Skip to main content

“Overview on Nanotechnology and Angiogenesis in Major Diseases Processes”

  • Chapter
  • First Online:
Therapeutic Angiogenesis for Vascular Diseases

Abstract

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, plays an important role in physiological and pathological conditions. For this reason, the study of different anti-angiogenic drugs and its improvement is spread around the world. Nanotechnology gives novel opportunities to the development of new drugs. Based on nanosized systems, nanotechnology applied in medicine can improve the diagnosis and the treatment of the great majority of diseases. Nanomedicine has been applied in diagnosis, imaging and in drug delivery systems. Specifically in angiogenesis, researchers have developed new angiogenesis targeted nanosystems and have demonstrated that they can improve the diagnosis and the treatment of different diseases in areas like oncology, cardiology and ophthalmology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aukunuru JV, Ayalasomayajula SP, et al. (2003) Nanoparticle formulation enhances the delivery and activity of a vascular endothelial growth factor antisense oligonucleotide in human retinal pigment epithelial cells. J Pharm Pharmacol 55(9):1199–1206.

    Article  PubMed  CAS  Google Scholar 

  • Cormode DP, Skajaa T, et al. (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29(7):992–1000.

    Article  PubMed  CAS  Google Scholar 

  • Jani PD, Singh N, et al. (2007) Nanoparticles sustain expression of Flt intraceptors in the cornea and inhibit injury-induced corneal angiogenesis. Invest Ophthalmol Vis Sci 48(5):2030–2036.

    Article  PubMed  Google Scholar 

  • Kim JH, Kim YS, et al. (2008) Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 29(12):1920–1930.

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Egashira K, et al. (2009) Therapeutic neovascularization by nanotechnology-mediated cell-selective delivery of pitavastatin into the vascular endothelium. Arterioscler Thromb Vasc Biol 29(6):796–801.

    Article  PubMed  CAS  Google Scholar 

  • Marano RJ, Toth I, et al. (2005) Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a log-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther 12(21):1544–50.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Bhattacharya R, et al. (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11(9):3530–3534.

    Article  PubMed  CAS  Google Scholar 

  • Mulder WJ, Castermans K, et al. (2009) Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 12(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  • Murphy EA, Majeti BK, et al. (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 105(27):9343–8.

    Article  PubMed  CAS  Google Scholar 

  • Slegers TP, van Rooijen N, et al. (2000) Delayed graft rejection in pre-vascularized corneas after subconjunctival injection of clodronate liposomes. Curr Eye Res 20(4):322–4.

    Article  PubMed  CAS  Google Scholar 

  • Tamayi Y (2009) Prospects for nanomedicine in treating age-related macular degeneration. Nanomed 4(3):341–352.

    Article  Google Scholar 

  • Waters, EA, Chen J, et al. (2008) Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J Cardiovasc Magn Reson 10(1):43.

    Article  PubMed  Google Scholar 

  • Winter PM, Caruthers SD, et al. (2008) Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging 1(5):624–34.

    Article  PubMed  Google Scholar 

  • Winter PM, Morawski AM, et al. (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108(18):2270–2274.

    CAS  Google Scholar 

  • Winter PM, Neubauer AM, et al. (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26(9):2103–2109.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Sendra Cuadal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cuadal, J.S., Morral, M., Ramis-Castelltort, M. (2010). “Overview on Nanotechnology and Angiogenesis in Major Diseases Processes”. In: Slevin, M. (eds) Therapeutic Angiogenesis for Vascular Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9495-7_19

Download citation

Publish with us

Policies and ethics