Skip to main content

Phosphate Transporters in Arbuscular Mycorrhizal Symbiosis

  • Chapter
  • First Online:
Arbuscular Mycorrhizas: Physiology and Function

Abstract

In the arbuscular mycorrhizal (AM) symbiosis the reciprocal exchange of nutrients results in a nutritional benefit for both symbionts. The fungus acquires carbon from plant and the plant obtains mineral nutrients from the fungus. While there is evidence for the transfer of phosphorus (P), nitrogen, zinc and copper, current data suggest that P is transferred in the highest quantities and that symbiotic P transfer occurs in the vast majority of AM symbioses. Symbiotic phosphate Pi transfer requires transport proteins to move Pi across the membranes of the AM fungus and plant. In recent years, there has been tremendous progress in the identification of plant and fungal Pi transporter proteins involved in symbiotic Pi transport. Coupled with the physiological data a greater understanding of symbiotic Pi transfer has emerged. Here we summarize the current data about Pi transporters and their expression patterns and roles in AM symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

Arbuscular mycorrhiza

References

  • Ai PH, Sun SB et al (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  PubMed  CAS  Google Scholar 

  • Balestrini R, Gomez-Ariza J et al (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Benedetto A, Magurno F et al (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627

    Article  PubMed  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Bucher M, Rausch C et al (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. J Plant Nutrition Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 164:209–217

    Article  CAS  Google Scholar 

  • Chen AQ, Hu J et al (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Liu H et al (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25:1–15

    Article  Google Scholar 

  • Daram P, Brunner S et al (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206:225–233

    Article  PubMed  CAS  Google Scholar 

  • Drissner D, Kunze G et al (2007) Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318:265–268

    Article  PubMed  CAS  Google Scholar 

  • Glassop D, Smith SE et al (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    Article  PubMed  CAS  Google Scholar 

  • Glassop D, Godwin RM, Smith SE, Smith FW (2007) Rice phosphate transporters associated with phosphate uptake in roce roots colonised with arbuscular mycorrhizal fungi. Canadian Journal of Botany-Revue Canadienne De Botanique 85:644–651

    Article  CAS  Google Scholar 

  • Gordon-Weeks R, Tong YP et al (2003) Restricted spatial expression of a high-affinity phosphate transporter in potato roots. J Cell Sci 116:3135–3144

    Article  PubMed  CAS  Google Scholar 

  • Grace EJ, Cotsaftis O et al (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949

    Article  PubMed  CAS  Google Scholar 

  • Grunwald U, Guo WB et al (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Güimil S, Chang, HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences of the United States of America, 102:8066–8070

    Google Scholar 

  • Harrison MJ, Dewbre GR et al (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Penmetsa RV et al (2007a) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Pumplin N et al (2007b) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  PubMed  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  PubMed  CAS  Google Scholar 

  • Karandashov V, Nagy R et al (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 101:6285–6290

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G et al (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Leggewie G, Willmitzer L et al (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. Plant Cell 9:381–392

    PubMed  CAS  Google Scholar 

  • Liu H, Trieu AT et al (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact 11:14–22

    Article  PubMed  CAS  Google Scholar 

  • Liu JY, Versaw WK et al (2008) Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J Biol Chem 283:24673–24681

    Article  PubMed  CAS  Google Scholar 

  • Maeda D, Ashida K et al (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol 47:807–17

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR et al (2001) Expression of a Glomus intraradices phosphate transporter gene (GiPT) in the extra-radical mycelium of an arbuscular mycorrhiza: regulation in response to phosphate. Mol Plant Microbe Interact 14:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Shen QR et al (2009) Freeways in the plant: transporters for N, P and S and their regulation. Curr Opin Plant Biol 12:284–290

    Article  PubMed  CAS  Google Scholar 

  • Misson J, Thibaud MC et al (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741

    Article  PubMed  CAS  Google Scholar 

  • Muchhal US, Pardo JM et al (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA 93:101519–101523

    Article  Google Scholar 

  • Mudge SR, Rae AL et al (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    Article  PubMed  CAS  Google Scholar 

  • Nagy F, Karandashov V et al (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  PubMed  CAS  Google Scholar 

  • Nagy R, Drissner D et al (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  PubMed  CAS  Google Scholar 

  • Nagy R, Vasconcelos MJV et al (2006) Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol 8:186–197

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comp Appli Biosci 12:357–358

    CAS  Google Scholar 

  • Paszkowski U, Kroken S et al (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol 124:489–494

    Article  CAS  Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819

    Article  PubMed  CAS  Google Scholar 

  • Rae AL, Cybinski DH, Jarmey JM, Smith FW (2003) Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol 53:27–36

    Article  PubMed  CAS  Google Scholar 

  • Raghothama K (1999) Phosphate acquisition. Ann Rev Plant Physiol Mol Biol 50:665–693

    Article  CAS  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Daram P et al (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE (2009) Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant Soil 322:17–24

    Article  CAS  Google Scholar 

  • Rosewarne G, Barker S, Smith S, Smith F, Schachtman D (1999) A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorous uptake form a vesicular-arbuscular mycorrhizal fungus. New Phytol 144:507–516

    Article  CAS  Google Scholar 

  • Sanders FE, Tinker PB (1971) Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233:278–279

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Reid RJ et al (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  CAS  Google Scholar 

  • Schunmann PHD, Richardson AE, Smith FW, Delhaize E (2004a) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55:855–865

    Article  PubMed  CAS  Google Scholar 

  • Schunmann PHD, Richardson AE, Vickers CE and Delhaize E. (2004b) Promoter Analysis of the Barley Pht1;1 Phosphate Transporter Gene Identifies Regions Controlling Root Expression and Responsiveness to Phosphate Deprivation. Plant Physiol 136:4205–4214

    Article  PubMed  Google Scholar 

  • Shin H, Shin HS et al (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego, CA

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA et al (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Smith FA et al (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • St-Arnaud M, Hamel C et al (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Thomson BD, Clarkson DT et al (1990) Kinetics of phosphorus uptake by the germ-tubes of the vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 116:647–653

    Article  CAS  Google Scholar 

  • Wegmueller S, Svistoonoff S et al (2008) A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant J 54:1115–1127

    Article  Google Scholar 

  • Wright DP, Scholes JD, Read DJ, Rolfe SA (2005) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167:881–896

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Liu J, Dewbre G, Harrison MJ, Wang ZY (2006) Isolation and Characterization of Root-Specific Phosphate Transporter Promoters from Medicago truncatula. Plant Biology, 8:439–449

    Article  PubMed  CAS  Google Scholar 

  • Xu GH, Chague V et al (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491–2501

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Harrison, M.J., Pumplin, N., Breuillin, F.J., Noar, R.D., Park, HJ. (2010). Phosphate Transporters in Arbuscular Mycorrhizal Symbiosis. In: Koltai, H., Kapulnik, Y. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9489-6_6

Download citation

Publish with us

Policies and ethics