Skip to main content

Effect of Differences Among Crop Species and Cultivars on the Arbuscular Mycorrhizal Symbiosis

  • Chapter
  • First Online:
Arbuscular Mycorrhizas: Physiology and Function

Abstract

The persistence of the arbuscular mycorrhizal symbiosis, is maintained in crop plants after, in many cases, decades of breeding new varieties with no consideration for the symbiosis presence or role. Differences in the responsiveness and dependence of diverse genotypes of legumes, cereals and tree crops to the symbiosis have been found, however no clear pattern for the variation has been shown. Facultative mycotrophs might have been selected in crop species because they would have a competitive advantage, being able to uptake phosphorus as efficiently whatever the mycorrhizal status of the field was. The use of field trials might have preserved the symbiotic capacity in the varieties obtained up till now. Plant–host metabolic and genomic findings should be taken into consideration in the new breeding technologies to work towards a holistic approach to breeding crop cultivars that makes full use of the arbuscular mycorrhizal symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMF:

Arbuscular Mycorrhizal Fungi

MD:

Mycorrhizal Dependency

GM:

Genetically modified

References

  • Aguin O, Mansilla P, Vilariño A, Sainz MJ (2004) Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. Am J Enol Viticult 55:108–111

    Google Scholar 

  • An GH, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T, Ezawa T (2009) How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasms. Plant Soil. doi:DOI 10.1007/s11104-009-0073-3

    Google Scholar 

  • Azcon R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat species. New Phytol 87:677–685

    Article  CAS  Google Scholar 

  • Bagyaraj DJ, Manjunath A, Patil RB (1979) Occurence of Vesicular-arbuscular mycorrhizas in some tropical aquatic plants. Trans Br Mycol Soc 72:164–167

    Article  Google Scholar 

  • Bala S, Singh OS (1985) Response of lentil to VA Mycorrhizal inoculation and plant available P levels of unsterile soils. Plant Soil 87:445–447

    Article  Google Scholar 

  • Baon JB, Smith SE, Alston AM, Wheeler RD (1992) Phosphorus efficiency of three cereals as related to indigenous mycorrhizal infection. Aust J Agric Res 43:479–491

    Article  CAS  Google Scholar 

  • Barranco D, Rallo L (2000) Olive cultivars in Spain. Hortech 10:107–110

    Google Scholar 

  • Bever JD, Schultz PA, Miller RM, Gades L, Jastrow JD (2003) Inoculation with prairie mycorrhizal fungi may improve restoration of native prairie plant diversity. Ecol Restor 21:311–312

    Article  Google Scholar 

  • Binet MN, Lemoine MC, Martin C, Chambon C, Gianinazzi S (2007) Micropropagation of olive (Olea europea L.) and application of mycorrhiza to improve plantlet establishment. In Vitro Cell Dev Biol 43:473–478

    CAS  Google Scholar 

  • Calvente R, Cano C, Ferrol N, Azcon-Aguilar C, Barea JM (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Appl Soil Ecol 26:11–19

    Article  Google Scholar 

  • Calvet C, Pinochet J, Camprubi A, Fernández C (1995) Increased tolerance to the root-lesion nematode Pratylenchus vulnus in mycorrhizal micropropagated BA-29 quince rootstock. Mycorrhiza 5:253–258

    Google Scholar 

  • Calvet C, Estaun V, Camprubi A, Hernandez-Dorrego A, Pinochet J, Moreno MA (2004) Aptitude for mycorrhizal root colonization in Prunus rootstocks. Scientia Horticult 100:39–49

    Article  Google Scholar 

  • Calvet C, García-Figueres F, Camprubí A, Estaún V (2006) Evaluation of plant resistance to white root rot in fruit tree rootstocks: A response dependent on the mycorrhizal status. V Internacional Conference on Mycorrhizae, ICOM 5 Granada

    Google Scholar 

  • Calvet C, Camprubí A, Estaún V, Luque J, De Herralde F, Biel C, Savé R, García-Figueres F (2007) Aplicación de la simbiosis micorriza arbuscular al cultivo de la vid. Viticultura y Enología Profesional 110:23–32

    Google Scholar 

  • Camprubi A, Pinochet J, Calvet C, Estaun V (1993) Effects of root-lesion nematode Pratylenchus vulnus and vesicular-arbuscular mycorrhizal fungus Glomus mosseae on the growth of three plum rootstocks. Plant Soil 153:223–229

    Article  Google Scholar 

  • Camprubí A, Calvet C (1996) Isolation and screening of mycorrhizal fungi from citrus nurseries and orchards and inoculation studies. Hortscience 31:366–369

    Google Scholar 

  • Camprubí A, Estaún V, Nogales A, Garcia-Figueres F, Pitet M, Calvet C (2008) Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 18:211–216

    Article  PubMed  Google Scholar 

  • Chaubal R, Sharma GD, Mishra RR (1982) Vesicular arbuscular mycorrhiza in subtropical aquatic and marshy plant communities. Proc Ind Acad Sci (Plant Sol) 91:69–77

    Google Scholar 

  • Clayton JS, Bagyaray DJ (1984) Vesicular–arbuscular mycorrhizas in submerged aquatic plants of New Zealand. Aquat Bot 19:251–262

    Article  Google Scholar 

  • Cook DR (1999) Medicago truncatula: a model in the making. Curr Opin Plant Biol 2:301–304

    Article  CAS  PubMed  Google Scholar 

  • Culver DJ, Ramming DW, McKenry MV (1989) Procedures for field and greenhouse screening of Prunus genotypes for resistance and tolerance to root-lesion nematode. Proc Am Soc Hort Sci 114:30–35

    Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci 60:215–222

    Article  Google Scholar 

  • Eason WR, Webb KJ, Michaelson-Yeates TPT, Abberton MT, Griffith GW, Culshaw CM, Hooker JE, Dhanoa MS (2001) Effect of genotype of Trifolium repens on mycorrhizal symbiosis with Glomus mosseae. J Agric Sci 137:113–122

    Article  Google Scholar 

  • Erre P, Chessa I, Muñoz-Diez C, Belaj A, Rallo L, Trujillo I (2009) Genetic diversity and relationships between wild and cultivated olives (Olea europea L.) in Sardinia as assessed by SSR markers. Genetic resources and Crop Evolution. DOI 10.1007/s10722-009-9449-8

    Google Scholar 

  • Estaún V, Calvet C, Camprubi A (1994) Arbuscular mycorrhizae and growth enhancement of micropropagated Prunus rootstock in different soilless potting mixes. Agricult Sci Finland 3:263–267

    Google Scholar 

  • Estaún V, Calvet C, Hayman DS (1987) Influence of plant genotype on mycorrhizal infection: Response of three pea cultivars. Plant Soil 103:295–298

    Article  Google Scholar 

  • Estaún V, Calvet C, Camprubi A, Pinochet J (1999) Long term effects of nursery starter substrate and AM inoculation of micropropagated peach x almond hybrid rootstock. Agronomie 19:483–489

    Article  Google Scholar 

  • Estaún V, Savé R, Biel C (1997) AM inoculation as a biological tool to improve plant revegetation of a disturbed soil with Rosmarinus officinalis under semi-arid conditions. Appl Soil Ecol 6:223–229

    Article  Google Scholar 

  • Estaún V, Camprubi A, Calvet C, Pinochet J (2003) Nursery and field response of olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. J Am Soc Horticult Sci 128:767–775

    Google Scholar 

  • Estaún V, Vicente S, Camprubi A, Calvet C, Busquets M (2007) Integration of arbuscular mycorrhizal inoculation in hydroseeding technology. Effects on plant growth and inter-species competition. Land Degrad Devel 18:621–630

    Article  Google Scholar 

  • Estaún V, Calvet C, Camprubí A, Ortas I, Orfanoudakis M, Dag A, Kapulnik Y (2009) Efectividad de la inoculación con micorrizas del olivo: estudios en distintas condiciones de suelos mediterráneos. II jornadas nacionales de Olivicultura. SECH, Tarragona

    Google Scholar 

  • FAOSTAT (2006) Food and Agriculture Statistics Global Outlook http://faostat.fao.org

    Google Scholar 

  • Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6

    Article  CAS  PubMed  Google Scholar 

  • Franken P, Requena N (2001) Analysis of gene expression in arbuscular mycorrhiza: new approaches and challenges. New Phytol 150:431–439

    Article  Google Scholar 

  • Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291

    Article  CAS  Google Scholar 

  • Gerdemann JW (1975) Vesicular-arbuscular mycorrhizae. In: Torrey JG, Clarkson DI (eds) The development and function of roots. Academic, London

    Google Scholar 

  • Gilmore AE (1971) The influence of endotrophic mycorrhizae on the growth of peach seedlings. J Am Soc horticult Sci 96:35–38

    Google Scholar 

  • Graham JH, Syversten JP (1985) Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol 101:667–676

    Article  Google Scholar 

  • Granger RL, Plenchette C, Fortin JA (1983) Effect of vesicular–arbuscular (VA) endomycorrhizal fungus (Glomus epigaeum) on the growth and leaf mineral content of two apple clones propagated in vitro. Can J Plant Sci 63:551–555

    Article  CAS  Google Scholar 

  • Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol 55:553–566

    Article  CAS  PubMed  Google Scholar 

  • Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. PNAS 102:8066–8070

    Article  PubMed  Google Scholar 

  • Gupta N, Ali SS (1993) VAM inoculation for wetland rice. Mycorrhiza News 5:5–6

    Google Scholar 

  • Hacisalihoglu G, Duke ER, Longo LM (2005) Differential response of common bean genotypes to mycorrhizal colonization. Proc Flor State Hort Soc 118:150–152

    Google Scholar 

  • Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence on intraspecific and interspecific neighbor interactions among cooccurring prairie grasses. J Ecol 81:787–795

    Article  Google Scholar 

  • Hernández-Dorrego A, Calvet C, Pinochet J, Camprubí A, Estaún V, Bonet A (1998) Growth response of the plum rootstock AD 101 to mycorrhizal inoculation with Glomus mosseae and Glomus intraradices in a replant soil infested with nematodes. Second International Conference on Mycorrhiza (ICOM II) Uppsala

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Gill BS, Cox TS (1995) Chromosome location of mycorrhizal responsive genes in wheat. Can J Bot 73:891–897

    Article  Google Scholar 

  • Ishii T, Kadoya K (1994) Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J Japanese Soc Hort Sci 63:529–535

    Article  CAS  Google Scholar 

  • Janos DP (2007) Plant responsiveness from mycorrhiza differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Jemo M, Abaidoo RC, Nolte C, Horst WJ (2006) Genotypic variation for phosphorus uptake and dinitrogen fixation in cowpea on low-phosphorus soils of southern Cameroon. J Plant Nutr Soil Sci 169:816–825

    Article  CAS  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40:358–364

    Article  Google Scholar 

  • Kirk A, Fox S, Entz M, Tenuta M (2008) Preliminary findings on the arbuscular mycorrhizal colonization of organic wheat. 16th IFOAM Organic World Congress, Modena, Italy, http//orgprints.org/11917

    Google Scholar 

  • Kleikamp B, Joergensen RG (2006) Evaluation of arbuscular mycorrhiza with symbiotic and nonsymbiotic pea isolines at three sites in the Alentejo, Portugal. J Plant Nutr Soil Sci 169:661–669

    Article  CAS  Google Scholar 

  • Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Horticult 106:554–567

    Article  CAS  Google Scholar 

  • Levy Y, Dodd J, Krikun J (1983) Effect of irrigation, water salinity and rootstock on the vertical distribution of vesicular arbuscular mycorrhiza in citrus roots. New Phytol 95:367–403

    Article  Google Scholar 

  • Lindermann RG (1988) VA (Vesicular–Arbuscular) Mycorrhizal Symbiosis, vol. 1. Institute for Scientific Information, ISI Atlas of Science: Animal and Plant Sciences, Philadelphia, PA, pp. 183–188.

    Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant Microbe Interact 17:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Marsh JF, Schultze M (2001) Analysis of arbuscular-mycorrhizas using symbiosis-defective plant mutants. New Phytol 150:525–532

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press

    Google Scholar 

  • Martinez-Gomez P, Sanchez-Perez R, Rubio M, Dicenta F, Gradziel TM, Sozzi GO (2005) Application of recent biotechnologies to Prunus tree crop genetic improvement. Ciencia e Investigacion Agrarias 32:73–96

    Google Scholar 

  • Massoumou M, van Tuinen D, Chatagnier O, Arnould C, Brechenmacher L, Sanchez l, Selim S, Gianinazzi S, Gianinazzi-Pearson V (2007) Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota. Mycorrhiza 17:223–234

    Article  CAS  PubMed  Google Scholar 

  • Meghvansi MK, Prasad K, Harwani D, Mahna SK (2008) Response of soilbean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. Eur J Soil Biol 44:316–323

    Article  CAS  Google Scholar 

  • Menge JA, Johnson ELV, Platt RG (1978) Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytol 81:553–559

    Article  CAS  Google Scholar 

  • Mojo HS, Hendrix JW (1986) The mycorrhizal fungus Glomus macrocarpum as a cause of the tobacco stunt disease. Phytopathology 76:668–691

    Google Scholar 

  • Monticelli S, Puppi G, Damiano C (2000) Effects of in vivo mycorrhization on micropropagated fruit tree rootstocks. Appl Soil Ecol 15:105–111

    Article  Google Scholar 

  • Morandi D, Gollotte A, Camporota P (2002) Influence of an arbuscular mycorrhizal fungus on the interaction of a binucleate Rhizoctonia species with Myc+ and Myc– pea roots. Mycorrhiza 12:97–102

    Article  CAS  PubMed  Google Scholar 

  • Nelson CE (1987) The water relations of vesicular–arbuscular mycorrhizal systems. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, FL, pp 71–92

    Google Scholar 

  • Nemec S (1979) Response of six citrus rootstocks to three species of Glomus, a mycorrhizal fungus. Citrus Indus Mag 5:5–14

    Google Scholar 

  • Nemec S (1987) VA mycorrhiza in horticultural systems. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, FL, pp 193–211

    Google Scholar 

  • Nogales A, Camprubi A, Estaun V, Calvet C (2008) Mycorrhizal inoculation of grapevines in replant soils: improved field application and plant performance. Proceedings of the COST Action 870 meeting: Mycorrhiza application in sustainable agriculture and natural systems, Tessalonikki (Greece) pp 103–111

    Google Scholar 

  • Ortas I (2003) The effect of mycorrhizal inoculation on forage and non-forage plant growth and nutrient uptake under field conditions. Options Mediterranéennes A 79:463–469

    Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionary divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer CM, Bloss HE (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular–arbuscular mycorrhizae and phosphorus fertilization. New Phytol 108:315–321

    Article  Google Scholar 

  • Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73:4365–4367

    Article  CAS  PubMed  Google Scholar 

  • Reed HS, Fremont T (1935) Factors that influence the formation and development of mycorrhizal associations in citrus roots. Phytopathology 25:645–647

    Google Scholar 

  • Roldan-Fajardo BE, Barea JM (1985) Mycorrhizal dependency in the olive tree (Olea europaea L) In: Gianinazzi-Pearson V, Gianinazzi S (eds). Physiological and genetical aspects of mycorrhiza. INRA.

    Google Scholar 

  • Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    Article  CAS  PubMed  Google Scholar 

  • Saxena AK, Shende R, Tilak KVBR (2002) Interaction of arbuscular mycorrhiza with nitrogen-fixing bacteria. In: Sharma AK, Johri BN (eds) Arbuscular mycorrhizae. Interactions in plants rhizosphere and soils. Science Publishers, Enfield, NH

    Google Scholar 

  • Schoeneberger MM, Volk RJ, Davey CB (1989) Factors influencing early performance of leguminous plants in forest soils. Soil Sci Am J 53:1429–1434

    Article  Google Scholar 

  • Schreiner RP (2003) Mycorrhizal colonization of grapevine rootstocks under field conditions. Am J Enol Viticult 54:143–149

    Google Scholar 

  • Schreiner RP (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of “Pinot noir” (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215

    Article  Google Scholar 

  • Schubert A, Previati A, Zanetti R (1996) Effetti dell’inoculo con funghi micorrizici arbusculari su piante da frutto micropropagate. III giornate Scientifiche S.O.I: 85–87

    Google Scholar 

  • Secilia J, Bagyaraj DJ (1994) Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice: a preliminary screen. Mycorrhiza 4:265–268

    Article  Google Scholar 

  • Sinvany G, Kalpulnik Y, Wininger S, Badaxi H, Jurkevitch E (2002) The early nodulin enod40 is induced by and also promotes arbuscular mycorrhizal root colonization. Physiol Mol Plant Pathol 60:103–109

    Article  CAS  Google Scholar 

  • Sivaprasad P, Sulochana KK, Salam MA (1990) Vesicular arbuscular mycorrhizae (VAM) colonization in lowland rice roots and its effect on growth and yield. Int Rice Res Newslett 15:14–15

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  PubMed  Google Scholar 

  • Vestberg M, Estaún V (1994) Micropropagated plants, an opportunity to positively mange ­mycorrhizal activities. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on ­sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel

    Google Scholar 

  • Vierheilig H, Ocampo JA (1991) Susceptibility and effectiveness of vesicular-arbuscular mycorrhizae in wheat cultivars under different growing conditions. Biol Fert Soils 11:290–294

    Article  Google Scholar 

  • Vitagliano C, Citernesi AS (1999) Plant growth of Olea europaea L. as influenced by arbuscular mycorrhizal fungi. ISHS Acta Horticulturae 474:357–362

    Google Scholar 

  • Warnock P (2007) Identification of ancient olive oil processing methods based on olive remains. British Archaeological Reports, Oxford, England

    Google Scholar 

  • Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738

    Article  CAS  PubMed  Google Scholar 

  • Wilson GWT, Harnett DC, Smith MD, Kobbeman K (2001) Effects of mycorrhizae on growth and demography of tallgrass prairie forbs. Am J Bot 88:1452–1457

    Article  CAS  PubMed  Google Scholar 

  • Wright DP, Scholes JD, Read DJ, Rolfe SA (2005) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167:881–896

    Article  CAS  PubMed  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188

    Article  CAS  Google Scholar 

  • Youpensuk S, Lordkaew S, Rerkasem B (2009) Genotypic variation in responses of Citrus spp. to arbuscular mycorrhizal fungi. J Agric Sci 1:59–65

    Google Scholar 

  • Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

  • Zhu YG, Smith FA, Smith SE (2003) Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza 13:93–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the continued support of the Spanish Ministry of Science (MEC/MICINN) and the Instituto de Investigaciones Agrarias (INIA), and their respective ongoing grants: CGL2006-0564/BOS and RTA2007-00039-00-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Estaún .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Estaún, V., Calvet, C., Camprubí, A. (2010). Effect of Differences Among Crop Species and Cultivars on the Arbuscular Mycorrhizal Symbiosis. In: Koltai, H., Kapulnik, Y. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9489-6_13

Download citation

Publish with us

Policies and ethics