Skip to main content

Functional Categories of Root Exudate Compounds and their Relevance to AM Fungal Growth

  • Chapter
  • First Online:

Abstract

It is well established that plants grown under limited phosphorus (Pi) conditions are more readily colonized by arbuscular mycorrhizal (AM) fungi. It is also known that certain components of host root exudates can stimulate hyphal growth and branching of AM fungi and these compounds are elevated when the host is grown under Pi stress. To obtain a more general picture of the types of compounds exuded by host roots that effect the growth of AM fungi, a global analysis was performed on crude exudates of Ri TDNA-transformed carrot roots grown in the presence and absence of Pi. The results show that there is a distinct population of exudate compounds that are elevated in the absence versus the presence of Pi. Putative identifications were made for some of these compounds from data obtained by Fourier Transform Ion Cyclotron Mass Spectrometry (FTMS). The results were then compared to components of biologically active fractions purified by two dimensional thin layer chromatography (2D TLC). The data selection was restricted to compounds that were initially identified to be elevated in the crude – Pi exudate. The categories of compounds, such as plant growth regulators, phenols, flavonoids, and sesquiterpenoids were selected that had the most relevance to AM fungal/host interactions. The previous results with some of these compounds will be discussed in relation to new results obtained from FTMS and their involvement in presymbiotic growth of AM fungi. None of the reported strigolactones which stimulate AM fungi hyphal were found although several sesquiterpene lactones were identified. A number of hydroxy fatty acids were also found, and they were elevated in the – Pi crude exudate and found to be present in 2D TLC fractions. One hydroxy fatty acid, 2-hydroxytetradecanoic acid, stimulated lateral branching of the primary germ tube of Gigaspora gigantea, when applied to Petri dishes in amounts as low as 1–10 ng.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2 HTDA:

2 Hydroxytetradecanoic acid

AMF:

Arbuscular mycorrhizal fung

2D-TLC:

2 Dimensional thin layer chromatography

FTMS:

Fourier Transform Ion Cyclotron Mass Spectroscopy

2 HHDA:

2 Hydroxyhexadecanoic acid

Pi:

Phosphorus

BF:

Branching factor

References

  • Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics J Integr Biol 6:217–234

    Article  CAS  Google Scholar 

  • Akiyama K (2007) Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Biosci Biotech Biochem 71:1405–1414

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K-I, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: II Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    Article  CAS  Google Scholar 

  • Arai A, Goto Y, Hasegawa A, Hosaka K, Kikuchi H, Oshima Y, Tanaka S, Kubohara Y (2005) Dictyopyrones, novel a-pyronoids isolated from Dictyostelium ssp., promote stalk cell differentiation in Dictyostelium discoideum. Differentiation 73:377–384

    Article  CAS  PubMed  Google Scholar 

  • Ayman A, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul 48:221–227

    Google Scholar 

  • Bago B, Bentivenga SP, Brenac V, Dodd JC, Piché Y, Simon L (1998) Molecular analysis of Gigaspora (Glomales, Gigasporaceae). New Phytol 139:581–588.

    CAS  Google Scholar 

  • Barea JM, Azcon-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813

    CAS  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    Google Scholar 

  • Bécard G, Douds DD Jr, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58:821–825

    PubMed  Google Scholar 

  • Bécard G, Taylor LP, Douds DD Jr, Pfeffer P, Doner L (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Molec Plant Microbe Interact 8:252–258

    Article  Google Scholar 

  • Bel Rhid R, Chabot S, Piché Y, Chenevert R (1993) Isolation and identification of flavonoids from Ri T-DNA-transformed roots (Daucus carota) and their significance in vesicular-arbuscular mycorrhizal. Phytochemistry 33:1369–1371

    Article  Google Scholar 

  • Besserer A, Puech-PagésV KP, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7, e 226):1239–1247

    Article  CAS  Google Scholar 

  • Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G (2000) The presymbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Molec Plant Microbe Interact 13:693–698

    Article  CAS  PubMed  Google Scholar 

  • Chung M, Kim KH, Ahn JK, Chun SC, Kim CS, Kim JT, Kim SH (2002) Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and indentification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts. Crop Protect 21:913–920

    Article  CAS  Google Scholar 

  • Dormarr JF, Tovell BC, Willms WD (2002) Fingerprint composition of seedling root exudates of selected grasses. J Range Manag 55:420–423

    Article  Google Scholar 

  • Douds DD Jr, Nagahashi G, Abney GD (1996) The differential effects of cell wall-associated phenolics, cell walls, and cytosolic phenolics of host and non-host roots on the growth of two species of AM fungi. New Phytol 133:289–294

    Article  CAS  Google Scholar 

  • Dutra PV, Abad M, Almela V, Agusi M (1996) Auxin interactions with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith improves vegetative growth of two citrus rootstocks. Scientia Horticulturae 66:77–83

    Article  CAS  Google Scholar 

  • El Ghachtouli N, Martin-Tanguy J, Paynot M, Gianinazzi S (1996) First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett 385:189–192

    Article  CAS  PubMed  Google Scholar 

  • Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasiculatus in response to root exudates. Appl Environ Microbiol 53:1928–1933

    CAS  Google Scholar 

  • Estabrook EM, Yoder JI (1998) Plant–plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7

    Article  CAS  Google Scholar 

  • Fernandez-Aparicio M, Flores F, Rubiales D (2009) Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Ann Bot 103:423–431

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Hause B (2007) Drought and symbiosis – why is abscisic acid necessary for arbuscular mycorrhizal? New Phytol 175:383–386

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Molec Biol 48:155–171

    Article  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nature Biotech 18:1157–1161

    Article  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular-mycorrhizal fungi during pre-infection stages. New Phytol 125:587–593

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71

    Article  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal associations. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium-legume symbiosis. Fungal Genet Bio 23:205–212

    Article  CAS  Google Scholar 

  • Horio T, Kawabata Y, Takayama T, Tahara S, Kawabata J, Fukushi Y, Nishimura H, Mizutani J (1992) A potent attractant of zoospores of Aphanomyces cochlioides isolated from its host, Spinacia oleracea. Experientia 48:410–414

    Article  CAS  Google Scholar 

  • Isobe K, Tateishi A, Nomura K, Inoue H, Tsuboki Y (2001) Flavonoids in the extract and root exudate of the roots of leguminous crops. Plant Prod Sci 4:278–279

    Article  CAS  Google Scholar 

  • Jenske R, Vetter W (2009) Concentrations of medium-chain 2- and 3-hydroxy fatty acids in foodstuffs. Food Chem 114:112–1129

    Article  Google Scholar 

  • Jentschel K, Theil D, Rehn F, Ludwig-Muller J (2007) Arbuscular mycorrhizal enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiol Plant 129:320–333

    Article  CAS  Google Scholar 

  • Jr Frankenberger WT, Arshad M (1995) Microbial synthesis of auxins. In: Frankengerger WT, Arshad M (eds) Phytohormones in soils. Marcel Dekker, New York, pp 35–71

    Google Scholar 

  • Kawai G, Ohnishi M, Fujino Y, Ikeda Y (1986) Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. J Biol Chem 261:779–784

    CAS  PubMed  Google Scholar 

  • Kikuchi K, Matsushita N, Suzuki K, Hogetsu T (2007) Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17:563–570

    Article  CAS  PubMed  Google Scholar 

  • Kuwada K, Kuramoto M, Utamura M, Matsushita I, Ishii T (2006) Isolation and structural elucidation of a growth stimulant for arbuscular mycorrhizal fungus from Laminaria japonica Areschoug. J Appl Phycol 18:795–800

    Article  CAS  Google Scholar 

  • Lucas Garcia JA, Barbas C, Probanza A, Barrientos ML, Gutierrez Manero FJ (2000) Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochem Anal 12:305–311

    Article  Google Scholar 

  • Ludwig-Muller J (2000) Hormonal balance in plants during colonization by mycorrhizal fungi. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Boston/London/Dordrecht, pp 263–285

    Chapter  Google Scholar 

  • Mada RJ, Bagyaraj DJ (1993) Root exudation from Leucaena leucocephala in relation to mycorrhizal colonization. World J Micro Biotech 9:342–344

    Article  Google Scholar 

  • Maeda Y, Kikuchi H, Sasaki K, Amagai A, Sekiya J, Takaya Y, Ohima Y (2003) Multiple activities of a novel substance, dictyopyrone C (DPC) isolated from Dictyostelium discoideum, in cellular growth and differentiation. Protoplasma 221:185–192

    CAS  PubMed  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester H (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  Google Scholar 

  • Mungur R, Glass ADM, Goodenow DB, Lightfoot DA (2005) Metabolite fingerprinting in transgenic Nicotiana tabacum by the Escherichia coli glutmate dehydrogenase gene. J Biomed Biotech 2:198–214

    Article  Google Scholar 

  • Nagahashi G, Douds DD Jr (1999) A rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi. Biotech Tech 13:893–897

    Article  CAS  Google Scholar 

  • Nagahashi G, Douds DD Jr (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104:1453–1464

    Article  Google Scholar 

  • Nagahashi G, Douds DD Jr (2007) Separated components of root exudate and cytosol stimulate different morphologically identifiable types of branching responses by arbuscular mycorrhizal fungi. Mycol Res 111:487–492

    Article  PubMed  Google Scholar 

  • Nagahashi G, Abney G, Doner LW (1996) A comparative study of phenolic acids associated with cell walls and cytoplasmic extracts of host and non-host roots for AM fungi. New Phytol 133:281–288

    Article  CAS  Google Scholar 

  • Nair MG, Safir G, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439

    CAS  PubMed  Google Scholar 

  • Perry LG, Weir TL, Prithiviraj B, Paschke MW, Vivanco JM (2006) Root exudation and rhizosphere biology: multiple functions of a plant secondary metabolite. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer-Verlag, Berlin/Heidelberg, pp 403–420

    Chapter  Google Scholar 

  • Poulin MJ, Bel-Rhlid R, Piché Y, Chenevert R (1993) Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol 19:2317–2327

    Article  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

    CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells MJ, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Experientia 48:410–414

    Google Scholar 

  • Scervino JM, Ponce M, Erra-Bassells R, Bompadre J, Vierheilig H, Ocampo JA, Godeas A (2007) The effect of flavones and flavonols on the colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Can J Microbiol 53:702–709

    Article  CAS  Google Scholar 

  • Shaul-Keinan O, Gadkar V, Ginzberg I, Grunzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Atzmon N, Ben-Tal Y, Kapulnik Y (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501–507

    Article  CAS  Google Scholar 

  • Sjögren J, Magnusson J, Broberg A, Kenne JS (2003) Antifungal 3-hydroxy fatty acids from Lactobacillus planta. Appl Environ Microbiol 69:7554–7557

    Article  PubMed  Google Scholar 

  • Sumner LW, Mendes P, Ra D (2003) Plant metabolomics: large scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Tawaraya K, Hashimoto K, Wagatsuma T (1998) Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonization by the arbuscular mycorrhizal fungus Gigspora margarita. Mycorrhiza 8:67–70

    Article  CAS  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux J-A (2005) Dependence of arbuscular–mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347

    Article  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Micro 15:109–118

    Article  CAS  Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1996) Effect of slow growth on metabolism of Escherichia coli as revealed by global metabolite pool (“metabolome”) analysis. J Bact 180:5109–5116

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003a) Root exudation and rhizophere biology. Plant Physiol 132:44–51

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003b) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554

    Article  CAS  PubMed  Google Scholar 

  • Worsham AD, Klingman GC, Moreland DE (1962) Promotion of germination of Striga asiatica seed by coumarin derivatives and effects on seedling development. Nature 195:199–201

    Article  CAS  Google Scholar 

  • Yamane A, Nishimura H, Mizutani J (1992) Allelopathy of yellow fieldgrass (Rorippa sylvestris): identification and characterization of phytotoxic constituents. J Chem Ecol 18:683–691

    Article  CAS  Google Scholar 

  • Yasuda N, Sugimoto Y, Kato IS, Yoneyama K (2003) (+)-Strigol, a witchweed seed germination stimulant, from Menispermum dauricum root culture. Phytochemistry 62:1115–1119

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Sato D, Takeuchi Y, Sekimoto H, Yokota T, Sassa T (2006) Search for germination stimulants and inhibitors for parasitic weeds. In: Duke SO, Rimando A (eds) Natural products for pest management. ACS, Washington, DC, pp 88–98

    Chapter  Google Scholar 

  • Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007a) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007b) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Zulak KG, Cornish C, Daskalchuk TE, Deyholos MK, Goodenowe DB, Gordon PMK, Klassen D, Pelcher L, Sensen CW, Facchini PJ (2007) Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta 225:1085–1096

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Douds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nagahashi, G., Douds, D.D., Ferhatoglu, Y. (2010). Functional Categories of Root Exudate Compounds and their Relevance to AM Fungal Growth. In: Koltai, H., Kapulnik, Y. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9489-6_2

Download citation

Publish with us

Policies and ethics