Skip to main content

A Key Role of Angiogenic Control in Recovery from Ischaemic Heart Disease

  • Chapter
  • First Online:
Therapeutic Angiogenesis for Vascular Diseases

Abstract

In the last decade, treatment of myocardial ischaemia has entered an exciting new era. Substantial gains have been made in morbidity and mortality associated with myocardial infarction by use of pharmacotherapy and coronary intervention, primarily by focusing on early restoration of blood flow to the infarcted territory, and decreasing the effect of susequent acute and haemodynamic compromise and chronic maladaptive remodelling. Despite these advances, a substantial portion of patients receiving optimal treatment by today’s standards nonetheless progress to congestive cardiac failure, which carries a very poor prognosis. Regenerative medicine offers great potential for this cohort of patients: the opportunity not only to slow disease progression even further, but even to repair and replace injured and dead myocardium. One aspect to realising this potential may lie in optimising an essential and ubiquitous component of cardiac repair: angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Dolado M, Pardal R, et al. (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961): 968–973.

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302): 964–967.

    Article  PubMed  CAS  Google Scholar 

  • Assmus B, Schachinger V, et al. (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106(24): 3009–3017.

    Article  PubMed  Google Scholar 

  • Bearzi C, Rota M, et al. (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104(35): 14068–14073.

    Article  PubMed  CAS  Google Scholar 

  • Behfar A, Perez-Terzic C, et al. (2007) Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 204(2): 405–420.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, et al. (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923): 98–102.

    Article  PubMed  CAS  Google Scholar 

  • Breier G, Risau W, (1996) The role of vascular endothelial growth factor in blood vessel formation. Trends Cell Biol 6(12): 454–456.

    Article  PubMed  CAS  Google Scholar 

  • Britten MB, Abolmaali ND, et al. (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): Mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108(18): 2212–2218.

    Article  PubMed  CAS  Google Scholar 

  • Chung NA, Makin AJ, et al. (2003) Measurement of the soluble angiopoietin receptor tie-2 in patients with coronary artery disease: development and application of an immunoassay. Eur J Clin Invest 33(7): 529–535.

    Article  PubMed  CAS  Google Scholar 

  • de Boer RA, Pinto YM, et al. (2003) Increased expression of cardiac angiotensin II type 1 (AT(1)) receptors decreases myocardial microvessel density after experimental myocardial infarction. Cardiovasc Res 57(2): 434–442.

    Article  PubMed  Google Scholar 

  • Folkman J, Klagsbrun M, (1987) Angiogenic factors. Science 235(4787): 442–447.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Merler E, et al. (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2): 275–288.

    Article  PubMed  CAS  Google Scholar 

  • Garry DJ, Olson EN, (2006) A common progenitor at the heart of development. Cell 127(6): 1101–1104.

    Article  PubMed  CAS  Google Scholar 

  • Gombrone MA Jr, Leapman SB, et al. (1973) Tumour agiogenesis: lris neovascularization at a distance from experimental intravascular tumors. J Natl Cancer Inst 50: 219–228.

    PubMed  Google Scholar 

  • Giordano FJ, Ping P, et al. (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2(5): 534–539.

    Article  PubMed  CAS  Google Scholar 

  • Gruh I, Beilner J, et al. (2006) No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation 113(10): 1326–1334.

    Article  PubMed  CAS  Google Scholar 

  • Hao X, Mansson-Broberg A, et al. (2007) Myocardial angiogenesis after plasmid or adenoviral VEGF-A(165) gene transfer in rat myocardial infarction model. Cardiovasc Res 73(3): 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Harada K, Grossman W, et al. (1994) Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 94(2): 623–630.

    Article  PubMed  CAS  Google Scholar 

  • Harrison DG, Chilian WM, et al. (1986) Absence of functioning alpha-adrenergic receptors in mature canine coronary collaterals. Circ Res 59(2): 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Heeschen C, Aicher A, et al. (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102(4): 1340–1346.

    Article  PubMed  CAS  Google Scholar 

  • Helisch A, Schaper W (2000) Angiogenesis and arteriogenesis – not yet for prescription. Z Kardiol 89(3): 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Hierlihy AM, Seale P, et al. (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530(1–3): 239–243.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh PC, Segers VF, et al. (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8): 970–974.

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Haider H, et al. (2006) Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 99(7): 776–784.

    Article  PubMed  CAS  Google Scholar 

  • Kalka C, Masuda H, et al. (2000) Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86(12): 1198–1202.

    Article  PubMed  CAS  Google Scholar 

  • Kalka C, Tehrani H, et al. (2000) VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg 70(3): 829–834.

    Article  PubMed  CAS  Google Scholar 

  • Kamihata H, Matsubara H, et al. (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104(9): 1046–1052.

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto A, Gwon HC, et al. (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103(5): 634–637.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Minatoguchi S, et al. (2008) Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovasc Res 79(4): 611–620.

    Article  PubMed  CAS  Google Scholar 

  • Kocher AA, Schuster MD, et al. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4): 430–436.

    Article  PubMed  CAS  Google Scholar 

  • Kovacic JC, Macdonald P, et al. (2008) Safety and efficacy of consecutive cycles of granulocyte-colony stimulating factor, and an intracoronary CD133+ cell infusion in patients with chronic refractory ischemic heart disease: the G-CSF in angina patients with IHD to stimulate neovascularization (GAIN I) trial. Am Heart J 156(5): 954–963.

    Article  PubMed  CAS  Google Scholar 

  • Laham RJ, Rezaee M, et al. (2000) Intrapericardial delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther 292(2): 795–802.

    PubMed  CAS  Google Scholar 

  • Lahteenvuo JE, Lahteenvuo MT, et al. (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119(6): 845–856.

    Article  PubMed  Google Scholar 

  • Landmesser U, Wollert KC, et al. (2009) Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 81(3): 519–527.

    Article  PubMed  CAS  Google Scholar 

  • Lazarous DF, Scheinowitz M, et al. (1995) Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91(1): 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Lei L, Zhou R, et al. (2004) Bradycardia induces angiogenesis, increases coronary reserve, and preserves function of the postinfarcted heart. Circulation 110(7): 796–802.

    Article  PubMed  Google Scholar 

  • Leosco D, Rengo G, et al. (2008) Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res 78(2): 385–394.

    Article  PubMed  CAS  Google Scholar 

  • Lewis BS, Flugelman MY, et al. (1997) Angiogenesis by gene therapy: a new horizon for myocardial revascularization? Cardiovasc Res 35(3): 490–497.

    Article  PubMed  CAS  Google Scholar 

  • Li K, Stewart DJ, et al. (1999) Technology evaluation: gene therapy (FGF-5), Vical. Curr Opin Mol Ther 1(2): 260–265.

    PubMed  CAS  Google Scholar 

  • Lopez JJ, Edelman ER, et al. (1996) Local Perivascular administration of basic fibroblast growth factor: Drug delivery and toxicological evaluation. Drug Metab Dispos 24: 922–924.

    PubMed  CAS  Google Scholar 

  • Lopez JJ, Edelman ER, et al. (1998) Angiogenic potential of perivascularly delivered aFGF in a porcine model of chronic myocardial ischemia. Am J Physiol 274(3 Pt 2): H930–H936.

    PubMed  CAS  Google Scholar 

  • Ma N, Stamm C, et al. (2005) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 66(1): 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Nieda M, Nicol A, et al. (1997) Endothelial cell precursors are normal components of human umbilical cord blood. Br J Haematol 98(3): 775–777.

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum J, Minami E, et al. (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7): 1345–1357.

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Chi X, et al. (2004) Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann NY Acad Sci 1015: 182–189.

    Article  PubMed  Google Scholar 

  • Pardanaud L, Luton D, et al. (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122(5): 1363–1371.

    PubMed  CAS  Google Scholar 

  • Pardanaud L, Yassine F, et al. (1989) Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105(3): 473–485.

    PubMed  CAS  Google Scholar 

  • Patan S, Haenni B, et al. (1996) Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM): 1. pillar formation by folding of the capillary wall. Microvasc Res 51(1): 80–98.

    Article  PubMed  CAS  Google Scholar 

  • Payne TR, Oshima H, et al. (2007) A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol 50(17): 1677–1684.

    Article  PubMed  CAS  Google Scholar 

  • Peichev M, Naiyer AJ, et al. (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3): 952–958.

    PubMed  CAS  Google Scholar 

  • Perin EC, Dohmann HF, et al. (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107(18): 2294–2302.

    Article  PubMed  Google Scholar 

  • Risau W, (1996) What, if anything, is an angiogenic factor? Cancer Metastasis Rev 15(2): 149–151.

    Article  PubMed  CAS  Google Scholar 

  • Roth DM, White FC, et al. (1990) Effect of long-term exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs. Circulation 82(5): 1778–1789.

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Laham RJ, et al. (2000) Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 70(6): 2113–2118.

    Article  PubMed  CAS  Google Scholar 

  • Schaper W, Ito WD (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79(5): 911–919.

    Article  PubMed  CAS  Google Scholar 

  • Schaper W, Vandesteene R, (1967) The rate of growth of interarterial anastomoses in chronic coronary artery occlusion. Life Sci 6(15): 1673–1680.

    Article  PubMed  CAS  Google Scholar 

  • Schatteman GC, Hanlon HD, et al. (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106(4): 571–578.

    Article  PubMed  CAS  Google Scholar 

  • Sellke FW, Wang SY, et al. (1995) Beta-adrenergic modulation of the collateral-dependent coronary microcirculation. J Surg Res 59(1): 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Rafii S, et al. (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2): 362–367.

    PubMed  CAS  Google Scholar 

  • Shing Y, Folkman J, et al. (1984) Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223(4642): 1296–1299.

    Article  PubMed  CAS  Google Scholar 

  • Shintani S, Murohara T, et al. (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103(6): 897–903.

    Article  PubMed  CAS  Google Scholar 

  • Strauer BE, Brehm M, et al. (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15): 1913–1918.

    Article  PubMed  Google Scholar 

  • Suzuki G, Lee TC, et al. (2005) Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res 96(7): 767–775.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Li TS, et al. (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291(2): H886–H893.

    Article  PubMed  CAS  Google Scholar 

  • Unger EF, Banai S, et al. (1993) A model to assess interventions to improve collateral blood flow: continuous administration of agents into the left coronary artery in dogs. Cardiovasc Res 27(5): 785–791.

    Article  PubMed  CAS  Google Scholar 

  • Urbich C, Heeschen C, et al. (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108(20): 2511–2516.

    Article  PubMed  Google Scholar 

  • Vasa M, Fichtlscherer S, et al. (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1): E1–E7.

    Article  PubMed  CAS  Google Scholar 

  • Vieyra DS, Jackson KA, et al. (2005) Plasticity and tissue regenerative potential of bone marrow-derived cells. Stem Cell Rev 1(1): 65–69.

    Article  PubMed  Google Scholar 

  • Visconti RP, Richardson CD, et al. (2002) Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci USA 99(12): 8219–8224.

    Article  PubMed  CAS  Google Scholar 

  • Wollert KC, Meyer GP, et al. (2004) Intracoronary autologous bone-marrow transfer after myocardial infraction: The boost randomized controlled clinical trial. Lancet 364: 141–148.

    Google Scholar 

  • Yanagisawa-Miwa A, Uchida Y, et al. (1992) Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257(5075): 1401–1403.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Sanja Trinki for performing graphic work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel M. Caplice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

O’Sullivan, J.F., Leblond, AL., Caplice, N.M. (2010). A Key Role of Angiogenic Control in Recovery from Ischaemic Heart Disease. In: Slevin, M. (eds) Therapeutic Angiogenesis for Vascular Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9495-7_12

Download citation

Publish with us

Policies and ethics