Skip to main content

Molecular–Physiological Aspects of the AM Symbiosis Post Penetration

  • Chapter
  • First Online:
Arbuscular Mycorrhizas: Physiology and Function

Abstract

The establishment of an arbuscular mycorrhizal symbiosis is ­characterised by several stages until the fungus has penetrated the root epidermis. The present chapter deals with the subsequent phase where the fungus colonises the root cortex and, when the different functions of the symbiosis are realised. After summarising the morphological and cytological characteristics of this symbiotic phase, different strategies will be described which have been followed to understand the molecular–physiological basis of the symbiosis. Non-targeted approaches resulted in new hypotheses concerning mycorrhizal functioning based on the identification of ­differentially expressed transcripts or proteins. Some of these hypotheses were further proofed by various biological techniques as localisation of the gene products or down-regulation of the genes in transgenic plants. In contrast targeted approaches were directed to particular plant and fungal functions. Among those functions, the present chapter will concentrate on the assimilation, the metabolism and the distribution of carbohydrates in the plant and the fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

Arbuscular mycorrhizal

BAS:

Branched absorbing structures

EST:

Expressed sequences tags

PPA:

Prepenetration apparatus

SUT:

Sucrose transporter

TGA:

Triacylglyceride

References

  • Alexander T, Meier R, Toth R et al (1988) Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum and Avena sativa with reference to Zea mays. New Phytol 110:363–370

    Article  Google Scholar 

  • Aloui A, Recorbet G, Gollotte A et al (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    Article  CAS  PubMed  Google Scholar 

  • Amijee F, Stribley DP, Tinker PB (1993) The development of endomycorrhizal root systems VIII. Effects of soil phosphorus and fungal colonization on the concentration of soluble carbohydrates in roots. New Phytol 123:297–306

    Article  CAS  Google Scholar 

  • Aono T, Maldonado-Mendoza IE, Dewbre GR et al (2004) Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytol 162:525–534

    Article  CAS  Google Scholar 

  • Auge RM, Toler HD, Sams CE et al (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18:115–121

    Article  PubMed  Google Scholar 

  • Bago B, Azcon-Aguilar CYP (1998) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–56

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Douds DD et al (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–271

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Zipfel W, Williams RM et al (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J et al (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Berta G, Bonfante P (1992) The plant nucleus in mycorrhizal roots: positional and structural modifications. Biol Cell 75:235–243

    Article  Google Scholar 

  • Balestrini R, Gomez-Ariza J, Lanfranco L et al (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Becard G, Doner LW, Rolin DB et al (1991) Identification and quantification of trehalose in vesicular–arbuscular mycorrhizal fungi by in vivo C-13 NMR and HPLC analyses. New Phytol 118:547–552

    Article  CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V et al (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23:122–137

    Article  CAS  PubMed  Google Scholar 

  • Bestel-Corre G, Gianinazzi S, Dumas-Gaudot E (2004a) Impact of sewage sludges on Medicago truncatula symbiotic proteome. Phytochemistry 65:1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Gianinazzi S (2004b) Proteomics as a tool to monitor plant–microbe endosymbioses in the rhizosphere. Mycorrhiza 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Black KG, Mitchell DT, Osborne BA (2000) Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ 23:797–809

    Article  CAS  Google Scholar 

  • Blee KA, Anderson AJ (1998) Regulation of arbuscule formation by carbon in the plant. Plant J 16:523–530

    Article  Google Scholar 

  • Blee KA, Anderson AJ (2002) Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Mol Biol 50:197–211

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plant. New Phytol 130:3–21

    Article  Google Scholar 

  • Bonfante P, Balestrini R, Mendgen K (1994) Storage and secretion processes in the spore of Gigaspora margarita Becker & Hall as revealed by high-pressure freezing and freeze substitution. New Phytol 128:93–101

    Article  Google Scholar 

  • Bonfante-Fasolo P, Faccio E, Oerotto S et al (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol Res 94:157–165

    Article  CAS  Google Scholar 

  • Boucher A, Dalpe Y, Charest C (1999) Effect of arbuscular mycorrhizal colonization of four species of Glomus on physiological responses of maize. J Plant Nutr 22:783–797

    Article  CAS  Google Scholar 

  • Brechenmacher L, Weidmann S, Van Tuinen D et al (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula–Glomus mosseae interactions. Mycorrhiza 14:253–262

    Article  CAS  PubMed  Google Scholar 

  • Breuninger M, Requena N (2004) Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fung Genet Biol 41:794–804

    Article  CAS  Google Scholar 

  • Burleigh SH, Harrison MJ (1997) A novel gene whose expression in Medicago truncatula is suppressed in response to colonization by vesicular–arbuscular mycorrhizal fungi and to phosphate nutrition. Plant Mol Biol 34:199–208

    Article  CAS  PubMed  Google Scholar 

  • Burleigh SH, Harrison MJ (1999) The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol 119:241–248

    Article  CAS  PubMed  Google Scholar 

  • Caravaca F, Diaz E, Barea JM et al (2003) Photosynthetic and transpiration rates of Olea europaea subsp sylvestris and Rhamnus lycioides as affected by water deficit and mycorrhiza. Biol Plantarum 46:637–639

    Article  Google Scholar 

  • Cavagnaro TR, Gao LL, Smith FA et al (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469–475

    Article  Google Scholar 

  • Colditz F, Braun HP, Jacquet C et al (2005) Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Mol Biol 59:387–406

    Article  CAS  PubMed  Google Scholar 

  • Cook DR, VandenBosch K, Debruijn FJ et al (1997) Model legumes get the nod. Plant Cell 9:275–281

    CAS  Google Scholar 

  • Deguchi Y, Banba M, Shimoda Y et al (2007) Transcriptome profiling of Lotus japonicus roots during arbuscular mycorrhiza development and comparison with that of nodulation. DNA Res 14:117–133

    Article  CAS  PubMed  Google Scholar 

  • Delp G, Smith SE, Barker SJ (2000) Isolation by differential display of three partial cDNAs potentially coding for proteins from the VA mycorrhizal Glomus intraradices. Mycol Res 104:293–300

    Article  CAS  Google Scholar 

  • Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200

    Article  Google Scholar 

  • Dickson S, Smith SE (2001) Cross walls in arbuscular trunk hyphae form after loss of metabolic activity. New Phytol 151:735–742

    Article  Google Scholar 

  • Drüge U, Schonbeck F (1993) Effect of vesicular–arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L) in relation to cytokinin levels. J Plant Physiol 141:40–48

    Article  Google Scholar 

  • Dumas-Gaudot E, Valot B, Bestel-Corre G et al (2004) Proteomics as a way to identify ­extra-radicular fungal proteins from Glomus intraradices – RiT-DNA carrot root mycorrhizas. FEMS Microbiol Ecol 48:401–411

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Luna AA, Davies FT, Egilla JN (2000) Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10:1–8

    Article  CAS  Google Scholar 

  • Fay P, Mitchell DT, Osborne BA (1996) Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol 132:425–433

    Article  CAS  Google Scholar 

  • Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional glenomics. Curr Opin Plant Biol 8:174–182

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Strack D, Hause B (2001) Reorganization of tobacco root plastids during arbuscule development. Planta 213:864–868

    Article  CAS  PubMed  Google Scholar 

  • Forbes PJ, Millam S, Hooker JE et al (1998) Transformation of the arbuscular mycorrhizal fungus Gigaspora rosea by particle bombardment. Mycol Res 102:497–501

    Article  Google Scholar 

  • Fortin JA, Becard G, Declerck S et al (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Franken P, Gnädinger F (1994) Analysis of parsley arbuscular endomycorrhiza: infection development and mRNA levels of defense-related genes. Mol Plant Microbe Interact 7:612–620

    Article  CAS  Google Scholar 

  • Franken P, Lapopin L, Meyer-Gauen G et al (1997) RNA accumulation and genes expressed in spores of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycologia 89:295–299

    Article  Google Scholar 

  • Franken P, Requena N, Bütehorn B et al (2000) Molecular analysis of the arbuscular mycorrhiza symbiosis. Arch Agron Soil Sci 45:271–286

    Article  CAS  Google Scholar 

  • Frenzel A, Manthey K, Perlick AM et al (2005) Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol Plant Microbe Interact 18:771–782

    Article  CAS  PubMed  Google Scholar 

  • Fusconi A, Lingua G, Trotta A et al (2005) Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants. Mycorrhiza 15:313–321

    Article  PubMed  Google Scholar 

  • Garcia-Garrido JM, Toro N, Ocampo JA (1993) Presence of specific polypeptides in onion roots colonized by Glomus mosseae. Mycorrhiza 2:175–177

    Article  CAS  Google Scholar 

  • Garcia-Rodriguez S, Pozo MJ, Azcon-Aguilar C et al (2005) Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or Phytophthora parasitica-infected plants. Mycorrhiza 15:489–496

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rodriguez S, Azcon-Aguilar C, Ferrol N (2007) Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis. Physiol Plant 129:737–746

    Article  CAS  Google Scholar 

  • Ge L, Sun SB, Chen AQ et al (2008) Tomato sugar transporter genes associated with mycorrhiza and phosphate. Plant Growth Regul 55:115–123

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T et al (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Chabaud M, Faccio A et al (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell response to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1988) Morphological interactions and functional compatibility between symbionts in vesicular arbuscular endomycorrhizal associations. In: Scannerini S (ed) Cell to cell signals in plant animal and microbial symbiosis. Springer, Berlin, pp 73–84

    Chapter  Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S et al (1991) Enzymatic studies on the metabolism of vesicular–arbuscular mycorrhizas V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? New Phytol 117:61–74

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M et al (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613

    Article  CAS  PubMed  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P et al (2009) Medicago truncatula and Glomus ­intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  PubMed  CAS  Google Scholar 

  • Grunwald U, Nyamsuren O, Tarnasloukht M et al (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol 55:553–566

    Article  CAS  PubMed  Google Scholar 

  • Grunwald U, Guo WB, Fischer K et al (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Guether M, Balestrini R, Hannah M et al (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    Article  CAS  PubMed  Google Scholar 

  • Guimil S, Chang HS, Zhu T et al (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    Article  PubMed  CAS  Google Scholar 

  • Harrier LA, Wright F, Hooker JE (1998) Isolation of the 3-phosphoglycerate kinase gene of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe. Curr Genet 34:386–392

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (1996) A sugar transproter from Medicago truncatula: altered expression pattern in roots during vesicular–arbucular (VA) mycorrhizal associations. Plant J 9:491–503

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular–arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe Interact 6:643–654

    Article  CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    Article  CAS  PubMed  Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N et al (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171:159–170

    Article  CAS  PubMed  Google Scholar 

  • Helber N, Requena N (2008) Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 177:537–548

    CAS  PubMed  Google Scholar 

  • Hohnjec N, Perlick AM, Puhler A et al (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact 16:903–915

    Article  CAS  PubMed  Google Scholar 

  • Hohnjec N, Vieweg ME, Puhler A et al (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  CAS  PubMed  Google Scholar 

  • Hohnjec N, Henckel K, Bekel T et al (2006) Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula. Funct Plant Biol 33:737–748

    Article  CAS  Google Scholar 

  • Imaizumi R, Sato S, Kameya N et al (2005) Activation tagging approach in a model legume, Lotus japonicus. J Plant Res 118:391–399

    Article  PubMed  Google Scholar 

  • Isayenkov S, Mrosk C, Stenzel I et al (2005) Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, Lawlor DW (1992) Dependence of photosynthesis of sunflower and maize leaves on phosphate supply, ribulose-1, 5-bisphosphate carboxylase oxygenase activity, and ribulose-1, 5-bisphosphate pool size. Plant Physiol 98:801–807

    Article  CAS  PubMed  Google Scholar 

  • Jacquelinet-Jeanmougin J, Gianinazzi-Pearson V, Gininazzi S (1987) Endomycorrhiza in the Gentianaceae. II. Ultrastructural aspects of symbionts relationship in Gentina putea L. Symbiosis 3:269–286

    Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N et al (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Journet EP, Van Tuinen D, Gouzy J et al (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucl Acids Res 30:5579–5592

    Article  PubMed  Google Scholar 

  • Jun J, Abubaker J, Rehrer C et al (2002) Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cytoskeleton and the cell cycle. Plant Soil 244:141–148

    Article  CAS  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA et al (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A et al (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    Article  CAS  PubMed  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A et al (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    Article  CAS  PubMed  Google Scholar 

  • Kouchi H, Shimomura K, Hata S et al (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274

    Article  CAS  PubMed  Google Scholar 

  • Krajinski F, Martin-Laurent F, Gianinazzi S et al (1998) Cloning and analysis of psam2, a gene from Pisum sativum L. regulated in symbiotic arbuscular mycorrhiza and pathogenic root-fungus interactions. Physiol Mol Plant Pathol 52:297–307

    Article  CAS  Google Scholar 

  • Krajinski F, Hause B, Gianinazzi-Pearson V et al (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression. Plant Biol 4:754–761

    Article  CAS  Google Scholar 

  • Kühn C (2003) A comparison of the sucrose transporter systems of different plant species. Plant Biol 5:215–232

    Article  Google Scholar 

  • Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892

    Article  CAS  PubMed  Google Scholar 

  • Küster H, Hohnjec N, Krajinski F et al (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108:95–113

    Article  PubMed  CAS  Google Scholar 

  • Lammers PJ, Jun J, Abubaker J et al (2001) The glyoxylate cycle in an arbuscular mycorrhizal fungus. Carbon flux and gene expression. Plant Physiol 127:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco L, Vallino M, Bonfante P (1999) Expression of chitin synthase genes in the arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol 142:347–354

    Article  CAS  Google Scholar 

  • Lanfranco L, Bolchi A, Cesale RE et al (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbucular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  CAS  PubMed  Google Scholar 

  • Lapopin L, Gianinazzi-Pearson V, Franken P (1999) Comparative differential display analysis of arbuscular mycorrhiza in Pisum sativum and a mutant defective in late stage development. Plant Mol Biol 41:669–677

    Article  CAS  PubMed  Google Scholar 

  • Lerat S, Lapointe L, Piche Y et al (2003a) Variable carbon-sink strength of different Glomus mosseae strains colonizing barley roots. Can J Bot 81:886–889

    Article  Google Scholar 

  • Lerat S, Lapointe L, Gutjahr S et al (2003b) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157:589–595

    Article  Google Scholar 

  • Liu JY, Blaylock LA, Endre G et al (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Blaylock LA, Harrison MJ (2004) cDNA arrays as a tool to identify mycorrhiza-regulated genes: identification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. Can J Bot 82:1177–1185

    Article  CAS  Google Scholar 

  • Liu JY, Maldonado-Mendoza I, Lopez-Meyer M et al (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Lohse S, Schliemann W, Ammer C et al (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329–340

    Article  CAS  PubMed  Google Scholar 

  • Louche-Tessandier D, Samson G, Hernandez-Sebastia C et al (1999) Importance of light and CO2 on the effects of endomycorrhizal colonization on growth and photosynthesis of potato plantlets (Solanum tuberosum) in an in vitro tripartite system. New Phytol 142:539–550

    Article  Google Scholar 

  • Maeda D, Ashida K, Iguchi K et al (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol 47:807–817

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, van Buuren ML et al (2002) Methods to estimate the proportion of plant and fungal RNA in an arbuscular mycorrhiza. Mycorrhiza 12:67–74

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Blaylock L et al (2005) Expression of a xyloglucan endotransglucosylase/hydrolase gene, Mt-XTH1, from Medicago truncatula is induced systemically in mycorrhizal roots. Gene 345:191–197

    Article  CAS  PubMed  Google Scholar 

  • Manjarrez M, Smith FA, Marschner P et al (2008) Is cortical root colonization required for carbon transfer to arbuscular mycorrhizal fungi? Evidence from colonization phenotypes and spore production in the reduced mycorrhizal colonization (rmc) mutant of tomato. Botany 86:1009–1019

    Article  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N et al (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant Microbe Interact 17:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Gianinazzi-Pearson V, Hijri M et al (2008) The long hard road to a completed Glomus intraradices genome. New Phytol 180:747–750

    Article  CAS  PubMed  Google Scholar 

  • Martin-Laurent F, Van Tuinen D, Dumas-Gaudot E et al (1997) Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis-regulated plant gene. Mol Gen Genet 256:37–44

    Article  CAS  PubMed  Google Scholar 

  • Martin-Laurent F, Arnould C, Chatagnier O et al (1998) Cellular localization of PSAM 1, a novel plant protein in arbuscular mycorrhiza of Pisum sativum. Planta 207:153–157

    Article  CAS  PubMed  Google Scholar 

  • Martin-Laurent F, Franken P, Giannazzi-Pearson V et al (2001) Isolation and characterisation of a Bam HI element in psam3 a gene of Pisum sativum L. induced during early stages of arbuscular mycorrhiza development. J Plant Physiol 158:261–266

    Article  CAS  Google Scholar 

  • Mathesius U (2009) Comparative proteomic studies of root–microbe interactions. J Proteom 72:353–366

    Article  CAS  Google Scholar 

  • Mathur N, Vyas A (1995) Influence of VA mycorrhizae on net photosynthesis and transpiration of Ziziphus mauritiana. J Plant Physiol 147:328–330

    Article  CAS  Google Scholar 

  • Solaiman MdZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538

    Article  CAS  Google Scholar 

  • Murphy PJ, Langridge P, Smith SE (1997) Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular–arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 135:291–301

    Article  CAS  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Olsson PA, Burleigh SH, van Aarle IM (2005) The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytol 168:677–686

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA, Hansson MC, Burleigh SH (2006) Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Appl Eniviron Microb 72:4115–4120

    Article  CAS  Google Scholar 

  • Paradi I, Bratek Z, Lang F (2003) Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biol Plantarum 46:563–569

    Article  CAS  Google Scholar 

  • Peng SB, Eissenstat DM, Graham JH et al (1993) Growth depression in mycorrhizal citrus at ­high-phosphorus supply – analysis of carbon costs. Plant Physiol 101:1063–1071

    CAS  PubMed  Google Scholar 

  • Perner H, Schwarz D, Krumbein A et al (2007) Influence of nitrogen forms and mycorrhizal colonization on growth and composition of Chinese bunching onion. J Plant Nutr Soil Sci 170:762–768

    Article  CAS  Google Scholar 

  • Pfeffer PE, Douds DD, Becard G et al (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553

    Article  CAS  Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819

    Article  CAS  PubMed  Google Scholar 

  • Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia 51:123–130

    Article  CAS  Google Scholar 

  • Rai MK, Shende S, Strasser RJ (2008) JIP test for fast fluorescence transients as a rapid and sensitive technique in assessing the effectiveness of arbuscular mycorrhizal fungi in Zea mays: Analysis of chlorophyll a fluorescence. Plant Biosys 142:191–198

    Article  Google Scholar 

  • Rapparini F, Baraldi R, Bertazza G (1996) Growth and carbohydrate status of Pyrus communis L plantlets inoculated with Glomus sp. Agronomie 16:653–661

    Article  Google Scholar 

  • Ravnskov S, Wu Y, Graham JH (2003) Arbuscular mycorrhizal fungi differentially affect expression of genes coding for sucrose synthases in maize roots. New Phytol 157:539–545

    Article  CAS  Google Scholar 

  • Read DJ (1998) Biodiversity - Plants on the web. Nature 396:22–23

    Article  CAS  Google Scholar 

  • Recorbet G, Rogniaux H, Gianinazzi-Pearson V et al (2009) Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. New Phytol 181:248–260

    Article  CAS  PubMed  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E et al (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567

    Article  CAS  Google Scholar 

  • Requena N, Füller P, Franken P (1999) Molecular characterisation of GmFOX2, an evolutionary highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during interaction with rhizobacteria. Mol Plant Microbe Interact 12:934–942

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Mann P, Hampp R et al (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139

    Article  CAS  Google Scholar 

  • Requena N, Breuninger M, Franken P et al (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Porcel R et al (2002) Identification of a cDNA from the arbuscular mycorrhizal fungus Glomus intraradices that is expressed during mycorrhizal symbiosis and up-regulated by N fertilization. Mol Plant Microbe Interact 15:360–367

    Article  CAS  PubMed  Google Scholar 

  • Sawaki H, Saito M (2001) Expressed genes in the extraradical hyphae of an arbuscular mycorrhizal fungus, Glomus intraradices, in the symbiotic phase. FEMS Microbiol Lett 195:109–113

    Article  CAS  PubMed  Google Scholar 

  • Schaarschmidt S, Roitsch T, Hause B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J Exp Bot 57:4015–4023

    Article  CAS  PubMed  Google Scholar 

  • Schaarschmidt S, Kopka J, Ludwig-Muller J et al (2007a) Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. Plant J 51:390–405

    Article  CAS  PubMed  Google Scholar 

  • Schaarschmidt S, Gonzalez MC, Roitsch T et al (2007b) Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiol 143:1827–1840

    Article  CAS  PubMed  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  CAS  PubMed  Google Scholar 

  • Schubert A, Allara P, Morte A (2004) Cleavage of sucrose in roots of soybean (Glycine max) ­colonized by an arbuscular mycorrhizal fungus. New Phytol 161:495–501

    Article  CAS  Google Scholar 

  • Schüssler A, Martin H, Cohen D et al (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  PubMed  CAS  Google Scholar 

  • Seddas PMA, Arnould C, Tollot M, Arias CM, Gianinazzi-Pearson V (2008) Spatial monitoring of gene activity in extraradical and intraradical developmental stages of arbuscular mycorrhizal fungi by direct fluorescent in situ RT-PCR. Fung Genet Biol 45:1155–1165

    CAS  PubMed  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D et al (1995) Partitioning of intermediary carbon metabolism in vesicular–arbuscular mycorrhizal leek. Plant Physiol 108:7–15

    CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H et al (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith FA, Smith SE (1997) Tansley review no. 96 Structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    Article  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B et al (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Stommel M, Mann P, Franken P (2001) Construction and analysis of an EST library using RNA from activated spores of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285

    Article  CAS  Google Scholar 

  • Strack D, Fester T, Hause B et al (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    Article  CAS  PubMed  Google Scholar 

  • Sun SB, Xu GH (2009) Sugar transport in arbuscular mycorrhizal symbiosis. Can J Plant Sci 89:257–263

    Article  CAS  Google Scholar 

  • Tadege M, Wen JQ, He J et al (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  CAS  PubMed  Google Scholar 

  • Tahiri-Alaoui A, Antoniw JF (1996) Cloning of genes associated with the colonization of tomato roots by the arbuscular mycorrhizal fungus Glomus mosseae. Agronomie 16:699–707

    Article  Google Scholar 

  • Tahiri-Alaoui A, Lingua G, Avrova A et al (2002) A cullin gene is induced in tomato roots forming arbuscular mycorrhizae. Can J Bot 80:607–616

    Article  CAS  Google Scholar 

  • Takeda N, Sato S, Asamizu E et al (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J 58:766–777

    Article  CAS  PubMed  Google Scholar 

  • Tejeda-Sartorius M, de la Vega OM, ano-Frier JP (2008) Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol Plant 133:339–353

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Smith SE, Smith FA et al (1986) Effects of photon irradiance on the growth of shoots and roots, on the rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum. New Phytol 103:375–390

    Article  Google Scholar 

  • Trépanier M, Becard G, Moutoglis P et al (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Eniviron Microb 71:5341–5347

    Article  CAS  Google Scholar 

  • Tsimilli-Michael M, Eggenberg P, Biro B et al (2000) Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182

    Article  Google Scholar 

  • Valentine AJ, Osborne BA, Mitchell DT (2001) Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Sci Hortic 88:177–189

    Article  CAS  Google Scholar 

  • Valot B, Dieu M, Recorbet G et al (2005) Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis. Plant Mol Biol 59:565–580

    Article  CAS  PubMed  Google Scholar 

  • Valot B, Negroni L, Zivy M et al (2006) A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Proteomics 6:S145–S155

    Article  PubMed  Google Scholar 

  • van Buuren ML, Maldonado-Mendoza IE, Trieu AT et al (1999) Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Mol Plant Microbe Interact 12:171–181

    Article  PubMed  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus J-M et al (1992) Colonization of transgenic Nicotiana sylvestris plants, expresssing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant Microbe Interact 6:261–264

    Article  Google Scholar 

  • Vierheilig H, Alt M, Lange J et al (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular–arbuscular mycorrhizal fungus Glomus mosseae. Appl Eniviron Microb 61:3031–3034

    CAS  Google Scholar 

  • Von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood

    Google Scholar 

  • Walker C (1995) AM or VAM: what’s in a word? In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, Germany, pp 25–26

    Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998a) Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216

    Article  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998b) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Article  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wulf A, Manthey K, Doll J et al (2003) Detection of highly specific transcriptional changes of the model plant Medicago truncatula in response to arbuscular mycorrhiza development. Mol Plant Microbe Interact 16:306–314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Franken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Franken, P. (2010). Molecular–Physiological Aspects of the AM Symbiosis Post Penetration. In: Koltai, H., Kapulnik, Y. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9489-6_5

Download citation

Publish with us

Policies and ethics