Skip to main content

The Microbiology of Natural Soils

  • Chapter
  • First Online:
Soil Microbiology and Sustainable Crop Production

Abstract

Soil microorganisms, such as bacteria and fungi, control ecosystem functioning through decomposition and nutrient cycling and may serve as indicators of land-use change and ecosystem health (Doran and Zeiss 2000; Waldrop et al. 2000; Yao et al. 2000). However, the study of soil microorganisms is difficult and our current understanding limited. The sheer number, astonishing diversity and small size of these communities become more apparent as our technologies to explore them have improved in recent years (Cardon and Gage 2006). With the rapid rise of molecular techniques, microbial ecologists are now able to walk through the world with the equivalent of the naturalist’s “field notebook,” cataloguing and classifying species. However, we often do not know what they do functionally or ecologically, or why they are found in some soils and not others (Balser et al. 2006). What we do know is that soil microbial communities are dynamic and diverse (Sylvia et al. 2005) almost beyond measure (Schloss and Handelsman 2006), and that some patterns seem to hold on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Duff: the layer of partially and fully decomposed organic materials lying below the forest flar litter and immediately above the mineral soil.

References

  • Allison V, Yermakov Z, Miller R, Jastrow J, Matamala R (2007) Using landscape and depth ­gradients to decouple the impact of correlated environmental variables on soil microbial community composition. Soil Biol Biochem 39(2):505–516

    CAS  Google Scholar 

  • Amann R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    PubMed  CAS  Google Scholar 

  • Amir H, Pineau R (1998) Influence of plants and cropping on microbiological characteristics of some New Caledonian ultramafic soils. Aust J Soil Res 36(3):457

    Google Scholar 

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29(1):535–562

    CAS  Google Scholar 

  • Anupam B (2003) Mycorrhizae in wetlands: a review. Int J Forest Manage 4:34–40

    Google Scholar 

  • Baisden W, Parfitt R (2007) Bomb 14C enrichment indicates decadal C pool in deep soil? Biogeochemistry 85(1):59–68

    Google Scholar 

  • Balser TC (2000) Linking soil microbial communities and ecosystem functioning. PhD ­dissertation, University of California-Berkeley, Berkeley, CA

    Google Scholar 

  • Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73(2):395–415

    CAS  Google Scholar 

  • Balser T, McMahon K, Bart D, Bronson D, Coyle D, Craig N et al (2006) Bridging the gap between micro – and macro-scale perspectives on the role of microbial communities in global change ecology. Plant Soil 289(1):59–70

    CAS  Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13(5):650–660

    Google Scholar 

  • Basu S, Behera N (1993) The effect of tropical forest conversion on soil microbial biomass. Biol Fertil Soils 16(4):302–304

    Google Scholar 

  • Bawa KS, Kress WJ, Nadkarni NM, Lele S (2004) Beyond paradise – meeting the challenges in tropical biology in the 21st century. Biotropica 36(4):437–446

    Google Scholar 

  • Behera N, Sahani U (2003) Soil microbial biomass and activity in response to Eucalyptus plantation and natural regeneration on tropical soil. For Ecol Manage 174(1–3):1–11

    Google Scholar 

  • Blume E, Bischoff M, Reichert JM, Moorman T, Konopka A, Turco RF (2002) Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl Soil Ecol 20(3):171–181

    Google Scholar 

  • Borneman J, Triplett E (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63(7):2647–2653

    PubMed  CAS  Google Scholar 

  • Bossio D, Girvan M, Verchot L, Bullimore J, Borelli T, Albrecht A et al (2005) Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microb Ecol 49(1):50–62

    PubMed  CAS  Google Scholar 

  • Bradley K, Drijber R, Knops J (2006) Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol Biochem 38(7):1583–1595

    CAS  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw H Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36(1):243–266

    Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232(1):147–154

    CAS  Google Scholar 

  • Burke RA, Molina M, Cox JE, Osher LJ, Piccolo MC (2003) Stable carbon isotope ratio and composition of microbial fatty acids in tropical soils. J Environ Qual 32(1):198–206

    PubMed  CAS  Google Scholar 

  • Buschbacher R, Uhl C, Serrao EAS (1988) Abandoned pastures in Eastern Amazonia. II. Nutrient stocks in the soil and vegetation. J Ecol 76(3):682–699

    Google Scholar 

  • Cardon ZG, Gage DJ (2006) Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Annu Rev Ecol Evol Syst 37(1):459–488

    Google Scholar 

  • Carney K, Matson P (2005) Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems 8(8):928–940

    CAS  Google Scholar 

  • Carney K, Matson P (2006) The influence of tropical plant diversity and composition on soil microbial communities. Microb Ecol 52(2):226–238

    PubMed  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK, Constance BC (2003) Soil microbial dynamics and biogeochemistry in tropical forests and pastures, southwestern Costa Rica. Ecol Appl 13(2):314–326

    Google Scholar 

  • Cookson W, Osman M, Marschner P, Abaye D, Clark I, Murphy D et al (2007) Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biol Biochem 39(3):744–756

    CAS  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D et al (1995) Changes in soil-phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407

    Google Scholar 

  • Davidson EA, Artaxo P (2004) Globally significant changes in biological processes of the Amazon basin: results of the large-scale biosphere-atmosphere experiment. Glob Change Biol 10(5):519–529

    Google Scholar 

  • de Moraes JFL, Volkoff B, Cerri CC, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma 70(1):63–81

    Google Scholar 

  • DeGrood SH, Claassen VP, Scow KM (2005) Microbial community composition on native and drastically disturbed serpentine soils. Soil Biol Biochem 37(8):1427–1435

    CAS  Google Scholar 

  • Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103(2):365–373

    CAS  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15(1):3–11

    Google Scholar 

  • Eden MJ, Furley PA, Mcgregor DFM, Milliken W, Ratter JA (1991) Effect of forest clearance and burning on soil properties in northern Roraima, Brazil. For Ecol Manage 38:283–290

    Google Scholar 

  • Ekelund F, Rønn R, Christensen S (2001) Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol Biochem 33(4–5):475–481

    CAS  Google Scholar 

  • EPA (2004) Wetlands overview, EPA 843-F-04-011a [Internet]. http://www.epa.gov/owow/wetlands/pdf/overview.pdf

  • FAO (2001) Global forest resources assessment 2000 – main report. Forestry Paper 140. Rep. 140

    Google Scholar 

  • FAO (2005) Global forest resources assessment 2005. Forestry paper 147. Rep. 147

    Google Scholar 

  • Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19(3):680–688

    Google Scholar 

  • Fearnside PM, Imbrozio Barbosa R (1998) Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. For Ecol Manage 108(1–2):147–166

    Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364

    PubMed  Google Scholar 

  • Fraterrigo JM, Balser TC, Turner MG (2006) Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology 87(3):570–579

    PubMed  Google Scholar 

  • Frey S, Elliott E, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31(4):573–585

    CAS  Google Scholar 

  • Goberna M, Insam H, Pascual J, Sánchez J (2005) Storage effects on the community level physiological profiles of Mediterranean forest soils. Soil Biol Biochem 37(1):173–178

    CAS  Google Scholar 

  • Goberna M, Sánchez J, Pascual J, García C (2006) Surface and subsurface organic carbon, microbial biomass and activity in a forest soil sequence. Soil Biol Biochem 38(8):2233–2243

    CAS  Google Scholar 

  • Gomez-Alvarez V, King GM, Nüsslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60(1):60–73

    PubMed  CAS  Google Scholar 

  • Gordon D (1998) Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8(4):975–989

    Google Scholar 

  • Guggenberger G, Frey SD, Six J, Paustian K, Elliott ET (1999) Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am J 63(5):1188–1198

    CAS  Google Scholar 

  • Gutknecht J, Goodman R, Balser T (2006) Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant Soil 289(1–2):17–34

    CAS  Google Scholar 

  • Haggar JP, Ewel JJ (1995) Establishment, resource acquisition, and early productivity as determined by biomass allocation patterns of three tropical tree species. Forest Sci 41:689–708

    Google Scholar 

  • Handelsman J (2005) Metagenomics or megagenomics? Nat Rev Microbiol 3(6):457–458

    CAS  Google Scholar 

  • Hölscher D, Ludwig B, Möller RF, Fölster H (1997) Dynamic of soil chemical parameters in shifting agriculture in the Eastern Amazon. Agric Ecosyst Environ 66(2):153–163

    Google Scholar 

  • Horner-Devine MC, Carney KM, Bohannan BJM (2004) An ecological perspective on bacterial biodiversity. Proc R Soc Lond B Biol Sci 271(1535):113–122

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436

    Google Scholar 

  • Kao-Kniffin J, Balser T (2007) Elevated CO2 differentially alters belowground plant and soil microbial community structure in reed canary grass-invaded experimental wetlands. Soil Biol Biochem 39(2):517–525

    CAS  Google Scholar 

  • Kardol P, Cornips N, van Kempen M, Bakx-Schotman J, van der Putten W (2007) ­Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecol Monogr 77(2):147–162

    Google Scholar 

  • Kennedy A, Schillinger W (2006) Soil quality and water intake in traditional-till vs. no-till paired farms in Washington’s Palouse region. Soil Sci Soc Am J 70(3):940–949

    CAS  Google Scholar 

  • Kim J, Sparovek G, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39(2):684–690

    CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H et al (2004) Methods of studying soil microbial diversity. J Microbiol Meth 58(2):169–188

    CAS  Google Scholar 

  • Krave AS, Lin B, Braster M, Laverman AM, Straalen NMV, Röling WFM et al (2002) Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central Java, Indonesia. Environ Microbiol 4(6):361–373

    PubMed  Google Scholar 

  • Kumara HN, Kumar MA, Sharma AK, Sushma HS, Singh M, Singh M (2004) Diversity and management of wild mammals in tea gardens in the rain­forest regions of the Western Ghats, India: a case study from a tea estate in the Anaimalai Hills. Curr Sci 87:1282–1287

    Google Scholar 

  • Laurance WF (1999) Reflections on the tropical deforestation crisis. Biol Conserv 91(2–3):109–117

    Google Scholar 

  • Lavahun MFE, Joergensen RG, Meyer B (1996) Activity and biomass of soil microorganisms at different depths. Biol Fertil Soils 23(1):38–42

    Google Scholar 

  • Leckie SE (2005) Methods of microbial community profiling and their application to forest soils. For Ecol Manage 220(1–3):88–106

    Google Scholar 

  • Lehmann J, Pereira da Silva J, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249(2):343–357

    CAS  Google Scholar 

  • Levine SH (1976) Competitive interactions in ecosystems. Am Nat 110(976):903

    Google Scholar 

  • Liang C, Fujinuma R, Balser T (2008) Comparing PLFA and amino sugars for microbial analysis in an Upper Michigan old growth forest. Soil Biol Biochem 40(8):2063–2065

    CAS  Google Scholar 

  • Lima HN, Schaefer CER, Mello JWV, Gilkes RJ, Ker JC (2002) Pedogenesis and pre-Colombian land use of “Terra Preta Anthrosols” (“Indian black earth”) of Western Amazonia. Geoderma 110(1–2):1–17

    CAS  Google Scholar 

  • Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59(2):418–427

    PubMed  CAS  Google Scholar 

  • Mann CC (2002) Agriculture: the real dirt on rainforest fertility. Science 297(5583):920–923

    PubMed  CAS  Google Scholar 

  • Mentzer J, Goodman R, Balser T (2006 June) Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie. Plant Soil 284(1–2):85–100

    CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis [Internet]. http://www.millenniumassessment.org/documents/document.356.aspx.pdf

  • Miller SP, Bever JD (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119(4):586–592

    Google Scholar 

  • Minoshima H, Jackson L, Cavagnaro T, Sanchez-Moreno S, Ferris H, Temple S et al (2007) Soil food webs and carbon dynamics in response to conservation tillage in California. Soil Sci Soc Am J 71(3):952–963

    CAS  Google Scholar 

  • Moritz LK (2008) Soil habitat and microbial communities on Mount Kinabalu, Borneo. MS thesis, University of Wisconsin-Madison, Madison, WI

    Google Scholar 

  • Müller MML, Guimarães MF, Desjardins T, Mitja D (2004) The relationship between pasture degradation and soil properties in the Brazilian amazon: a case study. Agric Ecosyst Environ 103(2):279–288

    Google Scholar 

  • Myers N, Mittermeier RA (2000) Biodiversity hotspots for conservation priorities. (Cover story). Nature 403(6772):853

    PubMed  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Lan Dl L, Pietramellar G, Renell G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655

    Google Scholar 

  • Neill C, Fry B, Melillo JM, Steudler PA, Moraes JFL, Cerri CC (1996) Forest- and pasture-derived carbon contributions to carbon stocks and microbial respiration of tropical pasture soils. Oecologia 107(1):113–119

    Google Scholar 

  • Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH et al (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372(6507):666–669

    CAS  Google Scholar 

  • Nüsslein K, Tiedje JM (1998) Characterization of the dominant and rare members of a young Hawaiian soil bacterial community with small-subunit ribosomal DNA amplified from DNA fractionated on the basis of its guanine and cytosine composition. Appl Environ Microbiol 64(4):1283–1289

    PubMed  CAS  Google Scholar 

  • Nüsslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65(8):3622–3626

    PubMed  CAS  Google Scholar 

  • Oline D (2006) Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils. Appl Environ Microbiol 72(11):6965–6971

    PubMed  CAS  Google Scholar 

  • Poll C, Thiede A, Wermbter N, Sessitsch A, Kandeler E (2003) Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. Eur J Soil Sci 54(4):715–724

    Google Scholar 

  • Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parsons AN, Seastedt TR et al (2003) Relationships at the aboveground-belowground interface: plants, soil biota and soil processes. Ecol Monogr 73(3):377–395

    Google Scholar 

  • Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trends Ecol Evol 14(9):334–335

    Google Scholar 

  • Ramsar Convention Secretariat (2007) Wise use of wetlands: a conceptual framework for the wise use of wetlands. Ramsar handbooks for the wise use of wetlands, 3rd edn, vol 1 [Internet]. http://www.ramsar.org/pdf/lib/lib_handbooks2006_e01.pdf

  • Ranjard L, Poly F, Nazaret S (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res Microbiol 151(3):167–177

    PubMed  CAS  Google Scholar 

  • Rasmussen C, Southard RJ, Horwath WR (2007) Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil Sci Soc Am J 71(4):1141–1150

    CAS  Google Scholar 

  • Reiners WA, Bouwman AF, Parsons WFJ, Keller M (1994) Tropical rain-forest conversion to pasture – changes in vegetation and soil properties. Ecol Appl 4(2):363

    Google Scholar 

  • Rudel TK (2005) Tropical forests regional paths of destruction and regeneration in the late twentieth century. Columbia University Press, New York

    Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2(7):e92

    PubMed  Google Scholar 

  • Seghers D, Wittebolle L, Top E, Verstraete W, Siciliano S (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70(3):1475–1482

    PubMed  CAS  Google Scholar 

  • Serrão EAS, Nepstad D, Walker R (1996) Upland agricultural and forestry development in the Amazon: sustainability, criticality and resilience. Ecol Econ 18(1):3–13

    Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67(9):4215–4224

    PubMed  CAS  Google Scholar 

  • Shaw SP, Fredine CG (1956) Wetlands of the United States – their extent and their value to waterfowl and other wildlife. Version 05JAN99 [Internet]. http://www.npwrc.usgs.gov/resource/wetlands/uswetlan/index.htm

  • Singh S, Singh JS (1995) Microbial biomass associated with water-stable aggregates in forest, savanna and cropland soils of a seasonally dry tropical region, India. Soil Biol Biochem 27(8):1027–1033

    CAS  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569

    CAS  Google Scholar 

  • Spiegelberger T, Hegg O, Matthies D, Hedlund K, Schaffner U (2006) Long-term effects of short-term perturbation in a subalpine grassland. Ecology 87(8):1939–1944

    PubMed  Google Scholar 

  • Srivastava S, Singh J (1991) Microbial C, N and P in dry tropical forest soils: effects of alternate land-uses and nutrient flux. Soil Biol Biochem 23(2):117–124

    CAS  Google Scholar 

  • Steenwerth K, Jackson L, Carlisle E, Scow K (2006) Microbial communities of a native perennial bunchgrass do not respond consistently across a gradient of land-use intensification. Soil Biol Biochem 38(7):1797–1811

    CAS  Google Scholar 

  • Stenström J, Svensson K, Johansson M (2001) Reversible transition between active and dormant microbial states in soil. FEMS Microbiol Ecol 36(2–3):93–104

    PubMed  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Taylor JP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34(3):387–401

    CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56(3):782–787

    PubMed  CAS  Google Scholar 

  • Trumbore SE, Davidson EA, Camargo PBD, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of eastern Amazonia. Glob Biogeochem Cycles 9(4):515–528

    CAS  Google Scholar 

  • Ulrich A, Becker R (2006) Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol 56(3):430–443

    PubMed  CAS  Google Scholar 

  • Ulrich A, Klimke G, Wirth S (2008) Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application. Microb Ecol 55(3):512–522

    PubMed  Google Scholar 

  • Van Gestel M, Merckx R, Vlassak K (1996) Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biol Biochem 28(4–5):503–510

    Google Scholar 

  • Veldkamp E, Becker A, Schwendenmann L, Clark DA, Schulte-Bisping H (2003) Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Glob Change Biol 9(8):1171–1184

    Google Scholar 

  • Venkatesan S, Senthurpandian VK (2006) Comparison of enzyme activity with depth under tea plantations and forested sites in south India. Geoderma 137(1–2):212–216

    CAS  Google Scholar 

  • Vestal JR, White DC (1989) Lipid analysis in microbial ecology. Bioscience 39(8):535–541

    PubMed  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32(13):1837–1846

    CAS  Google Scholar 

  • Walker RB (1954) The ecology of serpentine soils: a symposium. II. factors affecting plant growth on serpentine soils. Ecology 35:259–266

    Google Scholar 

  • Wander M, Hedrick D, Kaufman D, Traina S, Stinner B, Kehrmeyer S et al (1995) The functional significance of the microbial biomass in organic and conventionally managed soils. Plant Soil 170(1):87–97

    CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633

    PubMed  CAS  Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40(1):51–62

    Google Scholar 

  • Windham L, Ehrenfeld J (2003) Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecol Appl 13(4):883–896

    Google Scholar 

  • Wixon D, Balser T (2009) Complexity, climate change and soil carbon: a systems approach to microbial temperature response. Syst Res Behav Sci 26(5):601–620

    Google Scholar 

  • Yao H, He Z, Wilson MJ, Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40(3):223–237

    PubMed  CAS  Google Scholar 

  • Zedler J, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23(5):431–452

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29(2):111–129

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the members of the Balser laboratory at the University of Wisconsin-Madison, especially Dr. Harry Read and Kevin Budsberg, for their untiring support and assistance. We would also like to thank Balser laboratory alumna Drs. Jessica Gutknecht and Jenny Kao-Kniffin for valuable discussions about these ideas over the years. Finally, we thank the editors for their valuable comments in strengthening this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teri C. Balser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Balser, T.C., Wixon, D., Moritz, L.K., Lipps, L. (2010). The Microbiology of Natural Soils. In: Dixon, G., Tilston, E. (eds) Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9479-7_2

Download citation

Publish with us

Policies and ethics