2000) Hyperthermy increase the phosporylation of deoxycytidine in the membrane phospholipid precursors and decrease its incorporation into DNA. Adv Exper Med Biol 486:333–337

    Google Scholar 

  133. Dikomey E, Franzke J (1992) Effect of heat on induction and repair of DNA strand breaks in X-irradiated CHO cells. Int J Radiat Biol 61(2):221–233

    Article  CAS  PubMed  Google Scholar 

  134. Hayashi S, Kano E, Hatashita M et al (2001) Fundamental aspects of hyperthermia on cellular and molecular levels. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Springer, Tokyo, pp 335–345

    Google Scholar 

  135. Okumura Y, Ihara M, Shimasaki T et al (2001) Heat inactivation of DNA-dependent protein kinase: possible mechanism of hyperthermic radio-sensitization. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo, pp 420–423

    Google Scholar 

  136. Shen RN, Lu L, Young P et al (1994) Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lecitin-dependent cytotoxicity of human umbilical cord blood and adult blood cells. Int J Radiat Oncol Biol Phys 29:821–826

    PubMed  Google Scholar 

  137. Srivastava PK, DeLeo AB, Old LJ (1986) Tumor Rejection Antigens of Chemically Induced Tumors of Inbred Mice. Proc Natl Acad Sci USA 38(10):3407–3411

    Article  Google Scholar 

  138. Csermely P, Schnaider T, Soti C et al (1998) The 90 kDa Molecular Chaperone Family: Structure, Function and Clinical Applications. A comprehensive review. Pharmacol Ther 79(2):129–168

    Article  CAS  PubMed  Google Scholar 

  139. Pothmann R (1991) TENS Transkutane elektrische Nervenstimulation in der Schmerztherapie. Hippokrates Verlag GmbH, Stuttgart

    Google Scholar 

  140. Gonzalez-Gonzalez, D (1996) Thermo-radiotherapy for tumors of the lower gastro-intestinal tract. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermo-radiotherapy and thermo-chemotherapy. Biology, physiology and physics, Vol. 1. Springer, Heidelberg, pp 105–119

    Google Scholar 

  141. Latchman DS (1999) Stress proteins. Springer, Berlin

    Google Scholar 

  142. Soti C, Csermely P (1998) Molecular chaperones in the etiology and therapy of cancer. Pathol Oncol Res 4(4):316–321

    Article  CAS  PubMed  Google Scholar 

  143. Ferrarini M, Heltai S, Zocchi MR et al (1992) Unusual expression and localization of heat shock proteins in human tumor cells. Int J Cancer 51(4):613–619

    Article  CAS  PubMed  Google Scholar 

  144. Gress TM, Muller-Pillasch F, Weber C et al (1994) Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 54(2):547–551

    CAS  PubMed  Google Scholar 

  145. Xu M, Wright WD, Higashikubo R et al (1996) Chronic thermotolerance with continued cell proliferation. Int J Hyperthermia 12(5):645–660

    Article  CAS  PubMed  Google Scholar 

  146. Pirity M, Hever-Szabo A, Venetianer A (1996) Overexpression of P-glycoprotein in Heta and/or Drug Resistant Hepatoma Variants. Cytotechnology 19(3):207–214

    Article  CAS  PubMed  Google Scholar 

  147. Santin AD, Hermonat PL, Ravaggi A et al (1998) The Effects of Irradiation on the Expression of a Tumor Rejection Antigen (Heat Shock Protein GP96) in Human Cervical Cancer. Int Radiat Biol 76(6):699–704

    Google Scholar 

  148. Morgan J, Whitaker JE, Oseroff AR (1998) GRP78 Induction by Calcium Ionophore Potentiates Photodynamic Therapy Using the Mitochondrial Targeting Dye Victoria Blue BO. Photocem Photobiol 67(1):155–164

    CAS  Google Scholar 

  149. Punyiczki M, Fesus L (1998) Heat shock and apoptosis: the two defense systems of the organisms may have overlapping molecular elements. Ann NY Acad Sci 951:67–74

    Article  Google Scholar 

  150. Sapozhnikov AM, Ponomarev ED, Tarasenko TN et al (1999) Spontaneous apoptosis and expression of cell-surface heat-shock proteins in cultured EL-4 lymphoma cells. Cell Prolif 32(6):363–378

    Article  CAS  PubMed  Google Scholar 

  151. Huot J, Roy G, Lambert H, Landry J (1992) Co-induction of HSP27 Phosphorylation and Drug Resistance in Chinese Hamster Cells. Int J Oncol 1:31–36

    CAS  Google Scholar 

  152. Goodman R, Blank M (1999) The induction of stress proteins for cytoprotection in clinical applications. First International Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases, ElectroMed’99, Norfolk VA, USA, 12–14 April 1999

    Google Scholar 

  153. Liu FF, Bezjak A, Levin W et al (1996) Assessment of palliation in women with recurrent breast cancer. Int J Hyperthermia 12(6):825–826

    Article  CAS  PubMed  Google Scholar 

  154. Hupp TR, Meek DW, Midgley CA et al (1992) Regulation of the specific DNA binding function of p53. Cell 71(5):875–886

    Article  CAS  PubMed  Google Scholar 

  155. Chen CF, Chen Y, Dai K et al (1996) A New Member of the HSP90 Family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol Cell Biol 16(9):4691–4699

    CAS  PubMed  Google Scholar 

  156. de Pomarai D, Daniels C, David H et al (2000) Non-thermal heat-shock response to microwaves. Nature 405(6785):417–418

    Article  Google Scholar 

  157. Bukau B, Horwich AL (1998) The HSP70 and HSP60 chaperone machines. Cell 92(3):351–366

    Article  CAS  PubMed  Google Scholar 

  158. Watanabe M, Suzuki K, Kodama S et al (1995) Normal human cells at confluence get heat resistance by efficient accumulation of hsp72 in nucleus. Carcinogenesis 16(10):2373–2380

    Article  CAS  PubMed  Google Scholar 

  159. Rosner GL, Clegg ST, Prescott DM (1996) Estimation of cell survival in tumors heated to nonuniform temperature distributions. Int J Hyperthermia 12(82):223–239

    Article  Google Scholar 

  160. Kraybill W, Olenki T (2002) A phase I study of fever-range whole body hyperthermia (FR-WBH) in patients with advanced solid tumors: correlation with mouse models. Int J Hyperthermia 18(3):253–266; Burd R, Dziedzic ST (1998) Tumor Cell Apoptosis, Lymphocyte Recruitment and Tumor Vascular Changes Are Induced by Low Temperature, Long Duration (Fever-Like) Whole Body Hyperthermia. J of Cell physiol 177:137–147

    Google Scholar 

  161. Ostberg JR, Repasky EA (2000) Use of mild, whole body hyperthermia in cancer therapy. Immunol Invest 29(2):139–142

    Article  CAS  PubMed  Google Scholar 

  162. Appenheimer MM, Qing C, Gipard RA et al (2005) Impact of fever-range thermal stress on lymphocyte-endothelial adhesion and lymphocyte trafficking. Immunol Invest 34(3):295–323

    Article  CAS  PubMed  Google Scholar 

  163. Burd R, Dziedzic TS, Xu Y et al (1998) Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (Fever-Like) whole body hyperthermia. J Cell Physiol 177(1):137–147

    Article  CAS  PubMed  Google Scholar 

  164. Pilling MJ, Seakins PW (1995) Reaction kinetics. Oxford Science, Oxford University Press, Oxford

    Google Scholar 

  165. Hobbie RK (2001) Intermediate physics for medicine and biology. Biological Physics Series, AIP Press, Woodbury, NY; Springer, Berlin

    Google Scholar 

  166. Law MP (1978) The relationship between heating time and temperature for hyperthermia alone or combined with radiation. In: Streffer C, vanBeuningen D, Dietzel F et al (eds) Cancer Therapy by hyperthermia and radiation, Urban & Schwarzenberg, Baltimore, MD, pp 222–224

    Google Scholar 

  167. Oleson JR (1995) Review Eugene Robertson Special Lecture, Hyperthermia from the clinic to the laboratory: a hypothesis. Int J Hyperthermia 11(3):315–322

    Article  CAS  PubMed  Google Scholar 

  168. Overgaard J (1989) The current and potential role of hyperthermia in radiotherapy. Int J Rad Oncol Biol Phys 16(3):535–549

    Article  CAS  Google Scholar 

  169. van der Zee J, Truemiet-Donker AD, The SK et al (1988) Low-dose reirradiation in combination with hyperthermia: a palliative treatment for patients with breast cancer recurring in previously irradiated areas. Int J Rad Oncol Biol Phys 15(6):1407–1413

    Article  Google Scholar 

  170. icher JI, Al-Bussam N, Wolfstein RS (2006) Thermotherapy with curative intent – breast, head, and neck, and prostate tumors. Deutsche Zeitschrift fur Oncologie 38:116–122

    Article  Google Scholar 

  171. Urano M, Kuroda M, Nishimura Y (1999) For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 15(2):79–107

    Article  CAS  PubMed  Google Scholar 

  172. Wiedermann GJ, Feyerabend T, Mentzel M et al (1994) Thermochemotherapie: grunde fur die kombinationsbehandlung mit hyperthermia und chemotherapie. Focus Mul 11:44–50

    Google Scholar 

  173. LeVeen HH, Rajagopalan PR, Vujic I et al (1984) Radiofrequency thermotherapy, local chemotherapy, and arterial occlusion in the treatment of non-resectable cancer. Am Surg 50(2):61–65

    CAS  PubMed  Google Scholar 

  174. Okamura K, Nakashima K, Fukushima Y et al Hyperthermia with low dose chemotherapy for advanced non-small-cell lung cancer. http://www.isshin.or.jp/okamura/awaji2004/awaji1.html

  175. Franchi F, Grassi P, Ferro D et al (2007) Antiangiogenic metronomic chemotherapy and hyperthermia in the palliation of advanced cancer. Eur J Cancer Care 16(3):258–262

    Article  CAS  Google Scholar 

  176. Molls M (1992) Hyperthermia – the actual role in radiation oncology and future prospects. Strahlentherapie und Oncologie 168:183–190

    CAS  Google Scholar 

  177. Wust P, Rau B, Gemmler M et al (1995) Radio-thermotherapy in multimodal surgical treatment concepts. Onkologie 18(2):110–121

    Article  Google Scholar 

  178. Urano M, Douple E. (eds) (1992) Hyperthermia and Oncology: Volume .2. Biology of thermal potentiation of radiotherapy. VSP BV, Utrecht, The Netherlands

    Google Scholar 

  179. Hehr T, Wust P, Bamberg M et al (2003) Current and potential role of thermoradiotherapy for solid tumors. Onkologie 26(3):295–302

    Article  CAS  PubMed  Google Scholar 

  180. Roti JL, Laszlo A (1988) The effects of hyperthermia on cellular macromolecules. In: Urano M, Douple E (eds) Hyperthermia and Oncology Vol 1, Thermal effects on cells and tissues, VSP Utrecht, The Netherlands, pp 13–56

    Google Scholar 

  181. Ohno T, Sakagami T, Shiomi M et al (1993) Hyperthermia therapy for deep-regional cancer: thermochemotherapy, a combination of hyperthermia with chemotherapy. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs, Taylor&Francis, London, pp 303–316

    Google Scholar 

  182. Ohtsubo T, Kano E, Hayashi S et al (2001) Enhancement of cytotoxic effects of chemotherapeutic agents with hyperthermia in vitro. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Thermotherapy for neoplasia, inflammation, and pain. Springer, Tokyo, pp 451–455

    Google Scholar 

  183. Kawasaki S, Asaumi J-I, Shibuya K et al (2001) Recent aspects of elucidating the cellular basis of thermochemotherapy. In: Kosaka M, Sugahara T, Schmidt KL et al (eds) Thermotherapy for neoplasia, inflammation, and pain. Springer, Tokyo, pp 424–432

    Google Scholar 

  184. Szasz A, Vincze Gy, Szasz O et al (2003) An energy analysis of extracellular hyperthermia. Magneto- and electro-biology 22(2):103–115

    Article  Google Scholar 

  185. Lupis CHP (1983) Chemical thermodynamics of materials. Wiley, North Holland

    Google Scholar 

  186. Urano M (1994) Thermochemotherapy: from in vitro and in vivo experiments to potential clinical application. In: Urano M, Douple E (eds) Hyperthermia and oncology, VSP Utrecht, Tokyo, 4:169–204

    Google Scholar 

  187. Wiederman GJ, Siemens HJ, Mentzel M et al (1993) Effects of Temperature on the Therapeutic Efficacy and Pharmacokinetics of Ifosamide. Cancer Res 53(18):4268–4272

    Google Scholar 

  188. Hager D, Dziambor H, Hoehmann D et al (2002) Survival and quality of life of patients with advanced pancreatic cancer. ASCO Annual Meeting, Abstract:2359

    Google Scholar 

  189. Feyerabend T, Wioedemann GJ, Jager B et al (2001) Local hyperthermia, radiation and chemotherapy in recurrent breast cancer is feasible and effective except for inflammatory disease. Int J Radia Oncol Biol Phys 49(5):1317–1325

    Article  CAS  Google Scholar 

  190. Masunaga S, Hiraoka M, Akuta K et al (1990) Non-Randomized Trials of Thermoradiotherapy versus Radiotherapy for Preoperative Treatment of Invasive Urinary Bladder Cancer. J Jpn Soc Ther Radiol Oncol 2:313–320

    Google Scholar 

  191. Rau B, Wust P, Hohenberger P et al (1998) Preoperative Hyperthermia Combined with Radiochemotherapy in Locally Advanced Rectal Cancer – A Phase II Clinical Trial. Ann Surg 227(3):380–389

    Article  CAS  PubMed  Google Scholar 

  192. Kodama K, Doi O, Higashyama M et al (1993) Long-term results of postoperative intrathoracic chemo-thermotherapy for lung cancer with pleural dissemination. Cancer 72(2):426–431

    Article  CAS  PubMed  Google Scholar 

  193. Pearson AS, Izzo F, Fleming RYD et al (1999) Intraoperative radiofrequency ablation of cryoablation for hepatic malignancies. Am J Surg 178(6):592–598

    Article  CAS  PubMed  Google Scholar 

  194. Kouloulias VE, Kouvaris JR, Nikita KS et al (2002) Intraoperative hyperthermia in conjunction with multi-schedule chemotherapy (pre- intra- and post operative), by-pass surgery, and post-operative radiotherapy for the management of unresectable pancreatic adenocarcinoma. Int. J Hyperthermia 18:233–252

    Article  CAS  PubMed  Google Scholar 

  195. Ohtsuru A, Braiden V, Cao Y (2001) Cancer Gene Therapy in Conjunction with Hyperthermia Under the Control of Heat-Inducible Promoter. In: Kosaka M, Sugahara T, Schmidt KL (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer .Tokyo, pp 464–470

    Google Scholar 

  196. Gaber MH, Wu NZ, Hong K et al (1996) Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 36(5):1177–1187

    Article  CAS  PubMed  Google Scholar 

  197. Blackburn LV, Galoforo SS, Corry PM et al (1998) Adenoviral-mediated transfer of heat-inducible double suicide gene into prostate carcinoma cells. Cancer Res 58(7):1358–1362

    CAS  PubMed  Google Scholar 

  198. Huang Q, Hu JK, Zhang L et al (2000) Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res 60(13):3435–3439

    CAS  PubMed  Google Scholar 

  199. Yerushalmi A, Shani A, Fishelovitz Y et al (1986) Local microwave hyperthermia in the treatment of carcinoma of the prostate. Oncology 43(5):299–305

    Article  CAS  PubMed  Google Scholar 

  200. Piantelli M, Tatone D, Castrilli G et al (2001) Quercetin and tamoxifen sensitize human melanoma cells to hyperthermia. Melanoma Res 11:469–476

    Article  CAS  PubMed  Google Scholar 

  201. Oleson JR, Calderwood SK, Coughlin CT, Dewhirst MW, Gerweck LE, Gibbs FA, Kapp DS (1988), Biological and Clinical Aspects of Hyperthermia in Cancer Therapy. Am J Clin Oncol 11:368–380

    Article  CAS  PubMed  Google Scholar 

  202. Henderson BW, Waldow SM, Potter WR, Dougherty TJ (1985) Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo. Cancer Res 45:6071–6077

    CAS  PubMed  Google Scholar 

  203. Lohr F Hu K, Huang Q, Zhang L, Samulski T, Dewhirst M, Li C (2000) Enhancement of radiotherapy by hyperthermia-regulated gene therapy. Int J Radiat Oncol Biol Phys 48:1513–1518

    Article  Google Scholar 

  204. Skitzki JJ, Repasky EA, Evans SS (2009) Hyperthermia as an immunotherapy strategy for cancer. Curr Opini Invest Drugs 10:550–558

    CAS  Google Scholar 

  205. Vertrees RA, Jordan JM, Zwischenberger JB (2007) Hyperthermia and chemotherapy: the science. In: Hlem CW, Edwards RP (eds) current clinical oncology, intraperitoneal cancer therapy. Humana Press, Totowa NJ

    Google Scholar 

  206. Takahashi M, Hiraoka M, Nishimura Y et al (1993) Clinical results of thermoradiotherapy for deep-seated tumors. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs. Taylor & Francis, Oxford, pp 227–239

    Google Scholar 

  207. Hiraoka M, Jo S, Akuta K et al (1987) Radiofrequency capacitive hyperthermia for deep-seated tumors – I. Studies on thermometry. Cancer 60:121–127

    Article  CAS  PubMed  Google Scholar 

  208. Myerson RJ, Scott CB, Emami B et al (1996) A phase I/II study to evaluate radiation therapy and hyperthermia for deep-seated tumors: a report of RTOG 89-08. Int J Hyperthermia 4:449–459

    Article  Google Scholar 

  209. Tsukiyama I, Kajiura Y, Ogino T et al (1993) Clinical results of thermoradiotherapy for superficial and shallow-seated tumors. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs, Taylor & Francis, London, pp 216–228

    Google Scholar 

  210. Simina P, van der Yee J, Wondergem J et al (1994) Effect of hyperthermia on the central nervous system: review. Int J Hyperthermia 10:1–30

    Article  Google Scholar 

  211. Haveman J, Siminia P, Wondergem J et al (2005) Effects of hyperthermia on the central nervous system: what was learnt from animal studies? Int J Hyperthermia 21:473–487

    Article  CAS  PubMed  Google Scholar 

  212. Seed PK, Stea B (1996) Thermoradiotherapy for Brain Tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy, Vol. 2. Clinical applications. Springer, Berlin

    Google Scholar 

  213. Salcman M, Samaras MJ (1983) Interstitial microwave hyperthermia for brain tumors. Results of a phase-1 clinical trial. J Neurooncol 1(3):225–236

    Article  PubMed  Google Scholar 

  214. Fan M, Ascher PW, Schrottner O et al (1992) Interstitial 1.06 Nd:YAG laser thermotherapy for brain tumors under real-time monitoring of MRI: experimental study and phase I clinical trial. J Clin Laser Med Surg 10(5):355–361

    PubMed  Google Scholar 

  215. Kahn T, Harth T, Bettag M et al (1997) Preliminary experience with the application of gadolinium-DTPA before MR imaging-guided laser-induced interstitial thermotherapy of brain tumors. J Magn Reson Imaging 7(1):226–229

    Article  PubMed  Google Scholar 

  216. Borok TL, Winter A, Laing J et al (1988) Microwave hyperthermia radiosensitized iridium-192 for recurrent brain malignancy. Med Dosim 13(1):29–36

    Article  CAS  PubMed  Google Scholar 

  217. Moran CJ, Marchosky JA, Wippold FJ et al (1995) Conductive interstitial hyperthermia in the treatment of intracranial metastatic disease. J Neurooncol 26(1):53–63

    Article  CAS  PubMed  Google Scholar 

  218. Jordan A, Scholz R, Maier-Hauff K et al (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Materials 225(1–2):118–126

    Article  CAS  Google Scholar 

  219. Stahl H, Wust P, Maier-Hauff K et al (1995) The use of an early postoperative interstitial-hyperthermia combination therapy in malignant gliomas. Strahlenther Onkol 171(9):510–524

    PubMed  Google Scholar 

  220. Hulshof MCCM, Raaymakers BW, Lagendijk JJW et al (2004) A feasibility study of interstitial hyperthermia plus external beam radiotherapy in glioblastoma multiforme using the Multi Electrode Current Source (MECS) system. Int J Hyperthermia 20(5):451–463

    Article  CAS  PubMed  Google Scholar 

  221. Sneed PK, Stauffer PR, McDermott MW et al (1998) Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/– hyperthermia for glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 40(2):287–295

    PubMed  Google Scholar 

  222. Pontiggia P, Duppone Curto F, Rotella G (1995) Hyperthermia in the treatment of brain metastases from lung cancer. Experience on 17 cases. Anticancer Res 15(2):597–601

    CAS  PubMed  Google Scholar 

  223. Tanaka R, Kim CH, Yamada N et al (1987) Radiofrequency hyperthermia for malignant brain tumors: preliminary results of clinical trials. Neurosurgery 21(4):478–483

    PubMed  Google Scholar 

  224. Guthkelch AN, Carter LP, Cassady JR et al (1991) Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. J Neurooncol 10(3):271–284

    Article  PubMed  Google Scholar 

  225. Ley-Valle A (2003) Non invasive intracranial hyperthermia with Electric Capacitive Transference -ECT- Intratumoral and cerebral thermometry results. Neurocirugia (Astur) 14(1):41–45

    CAS  Google Scholar 

  226. Falk RE, Moffat FL, Lawler M et al (1986) Combination therapy for respectable and unresectable adenocarcinoma of the pancreas. Cancer 57(3):685–688

    Article  CAS  PubMed  Google Scholar 

  227. Gonzalez-Cao M, Salgado E, Rodriguez J (2001) Docetaxel (D) with gemcitabine (GEM) in metastatic pancreatic cancer. Proc Am Soc Clin Oncol 20:A2274

    Google Scholar 

  228. Kindler HL (2002) The Pemetrexed/Gemcitabine Combination in Pancreatic Cancer. CANCER Supplement 95(4):928–932

    CAS  Google Scholar 

  229. Yamada S, Takai Y, Nemoto K et al (1992) Intraoperative Radiation Therapy Combined with Hyperthermia against Pancreatic Carcinoma. Tohoku J Exp Med 166(3):395–401

    Article  CAS  PubMed  Google Scholar 

  230. Shibamoto Y, Nishimura U, Abe M (1996) Intraoperative radiotherapy and hyperthermia for unresectable pancreatic cancer. Hepatogastroenterology 43(8):326–332

    CAS  PubMed  Google Scholar 

  231. Kouloulias VE, Nikita KS, Kouvaris JR et al (2002) Intraoperative hyperthermia and chemo-radiotherapy for inoperable pancreatic carcinoma. Eur J Cancer Care 11(2):100–107

    Article  CAS  Google Scholar 

  232. Matsui Y, Nakagawa A, Kamiyama Y et al (2000) Selective thermocoagulation of unresectable pancreatic cancers by using radiofrequency capacitive heating. Pancreas 20:14–20

    Article  CAS  PubMed  Google Scholar 

  233. Hyperthermia with chemotherapy for locally advanced or metastatic pancreas cancer (2007) University of Texas, Health Science Center, Houston, NCT001178763, US National Institute of Health, http://clinicaltrials.gov/ct/show/NCT00178763;jsessionid=3B4AB11CCF3D35F792D6D7CF18AC8EE2?order=5 Cited 02 October 2007

  234. Peters SO, Stoltz AS, Bakshandeh A (2006) Analysis of preclinical and clinical data on the role of hyperthermia with gemcitabine and carboplatin on pancreatic adenocarcinoma. Journal of Clinical Oncology, ASCO Annual Meeting Proceedings Part I. No. 18S, 24:14123

    Google Scholar 

  235. Hiraoka M, Masunaga S, Nishimura Y et al (1992) Regional hyperthermia combined with radiotherapy in the treatment of lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 22(5): 1009–1014

    PubMed  Google Scholar 

  236. Imada H, Nomoto S, Tomimatsu A et al (1999) Local control of nonsmall cell lung cancer by radiotherapy combined with high power hyperthermia using an 8 MHz RF capacitive heating device. Jpn J Hyperthermia Oncol 15(2):19–24

    Google Scholar 

  237. Karasawa K, Muta N, Nakagawa K et al (1994) Thermoradiotherapy in the treatment of locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 30(5):1171–1177

    CAS  PubMed  Google Scholar 

  238. Sakurai H, Hayakawa K, Mitsuhashi N et al (2002) Effect of hyperthermia combined with external radiation therapy in primary non-small cell lung cancer with direct bony invasion. Int J Hyperthermia 18(5):472–483

    Article  CAS  PubMed  Google Scholar 

  239. Sakao S, Takiguchi Y, Nemoto K et al (2002) Thermoradiotherapy for local control of chest wall invasion in patients with advanced non-small cell lung cancer. Int J Clin Oncol 7:343–348

    Article  PubMed  Google Scholar 

  240. Shinn KS, Choi IB, Kim IA et al (1996) Thermoradiotherapy in the Treatment of Locally Advanced Nonsmall Cell Lung Cancer. J Korean Soc Ther Radiol Oncol 14(2):115–122

    Google Scholar 

  241. Higashiyama M, Doi O, Kodama K et al (1994) Intrathoracic chemothermotherapy following panpleuropneumonectomy for pleural dissemination of invasive thymoma. Chest 105(6):1884–1885

    Article  CAS  PubMed  Google Scholar 

  242. Mitsumori M, Zeng ZF, Oliynychenko P (2007) Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: a multi-institutional prospective randomized trial of the International Atomic Energy Agency. Int J Clin Oncol 12:192–198

    Article  PubMed  Google Scholar 

  243. Hettinga JVE, Lemstra W, Meijer C et al (1994) Hyperthermic potentiation of cisplatin toxicity in a human small cell lung carcinoma cell line and a cisplatin resistant subline. Int J Hyperthermia 10:795–805

    Article  CAS  PubMed  Google Scholar 

  244. Vertrees RA, Das GC, Popov VL et al (2005) Synergestic interaction of hyperthermia and Gemcitabine in lung cancer. Cancer Biol Ther 4:1144–1155

    Article  CAS  PubMed  Google Scholar 

  245. Yang H, Jiang G, Fu X et al (2005) Radiotherapy and hyperthermia for NSCLC. ASCO Annual Meeting, No. 7289

    Google Scholar 

  246. Yokoyama M, Nitta S (1993) Systemic hyperthermia to patients with advanced pulmonary cancer. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs, Taylor & Francis, London, pp 376–381

    Google Scholar 

  247. Chhajed PN, Tamm M (2003) Radiofrequency heat ablation for lung tumors: potential applications. Med Sci. Monit 9:ED5–7

    Google Scholar 

  248. Okuma T, Matsuoka T, Yamamoto A et al (2007) Factors contributing to cavitation after CT-guided percutaneous radiofrequency ablation for lung tumors. J Vasc Interv Radiol 18(3):399–404

    Article  PubMed  Google Scholar 

  249. Weigel C, Kirsch M, Mensel B et al (2004) Precutaneous laser-induced thermotherapy of lung metastases: experience gained during 4 years. Radiologe 44:700–707

    CAS  PubMed  Google Scholar 

  250. Matsuzaki Y, Edagawa M, Shimizu T et al (2004) Intrapleural hyperthermic perfusion with chemotherapy increases apoptosis in malignant pleuritis. Ann Thorac Surg 78:1769–1772

    Article  PubMed  Google Scholar 

  251. Sekins KM, Leeper DB, Hoffman JK et al (2004) Feasibility of lung cancer hyperthermia using breathable perfluorochemical PFC liquids, Part I: Convective hyperthermia. Int. J. Hyperthermia 20:252–277, Part II: Ultrasound hyperthermia. Int J Hyperthermia 20:278–299

    CAS  Google Scholar 

  252. Kondo M, Oyamada H, Yoshikawa T (2000) Therapeutic effects of chemoembolization using degradable starch microspheres and regional hyperthermia on unresectable hepatocellular carcinoma. In Selected papers on hyperthermia using Thermotron-RF8, April 2000

    Google Scholar 

  253. Kakehi M (1990) Multiinstitutional clinical studies on hyperthermia combined with radiotherapy or chemotherapy in advanced cancer of deep-seated organs. Int J Hyperthermia 6:719–740

    Article  CAS  PubMed  Google Scholar 

  254. Yoshikawa T, Oyamada H, Ichikawa H, Naito Y, Ueda S, Tainaka K, Itani K, Seto O, Sugino S, Kondo M. (1989) Antitumor effect and indication of chemoembolization using degradable starch microspheres and regional hyperthermia. J Jpn Soc Cancer Ther 24:786–792

    CAS  Google Scholar 

  255. Nagata Y, Hiraoka M, Nishimura Y et al (1997) Clinical results of radiofrequency hyperthermia for malignant liver tumors. Int J Radiat Oncol Biol Phys 38:359–365

    Article  CAS  PubMed  Google Scholar 

  256. Alexander HR, Libutti SK, Pingpank JF et al (2003) Hyperthermic isolated hepatic perfusion using melphalan for patients with ocular melanoma metastatic to liver. Clin Cancer Res 9:6343–6349

    CAS  PubMed  Google Scholar 

  257. Nagata Y, Hiraoka M, Akuta K et al (1990) Radiofrequency thermotherapy for malignant liver tumors. Cancer 65(8):1730–1736

    Article  CAS  PubMed  Google Scholar 

  258. Yamamoto K, Tanaka Y. (1997) Radiofrequency capacitive hyperthermia for unresectable hepatic cancers. J Gastroenterol 32:361–366

    Article  CAS  PubMed  Google Scholar 

  259. Seong J, Lee HS, Han KH et al (1994) Combined Treatment of Radiotherapy and Hyperthermia for Unresectable Hepatocellular Carcinoma. Yonsei Med J 35(3):252–259

    CAS  PubMed  Google Scholar 

  260. Pacella CM, Valle D, Bizzarri G et al (2006) Percutaneous laser ablation in patients with isolated unresectable live metastases from colorectal cancer: Results of a phase II study. Acta Oncologica 45:77–83

    Article  PubMed  Google Scholar 

  261. Vogl TJ, Mack MG, Blazer JO et al (2003) Liver metastases: Neoadjuvant Downsizing with transarterial chemoembolization before laser-induced thermotherapy. Radiology 229(2):457–464

    Article  PubMed  Google Scholar 

  262. Goldberg SN, Gazelle GS, Solbiati L, Livraghi T, Tanabe KK, Hahn PF, Mueller PR (1998) AJR 170:1023–1028

    CAS  PubMed  Google Scholar 

  263. Ohguri T, Imada H, Yahara K et al (2004) Effect of 8-MHz radiofrequency-capacitive regional hyperthermia with strong superficial cooling for unresectable or recurrent colorectal cancer. Int J Hyperthermia 20(5):465–475

    Article  CAS  PubMed  Google Scholar 

  264. Nishimura Y, Hiraoka M, Abe M (1993) Thermoradiotherapy of locally advanced colorectal cancer. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis, London, pp 278–289

    Google Scholar 

  265. Nishimura Y, Hiraoka M, Akuta K et al (1992) Hyperthermia combined with radiation therapy for primarily unresectable and recurrent colorectal cancer. Int J Rad Onc Biol 23(4):759–768

    Article  CAS  Google Scholar 

  266. Berdov BA, Menteshashvili GZ (1990) Thermoradiotherapy of patients with locally advanced carcinoma of the rectum. Int J Hyperthermia 6(5):881–890

    Article  PubMed  Google Scholar 

  267. Hildebrandt B, Wust P, Drager J et al (2004) Regional pelvic hyperthermia as an adjunct to chemotherapy (oxaliplatin, folinic acid, 5-fluorouracil) in pre-irradiated patients with locally recurrent rectal cancer: a pilot study. Int J Hyperthermia 20(4):359–369

    Article  CAS  PubMed  Google Scholar 

  268. Rau B, Wust P, Tilly W et al (2000) Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters. Int J Radiat Oncol Biol Phys 48(2): 381–391

    Article  CAS  PubMed  Google Scholar 

  269. Rau B, Wust P, Gellermann J et al (1998) Phase-II-Studie zur praoperativen Radio-Chemo-Thermo-Therapie beim lokal fortgeschrittenen Rektum-Karzinom. Strahlenther Onkol 174(11):556–565

    Article  PubMed  Google Scholar 

  270. Takahashi M, Fujimoto S, Kobyashi K et al (1994) Clinical outcome of intraoperative pelvic hyperthermochemotherapy for patients with Dukes’ C rectal cancer. Int J Hyperthermia 10(6):749–754

    Article  PubMed  Google Scholar 

  271. Kitamura K, Kuwano H, Watanabe M et al (1995) Prospective randomized study of hyperthermia combined with chemoradiotherapy for esophageal carcinoma. J Surg Oncol 60(1):55–58

    Article  CAS  PubMed  Google Scholar 

  272. Kitamura K et al (1996) Thermoradiotherapy combined with chemotherapy for esophageal tumors. In: Seegenschmiedt MH, Fessender P, Vernon CC (eds) Thermo-radiotherapy and thermo-chemotherapy, Vol. 2. Springer, Berlin

    Google Scholar 

  273. Kitamura K. Sugimachi K. (1996) Thermoradiotherapy combined with chemotherapy for esophageal tumors. In: Seegenschmiedt MH. Fessenden P. Vernon CC. (eds) thermoradiotherapy and thermochemotherapy Vol. 2. Clinical applications, pp 85–94

    Google Scholar 

  274. Sakamoto T, Katoh H, Shimizu T, Yamashita I, Takomori S, Tazawa K, Fujimaki M (1997) Chest 112:1487–1493

    Article  CAS  PubMed  Google Scholar 

  275. Albregts M, Hulshof M, Zum Vörde Sive Vörding PJ et al (2004) A feasibility study in oesophageal carcinoma using deep loco-regional hyperthermia combined with concurrent chemotherapy followed by surgery. Int J Hyperthermia 20(6):647–659

    Article  CAS  PubMed  Google Scholar 

  276. Yahara K, Imada H, Nomoto S et al (2004) Thermoradiotherapy for recurrent esophageal carcinoma. Jpn J Hyp Oncol 20(1):1–8

    Google Scholar 

  277. Matsuda H, Tsutsui S, Morita M et al (1992) Hyperthermo-chemo-radiotherapy as a definitive treatment for patients with early esophageal carcinoma. Am J Clin Oncol (CCT) 15(6):509–514

    CAS  Google Scholar 

  278. Hou B-S, Xiong Q-B, Li DJ (1989) Thermo-Chemo-Radiotherapy of Esophageal Cancer – A Preliminary Report of 34 Cases. Cancer 64(9):1777–1782

    Article  CAS  PubMed  Google Scholar 

  279. Onoyama Y et al (1993) Clinical experience in hyperthermic treatment for head and neck tumor. In: Matsuda T (ed) Cancer treatment by hyperthermia, radiation and drugs, chapter 22. Taylor & Francis, London, pp 241–249

    Google Scholar 

  280. Kazumoto T, Kato S, Sakura M et al (2002) A case of locally advanced hypopharyngeal cancer treated with curative resection after thermoradiotherapy. Jpn J Hyp Oncol 18(2):99–107

    Google Scholar 

  281. Datta NR, Bose AK, Kapoor HK et al (1990) Head and neck cancers: result of thermoradiotherapy versus radiotherapy. Int J Hyperthermia 6(3):479–486

    Article  PubMed  Google Scholar 

  282. Valdagni R, Amichetti M, Pani G (1998) Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical trial. Int J Radiat Oncol Biol Phys 15(1):13–24

    Google Scholar 

  283. Valdagni R, Amichetti M (1995) Thermoradiotherapy for head and neck tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy, Vol. 2. Clinical applications. Springer, Berlin, pp 49–67

    Google Scholar 

  284. Amichetti M, Graiff C, Fellin G et al (1993) Cisplatin, hyperthermia, and radiation (trimodal therapy) in patients with locally advanced head and neck tumors: a phase I–II study. Int J Radiat Oncol Biol Phys 26:801–807

    Article  CAS  PubMed  Google Scholar 

  285. Valdagni R, Amichetti M (1993) Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients. Int J Radiat Oncol Biol Phys 28:163–169

    Google Scholar 

  286. Nakabayashi T, Mochiki E, Kamiyama Y et al (2003) Efficacy of Intraperitoneal Chemohyperthermia for Gastric Cancer Patients with Peritoneal Carcinomatosis. Jpn J Hyperthermic Oncol 19(4):195–200

    Google Scholar 

  287. Nagata Y, Hiraoka M, Nishimura Y et al (1995) Clinical experiences in the thermoradiotherapy for advanced gastric cancer. Int J Hyperthermia 11(4):501–510

    Article  CAS  PubMed  Google Scholar 

  288. Shchepotin IB, Evans SR, Chorny V et al (1994) Intensive preoperative radiotherapy with local hyperthermia for the treatment of gastric carcinoma. Surg Oncol 3(1):37–44

    Article  CAS  PubMed  Google Scholar 

  289. Fu QG, Meng FD, Shen XD et al (2002) Efficacy of intraperitoneal thermochemotherapy and immunotherapy in intraperitoneal recurrence after gastrointestinal cancer resection. World J Gastroenterol 8(6):1019–1022

    CAS  PubMed  Google Scholar 

  290. Hamazoe R, Maeta M, Koga S (1993) Efficacy of intraperitoneal hyperthermic chemotherapy in preventing peritoneal recurrence of gastric cancer. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis, New York, NY, pp 328–338

    Google Scholar 

  291. Mizuguchi N, Mukojima T, Itoh M et al (2002) Two long-term survival cases of gastric carcinoma treated with hyperthermo-chemo-radiotherapy. Jpn J Hyperthermic Oncol 18(2):93–98

    Google Scholar 

  292. Bornstein BA, Zouranjian PS, Hansen JL et al (1992) Irradiation alone or combined with hyperthermia in the treatment of recurrent carcinoma of the breast in the chest wall: a nonrandomized comparison. Int J Hyperthermia 2(2):179–187

    Google Scholar 

  293. Sherar M, Liu FF, Levin W et al (1997) Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys 39(2):371–380

    PubMed  Google Scholar 

  294. Vernon CC, Hand JW, Field SB et al (1996) Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. (International Collaborative Hyperthermia Group) Int J Radiat Oncol Biol Phys 35(4):731–744

    PubMed  Google Scholar 

  295. Fuwa N, Morita K (1993) Combined treatment of radiotherapy and local hyperthermia using 8 MHz RF capacitive heating for advanced carcinoma of the breast. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs, Taylor & Francis, London., pp 252–260

    Google Scholar 

  296. Raymond U (2002) Clinical results using 8 MHz radiofrequency capacitive hyperthermia and radiotherapy for recurrent breast carcinoma. Rex Healthcare Cancer Center, Raleigh, N-Carolina

    Google Scholar 

  297. Masunaga S, Hiraoka M, Takahashi M et al (1190) Clinical results of thermoradiotherapy for locally advanced and/or recurrent breast cancer – comparison of results with radiotherapy alone. Int J Hyp 6(3):487–497

    Google Scholar 

  298. Kouloulias VE, Dardoufas CE, Kouvaris JR et al (2002) Liposomal doxoruicin in conjunction with reirradiation and local hyperthermia treatment in recurrent breast cancer: a Phase I/II Trial. Clin Cancer Res 8:374–382

    CAS  PubMed  Google Scholar 

  299. Bornstein BA, Zouranjian PS, Hansen JL et al (1992) Local Hyperthermia, Radiation Therapy, and Chemotherapy in Patients with Local-Regional Recurrence of Breast Carcinoma. Int J Radiat Oncol Biol Phys 25:79–85

    Google Scholar 

  300. Vargas HI, Dooley WC, Gardner RA et al (2004) Focused Microwave Phased Array Thermotherapy for Ablation of Early-Stage Breast Cancer: Results of Thermal Dose Escalation. Ann Surg Oncol 11(2):139–146

    Article  PubMed  Google Scholar 

  301. Pontiggia P, Curto FC, Sabato A et al (1995) Is metastatic breast cancer refractory to usual therapy curable? Biomed Pharmacother 49:79–82

    Article  CAS  PubMed  Google Scholar 

  302. Nishimura Y, Hiraoka M, Jo S et al (1989) Radiofrequency (RF) capacitive hyperthermia combined with radiotherapy in the treatment of abdominal and pelvic deepseated tumors. Radiother Oncol 16(2):139–149

    Article  CAS  PubMed  Google Scholar 

  303. Hiraoka M. et al (1996) Thermoradiotherapy for upper abdominal tumors. In: M.H. Seegenschmiedt et al (eds) Thermoradiotherapy and thermochemotherapy, Vol. 2. Springer, Berlin

    Google Scholar 

  304. Elias D, Sideris L, Pocard M et al (2004) Efficacy of intraperitoneal chemohyperthermia with oxaliplatin in colorectal peritoneal carcinomatosis. Preliminary results in 24 patients. Ann Oncol 15:781–785

    Article  CAS  PubMed  Google Scholar 

  305. Elias D, Raynard B, Farkhondeh F et al (2006) Peritoneal carcinomatosis of colorectal origin – Long-term results of intraperitoneal chemohyperthermia with oxaliplatin following complete cytoreductive surgery. Gastroenterol Clin Biol 30:1200–1204

    Article  CAS  PubMed  Google Scholar 

  306. Elias D, Matsuhisa T, Sideris L et al (2004) Heated intra-operative intraperitoneal oxaliplatin plus irinotecan after complete resection of peritoneal carcinomatosis: pharmacokinetics, tissue distribution and tolerance. Ann Oncol 15:1558–1565

    Article  CAS  PubMed  Google Scholar 

  307. Overgaard J, Gonzalez DG, Hulshof MCCM et al (1996) Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology. Int J Hyperthermia 12:3–20

    Article  CAS  PubMed  Google Scholar 

  308. Seegenschmiedt MH, Sauer R (1993) External thermoradiotherapy in superficial tumors: basic considerations and results. J Jpn Soc Ther Radiol Oncol 5:303–326

    Google Scholar 

  309. Egawa S et al (1989) A randomized clinical trial of hyperthermia and radiation versus radiation alone for superficially located cancers. J Jpn Soc Ther Radiol Oncol 1:135–140

    Google Scholar 

  310. Gibbs FA (1995) Thermoradiotherapy for Genitourinary and Gynecological tumors. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy, Vol. 2. Clinical applications, Springer, Berlin; Telos, New York, NY

    Google Scholar 

  311. Sekiba K, Hasegawa T, Kobashi Y (1993) Hyperthermic treatment for gynaecological malignancies. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis, London, pp 261–270

    Google Scholar 

  312. Rietbroek RC, Schilthuis MS, Bakker PJM et al (1997) Phase II Trial of Weekly Locoregional Hyperthermia and Cisplatin in Patients with a Previously Irradiated Recurrent Carcinoma of the Uterine Cervix. Cancer 79(5):935–943

    Article  CAS  PubMed  Google Scholar 

  313. Jones EL, Samulski TV, Dewhirst, MV et al (2003) A pilot phase II trial of concurrent radiotherapy, chemotherapy, and hyperthermia for locally advanced cervical carcinoma. Cancer 98(2):277–282

    Article  PubMed  Google Scholar 

  314. Westermann AE, Jones EL, Schem BC et al (2005) First results of triple-modality treatment combining radiotherapy, chemotherapy, and hyperthermia for the treatment of patients with stage IIB, III, and IVA cervical carcinoma. Cancer 104:763–770

    Article  CAS  PubMed  Google Scholar 

  315. van der Zee J, Gonzalez DG (2002) The Dutch Deep Hyperthermia Trial: results in cervical cancer. Int J Hyperthermia 18:1–12

    Article  PubMed  Google Scholar 

  316. Prosnitz L, Jones E et al (2002) Counterpoint: Test the value of hyperthermia in patients with carcinoma of the cervix being treated with concurrent chemotherapy and radiation. Int J Hyperthermia 18:13–18

    Article  CAS  PubMed  Google Scholar 

  317. van der Zee J, Koper PCM, Lutgens LCHW et al (2002) Point-counterpoint: What is the optimal trial design to test hyperthermia for carcinoma of the cervix? Point: Addition of hyperthermia or cisplatin to radiotherapy for patients with cervical cancer, two promising combinations – no definite conclusions. Int J Hyperthermia 18(1):19–24

    Article  PubMed  Google Scholar 

  318. Tilly W, Gellermann J, Graf R et al (2005) Regional hyperthermia in conjunction with definitive radiotherapy against recurrent or locally advanced prostate cancer T3pN0M0. Strahlenther Onkol 181(1):35–41

    Article  PubMed  Google Scholar 

  319. Kalapurakal JA, Mittal BB, Sathiaseelan V (2001) Re-irradiation and external hyperthermia in locally advanced, radiation recurrent, hormone refractory prostate cancer: a preliminary report. Br J Radiol 74:745–751

    CAS  PubMed  Google Scholar 

  320. Bdesha AS, Bunce CJ, Kelleher JP et al (1993) Transurethral microwave treatment for benign prostatic hypertrophy: a randomized controlled clinical trial. BMJ 306:1293–1296

    Article  CAS  PubMed  Google Scholar 

  321. Petrovich Z, Pike MC, Boyd SD et al (1996) Transurethral hyperthermia for benign prostatic hyperplasia: long term results. Int J Hyperthermia 12:595–606

    Article  CAS  PubMed  Google Scholar 

  322. Rosette DeLa, Floratos DL, Severens JL et al (2003) Transurethral resection vs microwave thermotherapy of the prostate: a cost-consequences analysis. BJU International 92:713

    Article  Google Scholar 

  323. Hisazumi H, Nakajima K, Koshida K et al (1993) 8 MHz RF-Hyperthermia for deep-seated urological malignancies. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs, Taylor & Francis, London, pp 270–277

    Google Scholar 

  324. Masunaga SI, Hiraoka M, Akuta K et al (1990) Non-randomized trials of thermoradiotherapy versus radiotherapy for preoperative treatment of invasive urinary bladder cancer. J Jpn Soc Ther Radiol Oncol 2:313–320

    Google Scholar 

  325. Moskovitz B, Meyer G, Kravtzov A et al (2005) Thermo-chemotherapy for intermediate or high-risk recurrent superficial bladder cancer patients. Ann Oncol 16:585–589

    Article  CAS  PubMed  Google Scholar 

  326. Hiraoka M, Nishimura Y, Nagata Y et al (1995) Clinical results of thermoradiotherapy for soft tissue tumors. Int J Hyperthermia 11:365–377

    Article  CAS  PubMed  Google Scholar 

  327. Egawa S, Tsukiyama I, Kajiura Y et al (1993) Clinical results of hyperthermia combined with radiation or chemotherapy for soft-tissue sarcomas. In: Matsuda T (ed) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis, New York, NY, pp 290–299

    Google Scholar 

  328. Rossi CR, Foletto M, Filippo FD et al (1999) Soft Tissue Limb Sarcomas. Cancer 86:1742–1749

    Article  CAS  PubMed  Google Scholar 

  329. Otsukaka T et al (2001) Clinical results of thermoradiotherapy for soft tissue tumors. Int J Clin Oncol 6:253–258

    Article  Google Scholar 

  330. Prosnitz LR, Maguire P, Anderson JM et al (1999) The Treatment of high-grade soft tissue sarcomas with preoperative thermoradiotherapy. Int J Radiat Oncol Biol Phys 45:941–949

    Article  CAS  PubMed  Google Scholar 

  331. Maguire PD, Samulski TV, Prosnitz LR et al (2001) A phase II trial testing the thermal dose parameter CEM43°T90 as a predictor of response in soft tissue sarcomas treated with pre-operative thermoradiotherapy. Int J Hyperthermia 17:283–290

    Article  CAS  PubMed  Google Scholar 

  332. Rossi CR, Deraco M, Simone MD et al (2004) Hyperthermic intraperitoneal intraoperative chemotherapy after cytoreductive surgery for the treatment of abdominal sarcomatosis. Cancer 100(9):1943–1950

    Article  PubMed  Google Scholar 

  333. Wioedemann GJ, Robins HI, Gutsche S et al (1996) Ifosfamide, carboplatin and etoposide (ICE) combined with 41.8 degrees C whole body hyperthermia in patients with refractory sarcoma. Eur J Cancer 32A:888–892

    Article  Google Scholar 

  334. Issels RD, Prenninger SW, Nagele A et al (1990) Ifosfamide plus etoposide combined with regional hyperthermia in patients with locally advanced sarcomas: a phase II study. J Clin Oncol. 8:1818–1829

    PubMed  Google Scholar 

  335. Leopold K, Issels RD (1995) Thermoradiotherapy and thermochemotherapy for sarcomas. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and Thermochemotherapy, Vol. 2. Clinical Applications, Springer, Berlin; Telos, New York, NY, pp 147–158

    Google Scholar 

  336. Issels RD, Bosse D, Strack M et al (1993) Weichteiltumoren: Indikation und Ergebnisse der Hyperthermie. Chirurg 64:461–467

    CAS  PubMed  Google Scholar 

  337. Issels RD, Lindner LH, Wust P et al (2008) A phase III randomized prospective trial of neoadjuvant chemotherapy with or without regional hyperthermia (RHT). EORTC 62961, ESHO RHT95 Intergroup Trial; Eur Jf Cancer

    Google Scholar 

  338. Hornbach NB (1987) Is the community radiation oncologist ready for clinical hyperthermia? RadioGraphics 7:139–141

    Google Scholar 

  339. Smythe WR, Mansfield PF (2003) Hyperthermia: has its time come? Ann Surg Oncol 10:210–212

    Article  CAS  PubMed  Google Scholar 

  340. Szasz A (2006) What is against the acceptance of hyperthermia? Die Naturheilkunde Forum-Medizine 83:3–7

    Google Scholar 

  341. Oleson J.R (1991) Progress in hyperthermia? Int J Radiat Oncol Biol Phys 20:1147–1164

    Article  Google Scholar 

  342. Oleson, J.R (1993) Prostate cancer: hot, but hot enough? Int J Radiat Oncol Biol Phys 26:369–370

    Article  CAS  PubMed  Google Scholar 

  343. Storm FK (1993) What happened to hyperthermia and what is its current status in cancer treatment? J Surg Oncol 53:141–143

    Article  CAS  PubMed  Google Scholar 

  344. Brizel DM (1998) Where there’s smoke, is there fire? Int J Hyperthermia 14:593–594

    Article  Google Scholar 

  345. Sneed PK, Dewhirst MW, Samulski T et al (1998) Should interstitial thermometry be used for deep hyperthermia? Int J Radiat Oncol Biol Phys 40:1205–1212

    Article  Google Scholar 

  346. Oleson JR (1989) If we can’t define the quality, can we assure it? Int J Radiat Oncol Biol Phys 16:879

    Article  CAS  PubMed  Google Scholar 

  347. Vasanthan A, Mitsumori M, Part JH et al (2005) Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multiinstitutional prospective randomized trial of the international atomic energy agency. Int J Rad Oncol Biol Phys 61, 145–153

    Article  Google Scholar 

  348. Fatehi D, van der Zee J, van der Wal E et al (2006) Temperature data analysis for 22 patients with advanced cervical carcinoma treated in Rotterdam using radiotherapy, hyperthermia and chemotherapy: a reference point is needed. Int J Hyperthermia 22:353–363

    Article  CAS  PubMed  Google Scholar 

  349. Walker A, McCallum HM, Wheldon TE et al (1978) Promotion of metastasis of C3H mouse mammary carcinoma by local hyperthermia. Br J Cancer 38(4):561–563

    Article  CAS  PubMed  Google Scholar 

  350. Dickson JA, Ellis HA (1976) The influence of tumor volume and the degree of heating on the response of the solid Yoshida sarcoma to hyperthermia. Cancer Res 36(3):1188–1195

    CAS  PubMed  Google Scholar 

  351. Hahn EW, Alfiery AA, Kim JH (1979) The significance of local tumor hyperthermia/radiation on the production of disseminated disease. Int J Radiat Oncol Biol Phys 5:819–823

    CAS  PubMed  Google Scholar 

  352. Ando K, Urano M, Kenton L et al (1987) Effect of thermo-chemotherapy on the development of spontaneous lung metastases. Int J Hyperthermia 3(5):453–458

    Article  CAS  PubMed  Google Scholar 

  353. McChesney Gillette S, Dewhirst MW et al (1992) Response of canine soft tissue sarcomas to radiation or radiation plus hyperthermia: randomized phase II study. Int J Hyperthermia 8(3):309–320

    Article  Google Scholar 

  354. Lord PF, Kapp DS, Morrow D (1981) Increased skeletal metastases of spontaneous canine osteosarcoma after fractionated systemic hyperthermia and local x-irradiation. Cancer Res 41:4331–4334

    CAS  PubMed  Google Scholar 

  355. Sminia P, Jansen W, Haveman J et al (1990) Incidence of tumors in the cervical region of the rat after treatment with radiation and hyperthermia. Int. J Radiat Biol 57(2):425–436

    Article  CAS  PubMed  Google Scholar 

  356. Hei TK, Hall EJ, Kushner S et al (1986) Hyperthermia chemotherapeutic agents and oncogenic transformation. Int J Hyperthermia 2(3):311–320

    Article  CAS  PubMed  Google Scholar 

  357. Komatsu K, Miller RC, Hall EJ (1988) The oncogenetic potential of a combination of hyperthermia and chemotherapy. Br J Cancer 57:59–63

    Article  CAS  PubMed  Google Scholar 

  358. Miller RC, Roizin-Towle L, Komatsu K (1989) Interaction of heat with X-rays and cis-platinum; cell lethality and oncogenetic transformation. Int J Hyperthermia 5:697–705

    Article  CAS  PubMed  Google Scholar 

  359. Valdagni R, Knapp DS, Valdagni C (1986) N3 (TNM-UICC) metastatic neck nodes managed by combined radiation-therapy and hyperthermia: clinical results and analysis of treatment parameters. Int J Hyperthermia 2(2):189–200

    Article  CAS  PubMed  Google Scholar 

  360. Howard GCW, Sathiaseelan V, Freedman L et al (1987) Hyperthermia and radiation in the treatment of superficial malignancies: an analysis of treatment parameters response and toxicity. Int J Hyperthermia 3(1):1–8

    Article  CAS  PubMed  Google Scholar 

  361. Ben-Yosef R, Kapp DS (1992) Persistent and/or late complications of combined radiation therapy and hyperthermia. Int J Hyperthermia 8(6):733–745

    Article  CAS  PubMed  Google Scholar 

  362. Osinsky S, Ganul V, Protsyk V et al (2004) Local and regional hyperthermia in combined treatment of malignant tumors: 20 years experience in Ukraine. The Kadota Fund International Forum, Awaji, Japan, 15–18 June 2004

    Google Scholar 

  363. Seegenschmiedt MH, Klautke G, Seidel R et al (1995) Clinical Practice of interstitial thermoradiotherapy. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy Vol. 2. Springer, Heidelberg, pp 207–262

    Google Scholar 

  364. Waterman FM (1995) Invasive thermometry techniques. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and thermochemotherapy Vol. 1. Springer, Heidelberg, pp 331–360

    Google Scholar 

  365. Field SB (1987) Biological Aspects of Hyperthermia, Physics and Technology of Hyperthermia. In: Field SB, Franconi C (eds) NATO ASI Series, E. Applied Sciences, No.127. Martinus Nijhoff Publ. Dordrecht, pp 19–53

    Google Scholar 

  366. Jones E, Dewhirst M, Vujaskovic Z (2003) Hyperthermia improves the complete response rate for superficial tumors treated with radiation: results of a prospective randomized trial testing the thermal dose parameter CEM 43°T90. Int J Rad Oncol Biol Phys 57:S253–S254

    Google Scholar 

  367. Holt JAG (1977) Increase in X-ray sensitivity of cancer after exposure to 434 MHz electromagnetic radiation. J Bioeng 1:479–485

    Google Scholar 

  368. Blank M (1999) Coupling of AC Electric Fields to Cellular Processes. In: Abstracts of First International Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases, ElectroMed’99, Norfolk VA, USA, 12–14 April 1999

    Google Scholar 

  369. Young RA (1990) Stress proteins and immunology. Ann Rev Immunol 8:401–420

    Article  CAS  Google Scholar 

  370. Fajardo LF, Prionas SD, Kowalsky J et al (1988) Hyperthermia Inhibits angiogenesis. Radiation Research 114(2):297–306

    Article  CAS  PubMed  Google Scholar 

  371. Hetts SW (1998) To die or not to die. JAMA 279:300–307

    Article  CAS  PubMed  Google Scholar 

  372. Kopper L, Fesus L (eds) (2002) Apoptosis. Medicina, Budapest

    Google Scholar 

  373. Walser EM (2005) Percutaneous laser ablation in the treatment of hepatocellular carcinoma with a tumor size of 4 cm or smaller. J Vasc Interv Radiol 16(11):1427–1429

    PubMed  Google Scholar 

  374. Mulcahy RT, Gould MN, Hidvegi E et al (1981) Hyperthermia and surface morphology of P388 ascites tumor cells: Effects on membrane modifications. Int J Radiat Biol 39(1):95–106

    Article  CAS  Google Scholar 

  375. Lepock JR, Cheng KW, Al-Qysi H et al (1983) Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermia killing. Can J Biochem Cell Biol 61(6):421–427

    Article  CAS  PubMed  Google Scholar 

  376. Richier S, Sabourault C, Courtiade J et al (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia visidis. FEBS J 273(18):4186–4198

    Article  CAS  PubMed  Google Scholar 

  377. Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 18(6):576–585

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Szasz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Szasz, A., Szasz, N., Szasz, O. (2010). Hyperthermia Results and Challenges. In: Oncothermia: Principles and Practices. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9498-8_2

Download citation

Publish with us

Policies and ethics