Skip to main content

Fungal Spore Germination and Pre-symbiotic Mycelial Growth – Physiological and Genetic Aspects

  • Chapter
  • First Online:
Arbuscular Mycorrhizas: Physiology and Function

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs, living symbiotically in the roots of most land plants. They form spores in the soil, which are able to germinate and grow, but are unable to complete their life cycle without establishing a functional symbiosis with a host plant. In this chapter, results of recent studies providing new insights into the main developmental switches occurring in the fungal organism, from the relief of spore dormancy to the development of germlings and growth arrest in the absence of the host, are reviewed. The knowledge of environmental, cytological, biochemical and molecular events involved in early stages of AMF life cycle may reveal how these obligate symbionts com­pensate for the lack of host-regulated spore germination, possibly representing a strong selective disadvantage. Diverse scientific approaches showed multiple survival strategies, active during pre-symbiotic mycelial growth, contributing to the survival of AM fungal individuals and populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1977) The distribution and abundance of vesicular-arbuscular endophytes in some Western Australian soils. Aust J Bot 25:515–522

    Article  Google Scholar 

  • Ames RN, Mihara KL, Bayne HG (1989) Chitin-decomposing actynomycetes associated with a vesicular-arbuscular mycorrhizal fungus from a calcareous soil. New Phytol 111:67–71

    Article  Google Scholar 

  • Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215

    Article  CAS  PubMed  Google Scholar 

  • Astrom H, Giovannetti M, Raudaskoski M (1994) Cytoskeletal components in the arbuscular mycorrhizal fungus Glomus mosseae. Mol Plant Microbe Interact 7:309–312

    Article  Google Scholar 

  • Avio L, Giovannetti M (1998) The protein pattern of spores of arbuscular mycorrhizal fungi: comparison of species, isolates and physiological stages. Mycol Res 102:985–990

    Article  CAS  Google Scholar 

  • Avio L, Cristani C, Strani P, Giovannetti M (2009) Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. Can J Microbiol 55:242–253

    Article  CAS  PubMed  Google Scholar 

  • Ayling SM, Smith SE, Smith FA (2000) Transmembrane electric potential difference of germ tubes of arbuscular mycorrhizal fungi responds to external stimuli. New Phytol 147:631–639

    Article  Google Scholar 

  • Azcón R (1987) Germination and hyphal growth of Glomus mosseae in vitro. Effect of rhizosphere bacteria and cell-free culture media. Soil Biol Biochem 19:417–419

    Article  Google Scholar 

  • Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639–644

    Article  Google Scholar 

  • Azcón R, Ocampo JA (1984) Effect of root exudation on VA mycorrhizal infection at early stages of plant growth. Plant Soil 82:133–138

    Article  Google Scholar 

  • Azcón-Aguilar C, Diaz-Rodriguez RM, Barea JM (1986) Effect of soil micro-organisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans Br Mycol Soc 86:337–340

    Article  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Chamberland H, Lafontaine JG, Webb WW, Piche Y (1998) In vivo studies on the nuclear behavior of the arbuscular mycorrhizal fungus Gigaspora rosea grown under axenic conditions. Protoplasma 203:1–15

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Douds DD, Brouillette J, Becard G, Shachar-Hill Y (1999a) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–271

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Piche Y (1999b) Nuclei of symbiotic arbuscular mycorrhizal fungi as revealed by in vivo two-photon microscopy. Protoplasma 209:77–89

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002a) Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Metabolism and transport in AM fungi. Plant Soil 244:189–197

    Article  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002b) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  CAS  PubMed  Google Scholar 

  • Bainard LD, Brown PD, Upadhyaya MK (2009) Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and arbuscular mycorrhizal fungi. Weed Sci 57:386–393

    Article  CAS  Google Scholar 

  • Bartolome-Esteban H, Schenck NC (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminum saturation. Mycologia 86:217–226

    Article  CAS  Google Scholar 

  • Becker WN, Hall IR (1976) Gigaspora margarita, a new species in the Endogonaceae. Mycotaxon 4:155–160

    Google Scholar 

  • Beilby JP (1983) Effects of inhibitors on early protein, RNA, and lipid synthesis in germinating vesicular-arbuscular mycorrhizal fungal spores of Glomus caledonium. Can J Microbiol 29:596–601

    Article  CAS  PubMed  Google Scholar 

  • Beilby JP, Kidby DK (1980) Biochemistry of ungerminated and germinated spores of the vesicular-arbuscular mycorrhizal fungus, Glomus caledonium: changes in neutral and polar lipids. J Lipid Res 21:739–750

    CAS  PubMed  Google Scholar 

  • Beilby JP, Kidby DK (1982) The early synthesis of RNA, protein, and some associated metabolic events in germinating vesicular-arbuscular mycorrhizal fungal spores of Glomus caledonium. Can J Microbiol 28:623–628

    Article  CAS  Google Scholar 

  • Bendavid-Val R, Rabinowitch HD, Katan J, Kapulnik Y (1997) Viability of VA-mycorrhizal fungi following soil solarization and fumigation. Plant Soil 195:185–193

    Article  CAS  Google Scholar 

  • Berbara RLL, Morris BM, Fonseca HMAC, Reid B, Gow NAR, Daft MJ (1995) Electrical ­currents associated with arbuscular mycorrhizal interactions. New Phytol 129:433–438

    Article  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    Article  PubMed  CAS  Google Scholar 

  • Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413

    Article  CAS  PubMed  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  Google Scholar 

  • Bécard G, Doner LW, Rolin DB, Douds DD, Pfeffer PE (1991) Identification and quantification of trehalose in vesicular-arbuscular mycorrhizal fungi by in vivo C-13 NMR and HPLC analyses. New Phytol 118:547–552

    Article  Google Scholar 

  • Bécard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 174:62–68

    Article  Google Scholar 

  • Bianciotto V, Bonfante P (1993) Evidence of DNA replication in an arbuscular mycorrhizal fungus in the absence of the host plant. Protoplasma 176:100–105

    Article  CAS  Google Scholar 

  • Bianciotto V, Barbiero G, Bonfante P (1995) Analysis of the cell cycle in an arbuscular mycorrhizal fungus by flow cytometry and bromodeoxyuridine labelling. Protoplasma 188:161–169

    Article  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus Glomeribacter gigasporarum’ gen. nov., sp nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi A, Wiemken A, Boller T, Salzer P (2001) Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol 3:194–199

    Article  CAS  Google Scholar 

  • Bonfante P, Balestrini R, Mendgen K (1994) Storage and secretion processes in the spore of Gigaspora margarita Becker & Hall as revealed by high-pressure freezing and freeze substitution. New Phytol 128:93–101

    Article  Google Scholar 

  • Braunberger PG, Abbott LK, Robson AD (1996) Infectivity of arbuscular mycorrhizal fungi after wetting and drying. New Phytol 134:673–684

    Article  Google Scholar 

  • Breuninger M, Trujillo CG, Serrano E, Fischer R, Requena N (2004) Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fungal Genet Biol 41:542–552

    Article  CAS  PubMed  Google Scholar 

  • Bücking H, Abubaker J, Govindarajulu M, Tala M, Pfeffer PE, Nagahashi G, Lammers P, Shachar-Hill Y (2008) Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of Glomus intraradices. New Phytol 180:684–695

    Article  PubMed  CAS  Google Scholar 

  • Buée M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698

    Article  PubMed  Google Scholar 

  • Burggraaf JP, Beringer JE (1989) Absence of nuclear DNA synthesis in vesicular-arbuscular mycorrhizal fungi during in vitro development. New Phytol 111:25–33

    Article  Google Scholar 

  • Butehorn B, Gianinazzi-Pearson V, Franken P (1999) Quantification of beta-tubulin RNA expression during asymbiotic and symbiotic development of the arbuscular mycorrhizal fungus Glomus mosseae. Mycol Res 103:360–364

    Article  CAS  Google Scholar 

  • Calvet C, Barea JM, Pera J (1992) In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol Biochem 24:775–780

    Article  Google Scholar 

  • Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451

    Article  CAS  Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729

    Article  CAS  PubMed  Google Scholar 

  • Chabaud M, Venard C, Defaux PA, Becard G, Barker DG (2002) Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytol 156:265–273

    Article  CAS  Google Scholar 

  • Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22

    Article  CAS  Google Scholar 

  • Corradi N, Sanders IR (2006) Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices. BMC Evol Biol 6:21

    Article  PubMed  CAS  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  CAS  PubMed  Google Scholar 

  • da Silva DKA, Freitas ND, Cuenca G, Maia LC, Oehl F (2008) Scutellospora pernambucana, a new fungal species in the Glomeromycetes with a diagnostic germination orb. Mycotaxon 106:361–370

    Google Scholar 

  • Daniels BA, Graham SO (1976) Effects of nutrition and soil extracts on germination of Glomus mosseae spores. Mycologia 68:108–116

    Article  Google Scholar 

  • Daniels BA, Trappe JM (1980) Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 72:457–471

    Article  CAS  Google Scholar 

  • Schwartz RD, Badani H, Smadar W, Levy AA, Galili G, Kapulnik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J 27:561–569

    Article  Google Scholar 

  • David Schwartz R, Gadkar V, Wininger S, Bendov R, Galili G, Levy AA, Kapulnik Y (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol Plant Microbe Interact 16:382–388

    Article  CAS  PubMed  Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271

    Article  PubMed  Google Scholar 

  • de Miranda JCC, Harris PJ (1994) Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytol 128:103–108

    Article  CAS  Google Scholar 

  • de Souza FA, Declerck S (2003) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004–1012

    Article  PubMed  Google Scholar 

  • Delano-Frier JP, Tejeda-Sartorius M (2008) Unraveling the network: novel developments in the understanding of signaling and nutrient exchange mechanisms in the arbuscular mycorrhizal symbiosis. Plant Signal Behav 3:936

    PubMed  Google Scholar 

  • Douds DD, Schenck NC (1991) Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol Biochem 23:177–183

    Article  Google Scholar 

  • Douds DD, Nagahashi G, Abney GD (1996) The differential effects of cell wall associated phenolics, cell walls, and cytosolic phenolics of host and non host roots on the growth of two species of AM fungi. New Phytol 133:289–294

    Article  CAS  Google Scholar 

  • Douds DD (1997) A procedure for the establishment of Glomus mosseae in dual culture with Ri T-DNA-transformed carrot roots. Mycorrhiza 7:57–61

    Article  CAS  Google Scholar 

  • El-Atrach F, Vierheilig H, Ocampo JA (1989) Influence of non-host plants on vesicular-arbuscular mycorrhizal infection of host plants and on spore germination. Soil Biol Biochem 21:161–163

    Article  Google Scholar 

  • El Gachtouli N, Paynot M, Morandi D, Gianinazzi S (1996) Effect of polyamines on endomycorrhizal infection of Pisum sativum and spore germination of Glomus mosseae. In: Azcón-Aguilar C, Barea JM (eds) Mycorrhizas in integrated Systems: from genes to plant development. European Commission, Luxembourg

    Google Scholar 

  • Elfstrand M, Feddermann N, Ineichen K, Nagaraj VJ, Wiemken A, Boller T, Salzer P (2005) Ectopic expression of the mycorrhiza-specific chitinase gene Mtchit 3-3 in Medicago truncatula root-organ cultures stimulates spore germination of glomalean fungi. New Phytol 167:557–570

    Article  CAS  PubMed  Google Scholar 

  • Estaun V (1989) Effect of sodium chloride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Agric Ecosyst Environ 29:123–129

    Article  Google Scholar 

  • Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12

    Google Scholar 

  • Fontaine J, Grandmougin FA, Hartmann MA, Sancholle M (2001a) Sterol biosynthesis by the arbuscular mycorrhizal fungus Glomus intraradices. Lipids 36:1357–1363

    Article  CAS  PubMed  Google Scholar 

  • Fontaine J, Grandmougin FA, Sancholle M (2001b) Lipid metabolism of the endomycorrhizal fungus Glomus intraradices. CR Acad Sci III-Vie 324:847–853

    Article  CAS  Google Scholar 

  • Fracchia S, Mujica MT, Garcia Romera I, Garcia Garrido JM, Martin J et al (1998) Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant Soil 200:131–137

    Article  CAS  Google Scholar 

  • Franken P, Lapopin L, MeyerGauen G, Gianinazzi-Pearson V (1997) RNA accumulation and genes expressed in spores of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycologia 89:293–297

    Article  CAS  Google Scholar 

  • Franken P, Requena N, Bütehorn B, Krajinski F, Kuhn G, Lapopin L, Mann P, Rhody D, Stommel M (2000) Molecular analysis of the arbuscular mycorrhiza symbiosis. Arch Agric Soil Sci 45:271–286

    Article  CAS  Google Scholar 

  • Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, Jin H, Nagahashi G, Lammers PJ, Shachar-Hill Y, Bücking H (2009) Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol 184:399-411

    PubMed  Google Scholar 

  • Gadkar V, David SR, Nagahashi G, Douds DD, Wininger S, Kapulnik Y (2003) Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiol Lett 223:193–198

    Article  CAS  PubMed  Google Scholar 

  • Gaspar ML, Pollero RJ, Cabello MN (1994) Triacylglycerol consumption during spore germination of vesicular-arbuscular mycorrhizal fungi. J Am Oil Chem Soc 71:449–452

    Article  CAS  Google Scholar 

  • Gaspar ML, Pollero R, Cabello M (1997) Partial purification and characterization of a lipolytic enzyme from spores of the arbuscular mycorrhizal fungus Glomus versiforme. Mycologia 89:610–614

    Article  CAS  Google Scholar 

  • Gazey C, Abbott LK, Robson AD (1993) VA mycorrhizal spores from three species of Acaulospora – Germination, longevity and hyphal growth. Mycol Res 97:785–790

    Article  Google Scholar 

  • Gemma JN, Koske RE (1988) Seasonal variation in spore abundance and dormancy of Gigaspora gigantea and in mycorrhizal inoculum-potential of a dune soil. Mycologia 80:211–216

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal tolerant strain of a mycorrhizal fungus. Trans Br Mycol Soc 77:648–649

    Article  Google Scholar 

  • Giovannetti M (1983) Establishment and growth effects of Glomus mosseae on the legume Hedysarum coronarium L. growing in poor alkaline soils. Soil Biol Biochem 15:385–387

    Article  Google Scholar 

  • Giovannetti M (2000) Spore germination and pre-symbiotic mycelia growth. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Giovannetti M (2002) Survival strategies in arbuscular mycorrhizal symbionts. In: Sechback J (ed) Symbiosis mechanisms and model systems. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–715

    Article  Google Scholar 

  • Giovannetti M, Sbrana C (1998) Meeting a nonhost: the behaviour of arbuscular mycorrhizal symbionts. Mycorrhiza 8:123–130

    Article  Google Scholar 

  • Giovannetti M, Avio L, Salutini L (1991) Morphological, cytochemical, and ontogenetic ­characteristics of a new species of a vesicular-arbuscular mycorrhizal fungus. Can J Bot 69:161–167

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993a) Factors affecting appressorium development in the vesicular- arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.)Gerd. & Trappe. New Phytol 123:114–122

    Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–594

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71

    Article  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    CAS  PubMed  Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (2000) Microchambers and video-enhanced light microscopy for monitoring cellular events in living hyphae of arbuscular mycorrhizal fungi. Plant Soil 226:153–159

    Article  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  CAS  PubMed  Google Scholar 

  • Glenn MG, Chew FS, Williams PH (1985) Hyphal penetration of Brassica (Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol 99:463–472

    Article  Google Scholar 

  • Godfrey RM (1957) Studies on British species of Endogone. III. Germination of spores. Trans Br Mycol Soc 40:203–210

    Article  Google Scholar 

  • Gorfer M, Tarkka MT, Hanif M, Pardo AG, Laitiainen ER (2001) Characterization of small GTPases Cdc42 and Rac and the relationship between Cdc42 and actin cytoskeleton in vegetative and ectomycorrhizal hyphae of Suillus bovinus. Mol Plant Microbe Interact 14:135–144

    Article  CAS  PubMed  Google Scholar 

  • Goto BT, Maia LC, Oehl F (2008) Ambispora brasiliensis, a new ornamented species in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 105:11–18

    Google Scholar 

  • Graham JH (1982) Effect of citrus exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeum. Mycologia 74:831–835

    Article  Google Scholar 

  • Green NE, Graham JH, Schenck NC (1976) The influence of pH on the germination of vesicular-arbuscular mycorrhizal spores. Mycologia 68:929–934

    Article  Google Scholar 

  • Gryndler M, Hrselova H, Striteska D (2000) Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol 45:545–551

    Article  CAS  Google Scholar 

  • Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P (2009) Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183:53–61

    Article  CAS  PubMed  Google Scholar 

  • Hepper CM, Smith GA (1976) Observation on the germination of Endogone spores. Trans Br Mycol Soc 66:189–194

    Article  Google Scholar 

  • Hepper CM (1979) Germination and growth of Glomus caledonium spores: the effects of inhibitors and nutrients. Soil Biol Biochem 11:269–277

    Article  CAS  Google Scholar 

  • Hepper CM (1983) Effect of phosphate on germination and growth of vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 80:487–490

    Article  CAS  Google Scholar 

  • Hepper CM (1984a) Inorganic sulphur nutrition of the vesicular-arbuscular mycorrhizal fungus Glomus caledonium. Soil Biol Biochem 16:669–671

    Article  CAS  Google Scholar 

  • Hepper CM (1984b) Regulation of spore germination of the vesicular-arbuscular mycorrhizal fungus Acaulospora laevis by soil pH. Trans Br Mycol Soc 83:154–156

    Article  Google Scholar 

  • Hepper CM, Jakobsen I (1983) Hyphal growth from spores of the mycorrhizal fungus Glomus caledonius: effect of amino acids. Soil Biol Biochem 15:55–58

    Article  CAS  Google Scholar 

  • Hepper CM, Sen R, Maskall CS (1986) Identification of vesicular-arbuscular mycorrhizal fungi in roots of leek (Allium porrum L.) and maize (Zea mays L.) on the basis of enzyme mobility during polyacrylamide gel electrophoresis. New Phytol 102:529–539

    Article  Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  PubMed  Google Scholar 

  • Hirrel MC (1981) The effect of sodium and chloride salts on the germination of Gigaspora margarita. Mycologia 73:610–617

    Article  CAS  Google Scholar 

  • Juge C, Samson J, Bastien C, Vierheilig H, Coughlan A, Piche Y (2002) Breaking dormancy in spores of the arbuscular mycorrhizal fungus Glomus intraradices: a critical cold-storage period. Mycorrhiza 12:37–42

    Article  PubMed  Google Scholar 

  • Jun J, Abubaker J, Rehrer C, Pfeffer PE, Shachar-Hill Y, Lammers PJ (2002) Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cytoskeleton and the cell cycle. Plant Soil 244:141–148

    Article  CAS  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Koske R, Bonin C, Kelly J, Martinez C (1996) Effects of sea water on spore germination of a sand-dune-inhabiting arbuscular mycorrhizal fungus. Mycologia 88:947–950

    Article  Google Scholar 

  • Koske RE (1981a) Gigaspora gigantea: observations on spore germination of a VA-mycorrhizal fungus. Mycologia 73:288–300

    Article  Google Scholar 

  • Koske RE (1981b) Multiple germination by spores of Gigaspora gigantea. Trans Br Mycol Soc 76:328–330

    Article  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  PubMed  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828

    Article  CAS  PubMed  Google Scholar 

  • Kuwada K, Kuramoto M, Utamura M, Matsushita I, Ishii T (2006) Isolation and structural elucidation of a growth stimulant for arbuscular mycorrhizal fungus from Laminaria japonica Areschoug. J Appl Phycol 18:795–800

    Article  CAS  Google Scholar 

  • Lammers PJ, Jun J, Abubaker J, Arreola R, Gopalan A, Bago B, Hernandez Sebastia C, Allen JW, Douds DD, Pfeffer PE, Shachar-Hill Y (2001) The glyoxylate cycle in an arbuscular mycorrhizal fungus. Carbon flux and gene expression. Plant Physiol 127:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256

    Article  CAS  PubMed  Google Scholar 

  • Logi C, Sbrana C, Giovannetti M (1998) Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl Environ Microbiol 64:3473–3479

    CAS  PubMed  Google Scholar 

  • Louis I, Lim G (1988) Effect of storage of inoculum on spore germination of a tropical isolate of Glomus clarum. Mycologia 80:157–161

    Article  Google Scholar 

  • Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Becard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RM, Lewis M (1978) Occurrence of some acid-phosphatases and dehydrogenases in vesicular-arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 80:135–141

    Article  CAS  Google Scholar 

  • Maia LC, Kimbrough JW (1998) Ultrastructural studies of spores and hypha of a Glomus species. Int J Plant Sci 159:581–589

    Article  Google Scholar 

  • Mayo K, Davis RE, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431

    Article  Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Meier R, Charvat I (1992) Germination of Glomus mosseae spores: procedure and ultrastructural analysis. Int J Plant Sci 153:541–549

    Article  Google Scholar 

  • Morton JB, Bentivenga SP, Wheeler WW (1993) Germplasm in the International collection of arbuscular and vesicular-arbuscular mycorrhizal fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491–528

    Google Scholar 

  • Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular- arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286

    Article  Google Scholar 

  • Mosse B (1970a) Honey-coloured sessile Endogone spores. I. Life history. Arch Microbiol 70:167–175

    Google Scholar 

  • Mosse B (1970b) Honey-coloured sessile Endogone spores. II. Changes in fine structure during spore development. Arch Microbiol 74:129–145

    Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Article  Google Scholar 

  • Msiska Z, Morton JB (2009) Phylogenetic analysis of the Glomeromycota by partial beta-tubulin gene sequences. Mycorrhiza 19:247–254

    Article  CAS  PubMed  Google Scholar 

  • Mugnier J, Mosse B (1987) Spore germination and viability of a vesicular arbuscular mycorrhizal fungus, Glomus mosseae. Trans Br Mycol Soc 88:411–413

    Article  Google Scholar 

  • Nagahashi G, Douds DD (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 104(Part 12):1453–1464

    Article  Google Scholar 

  • Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza- stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57:434–439

    CAS  PubMed  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  CAS  PubMed  Google Scholar 

  • Nemec S (1987) Effect of storage temperature and moisture on Glomus species and their subsequent effect on Citrus rootstock seedling growth and mycorrhiza development. Trans Br Mycol Soc 89:205–212

    Article  Google Scholar 

  • Nicolson TH, Schenck NC (1979) Endogonaceous mycorrhizal endophytes in Florida. Mycologia 71:178–198

    Article  Google Scholar 

  • Oba H, Tawaraya K, Wagatsuma T (2002) Inhibition of pre-symbiotic hyphal growth of arbuscular mycorrhizal fungus Gigaspora margarita by root exudates of Lupinus spp. Soil Sci Plant Nutr 48:117–120

    Article  CAS  Google Scholar 

  • Ocampo JA, Martin J, Hayman DS (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infection.I.Host and non-host plants grown together. New Phytol 84:23–25

    Article  Google Scholar 

  • Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360

    Google Scholar 

  • Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195

    Article  CAS  PubMed  Google Scholar 

  • Parra-Garcia MD, Lo Giudice V, Ocampo JA (1992) Absence of VA colonization in Oxalis pes-caprae inoculated with Glomus mosseae. Plant Soil 145:298–300

    Article  Google Scholar 

  • Phipps CJ, Taylor TN (1996) Mixed arbuscular mycorrhizae from the Triassic of Antarctica. Mycologia 88:707–714

    Article  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  PubMed  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2006) Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14-3-3 protein that is up-regulated by drought stress during the AM symbiosis. Microb Ecol 52:575–582

    Article  PubMed  Google Scholar 

  • Powell CL (1976) Development of mycorrhizal infections from Endogone spores and infected root fragments. Trans Br Mycol Soc 66:439–445

    Article  Google Scholar 

  • Ramos AC, Facanha AR, Feijo JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188

    Article  CAS  PubMed  Google Scholar 

  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ (2008) Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem 46:617–626

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000a) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000b) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    Article  CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Fuller P, Franken P (1999) Molecular characterization of GmFOX2, an evolutionarily highly conserved gene from the mycorrhizal fungus Glomus mosseae, down-regulated during interaction with rhizobacteria. Mol Plant Microbe Interact 12:934–942

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Mann P, Franken P (2000) A homologue of the cell cycle check point TOR2 from Saccharomyces cerevisiae exists in the arbuscular mycorrrhizal fungus Glomus mosseae. Protoplasma 212:89–98

    Article  CAS  Google Scholar 

  • Requena N, Mann P, Hampp R, Franken P (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139

    Article  CAS  Google Scholar 

  • Requena N, Breuninger M, Franken P, Ocon A (2003) Symbiotic status, phosphate, and sucrose regulate the expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiol 132:1540–1549

    Article  CAS  PubMed  Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara and Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152

    Article  Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    Article  CAS  PubMed  Google Scholar 

  • Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. New Phytol 129:425–431

    Article  CAS  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vogeli LR, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant Microbe Interact 13:763–777

    Article  CAS  PubMed  Google Scholar 

  • Samra A, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S (1996) Soluble proteins and polypeptide profiles of spores of arbuscular mycorrhizal fungi. Interspecific variability and effects of host (myc(+)) and non-host (myc(−)) – Pisum sativum root exudates. Agronomie 16:709–719

    Article  Google Scholar 

  • Sannazzaro AI, Alvarez CL, Menendez AB, Pieckenstain FL, Alberto EO, Ruiz OA (2004) Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigaspora rosea germinating spores. FEMS Microbiol Lett 230:115–121

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005a) Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. J Plant Interact 1:15–22

    Article  CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005b) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bompadre MJ, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922

    Article  CAS  Google Scholar 

  • Scervino JM, Sampedro I, Ponce MA, Rodriguez MA, Ocampo JA, Godeas A (2008) Rhodotorulic acid enhances root colonization of tomato plants by arbuscular mycorrhizal (AM) fungi due to its stimulatory effect on the pre-symbiotic stages of the AM fungi. Soil Biol Biochem 40:2474–2476

    Article  CAS  Google Scholar 

  • Scervino JM, Gottlieb A, Silvani VA, Pergola M, Fernandez L, Godeas AM (2009) Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biol Biochem 41:1753–1756

    Article  CAS  Google Scholar 

  • Schenck NC, Graham SO, Green NE (1975) Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia 67:1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Schreiner RP, Koide RT (1993a) Mustards, mustard oils and mycorrhizas. New Phytol 123:107–113

    Article  CAS  Google Scholar 

  • Schreiner RP, Koide RT (1993b) Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems. Appl Environ Microbiol 59:2750–2752

    CAS  PubMed  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft Technische Zusammenarbeit GmbH, Eschborn

    Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Siqueira JO, Hubbell DH, Schenck NC (1982) Spore germination and germ tube growth of a vesicular-arbuscular mycorrhizal fungus in vitro. Mycologia 74:952–959

    Article  Google Scholar 

  • Siqueira JO, Hubbell DH, Mahmud AW (1984) Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant Soil 76:115–124

    Article  CAS  Google Scholar 

  • Spain JL (1992) Patency of shields in water mounted spores of 4 species in Acaulosporaceae (Glomales). Mycotaxon 43:331–339

    Google Scholar 

  • Spain JL (2003) Emendation of Archaeospora and of its type species, Archaeospora trappei. Mycotaxon 87:109–112

    Google Scholar 

  • Spain JL, Sieverding E, Oehl F (2006) Appendicispora: a new genus in the arbuscular mycorrhiza-forming Glomeromycetes, with a discussion of the genus Archaeospora. Mycotaxon 97:163–182

    Google Scholar 

  • Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285

    Article  CAS  Google Scholar 

  • Suriyapperuma SP, Koske RE (1995) Attraction of germ tubes and germination of spores of the arbuscular mycorrhizal fungus gigaspora gigantea in the presence of roots of maize exposed to different concentrations of phosphorus. Mycologia 87:772–778

    Article  Google Scholar 

  • Sward RJ (1981a) The structure of the spores of Gigaspora margarita. I. The dormant spore. New Phytol 87:761–768

    Article  Google Scholar 

  • Sward RJ (1981b) The structure of the spores of Gigaspora margarita. II. Changes accompanying germination. New Phytol 88:661–666

    Article  Google Scholar 

  • Sward RJ (1981c) The structure of the spores of Gigaspora margarita. III. Germ tube emergence and growth. New Phytol 88:667–673

    Article  Google Scholar 

  • Sylvia DM, Schenck NC (1983) Germination of chlamidospores of three Glomus species as affected by soil matric potential and fungal contamination. Mycologia 75:30–35

    Article  Google Scholar 

  • Sylvia D, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmental stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. Agronomy Society of America, Madison, WI

    Google Scholar 

  • Tamasloukht M, Sejalon DN, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  PubMed  Google Scholar 

  • Tamasloukht M, Waschke A, Franken P (2007) Root exudate-stimulated RNA accumulation in the arbuscular mycorrhizal fungus Gigaspora rosea. Soil Biol Biochem 39:1824–1827

    Article  CAS  Google Scholar 

  • Tawaraya K, Saito M, Morioka M, Wagatsuma T (1996a) Effect of concentration of phosphate on spore germination and hyphal growth of arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. Soil Sci Plant Nutr 42:667–671

    Article  Google Scholar 

  • Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996b) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59

    Article  Google Scholar 

  • Tommerup IC (1983a) Spore dormancy in vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc 81:37–45

    Article  Google Scholar 

  • Tommerup IC (1983b) Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi in soil. Trans Br Mycol Soc 81:381–387

    Article  Google Scholar 

  • Tommerup IC (1988) The vesicular-arbuscular mycorrhizas. Adv Plant Pathol 6:81–91

    Google Scholar 

  • Tommerup IC, Kidby DK (1980) Production of aseptic spores of vesicular-arbuscular endophytes and their viability after chemical and physical stress. Appl Environ Microbiol 39:1111–1119

    CAS  PubMed  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagne S, Avis TJ, Rioux JA (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347

    Article  PubMed  CAS  Google Scholar 

  • Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    CAS  PubMed  Google Scholar 

  • Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004a) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75

    Article  CAS  Google Scholar 

  • Turrini A, Sbrana C, Pitto L, Castiglione MR, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004b) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  Google Scholar 

  • Turrini A, Avio L, Bedini S, Giovannetti M (2008) In situ collection of endangered arbuscular mychorrhizal fungi in a Mediterranean UNESCO Biosphere Reserve. Biodivers Conserv 17:643–657

    Article  Google Scholar 

  • Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi: effects of selected Streptomyces species. Phytopathology 81:754–759

    Article  Google Scholar 

  • Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig MJ (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146:343–352

    Article  CAS  Google Scholar 

  • Walker C, Sanders FE (1986) Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. & Trappe. Mycotaxon 27:169–182

    Google Scholar 

  • Walker C, Giovannetti M, Avio L, Citernesi AS, Nicolson TH (1995) A new fungal species forming arbuscular mycorrhizas: Glomus viscosum. Mycol Res 99:1500–1506

    Article  Google Scholar 

  • Walker C, Blaszkowski J, Schwarzott D, Schussler A (2004) Gerdemannia gen. nov., a genus separated from Glomus, and Gerdemanniaceae fam. nov., a new family in the Glomeromycota. Mycol Res 108:707–718

    Article  CAS  PubMed  Google Scholar 

  • Walley FL, Germida JJ (1996) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49

    Article  Google Scholar 

  • Walters DR (1995) Inhibition of polyamine biosynthesis in fungi. Mycol Res 99:129–139

    Article  CAS  Google Scholar 

  • Watrud LS, Heithaus JJ, Jaworski EG (1978) Evidence for production of inhibitor by vesicular arbuscular mycorrhizal fungus Gigaspora margarita. Mycologia 70:821–828

    Article  Google Scholar 

  • Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17:1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Weinzierl G, Leveleki L, Hassel A, Kost G, Wanner G, Bolker M (2002) Regulation of cell separation in the dimorphic fungus Ustilago maydis. Mol Microbiol 45:219–231

    Article  CAS  PubMed  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy- metal polluted soils. Plant Soil 157:247–256

    Article  CAS  Google Scholar 

  • Will ME, Sylvia DM (1990) Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol 56:2073–2079

    CAS  PubMed  Google Scholar 

  • Zocco D, Fontaine J, Lozanova E, Renard L, Bivort C et al (2008) Effects of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol Res 112:592–601

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Giovannetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Giovannetti, M., Avio, L., Sbrana, C. (2010). Fungal Spore Germination and Pre-symbiotic Mycelial Growth – Physiological and Genetic Aspects. In: Koltai, H., Kapulnik, Y. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9489-6_1

Download citation

Publish with us

Policies and ethics