Skip to main content

Resistance of Symbiotic Eukaryotes

Survival to Simulated Space Conditions and Asteroid Impact Cataclysms

  • Chapter
  • First Online:
Book cover Symbioses and Stress

Abstract

Carbon isotope data suggest that microbial life was present on Earth as early as 3.5 Ga ago, and probably even 4 Ga ago, and indicates that biological CO2 fixation was an early feature (Schidlowski, 2001). The early biosphere was dominated by microbial life forms for a long period, during which they evolved to exploit new niches. For some, this involved interaction between different microbial groups, and now symbiosis represents one of the most successful strategies in evolution (Margulis, 1993). There is now little doubt that eukaryotes arose through uptake of a heterotrophic eubacterial symbiont by an autotrophic archaebacterial host (Martin and Russell, 2003). This milestone in evolution, and the paradigm of the endosymbiont hypothesis, initiated the evolution of the eukaryotic kingdoms of fungi, plants, and animals. Evidence from dating sequence divergence (Wang et al., 1999) suggests that the ancestors of today’s plants, animals, and fungi diverged possibly as early as 1.5 Ga ago. Independent of this major evolutionary step, other symbioses arose as exosymbiosis, without the ingestion of one partner. These involve both syntrophic partnerships among prokaryotes, and also associations with or among eukaryotes. Such symbioses are particularly complex in biofilms and biocrusts (Belnap et al., 2001; Flemming and Wingender, 2001), and in associations that are often found in stressful terrestrial habitats that are not amenable to higher plant community development, for instance, due to periodic aridity. In such habitats, lichen symbioses can form the dominant and conspicuous biological elements of the landscape. Lichens can be characterized as a specific exosymbiotic life form that results in an exposed and integrated phenotype of clearly different morphology than that of the constituent organisms alone (Lawrey, 1991; Ahmadjian et al., 1987; Galun, 1988 Grube and Hawksworth 2007). Taylor et al. (1997, 2005) and Yuan et al. (2005) date the first occurrence of the lichen symbiosis from fossil records in the Lower Devonian period (0.6 Ga), but the evolution of the lichen symbiosis could well pre-date the available fossil records (Lutzoni 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian, V. and Jacobs, J.B. (1987) Studies on the development of synthetic lichens. Biblioth. Lichenol. 25: 47–58.

    Google Scholar 

  • Bachereau, F. and Asta, J. (1997) Effects of solar ultraviolet radiation at high altitudes on the physiology and biochemistry of a terricolous lichen (Cetraria islandica (L.) Ach.). Symbiosis 23: 197–217.

    CAS  Google Scholar 

  • Belnap, J., Büdel, B. and Lange, O.L. (2001) Biological soil crusts. Characteristics and distribution, In: J. Belnap and O.L. Lange (eds.) Biological Soil Crusts: Structure, Function, and Management. Springer, Berlin, pp. 3–30.

    Chapter  Google Scholar 

  • Berenbaum, M. (2001) Rad Roaches. Am. Entomol. 47: 132–133.

    Google Scholar 

  • Bletchly, J.D. and Fisher, R.C. (1957) Use of gamma radiation for the destruction of wood-boring insects. Nature 179: 670.

    Article  Google Scholar 

  • Brodo, I.M., Sharnoff, S.D. and Sharnoff, S. (2001) Lichens of North America. Yale University Press, New Haven and London.

    Google Scholar 

  • Büdel, B. and Wessels, D.C.J. (1986) Parmelia hueana Gyeln, a vagrant lichen from Namib Desert SWA/Namibia. I. Anatomical and reproductive adaptations. Dinteria 18: 3–36.

    Google Scholar 

  • Cork, J.M. (1957) Gamma radiation and longevity of the flour beetle. Radiat. Res. 7: 551–557.

    Article  PubMed  CAS  Google Scholar 

  • Davey, W.P. (1919) Prolongation of life of Tribolium confusum apparently due to small doses of X-rays. J. Exp. Zool. 28: 447–458.

    Article  Google Scholar 

  • de la Torre, R., Horneck, G., Sancho, L.G., Pintado, A., Scherer, K., Facius, R., Deutschmann, U., Reina, M., Baglioni, P. and Demets, R. (2004) Studies of lichens from high mountain regions in outer space: the BIOPAN experiment. Proc. Of the III European Workshop on Exo-Astrobiology. Mars: The search for Life, Madrid, Spain. ESA SP-545, pp. 193–194.

    Google Scholar 

  • de Vera, J.P. (2005) Grenzen des Überlebens: Flechten als Modellsystem für das Potential von Adaptationsmechanismen eines Symbioseorganismus unter Extrembedingungen. Ph.D. thesis, Heinrich-Heine-University, Düsseldorf.

    Google Scholar 

  • de Vera, J.P., Horneck, G., Rettberg, P. and Ott, S. (2003) The potential of lichen symbiosis to cope with extreme conditions of outer space – I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Int. J. Astrobiol. 1: 285–293.

    Article  Google Scholar 

  • de Vera, J.P., Horneck, G., Rettberg, P. and Ott, S. (2004a) The potential of lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Adv. Space Res. 33: 1236–1243.

    Article  PubMed  Google Scholar 

  • de Vera, J.-P., Horneck, G., Rettberg, P. and Ott, S. (2004b) In the context of panspermia: May lichens serve as shuttles for their bionts in Space? Proc. of the III European Workshop on Exo-Astrobiology. Mars: The search for Life, Madrid, Spain, 18–20 November 2003 (ESA SP-545, March 2004), pp. 197–198.

    Google Scholar 

  • de Vera, J.P., Rettberg, P. and Ott, S. (2008) Life at the limits: Capacities of isolated and cultured lichen symbionts to resist extreme environmental stresses. Orig. Live Evol. Biosph. 38: 457–468.

    Article  Google Scholar 

  • Edwards, H.G.M., Newton, E.M., Wynn-Williams, D.D. and Coombes, S.R. (2003) Molecular spectroscopic studies of lichen substances 1: parietin and emodin. J. Mol. Struct. 648: 49–59.

    Article  CAS  Google Scholar 

  • Fahselt, D. (1995) Growth form and reproductive character of lichens near active fumaroles in Japan. Symbiosis 18: 211–231.

    Google Scholar 

  • Feofilova, E.P. (2003) Deceleration of vital activity as a universal biochemical mechanism ensuring adaptation of microorganisms to stress factors: a review. Appl. Biochem. Microbiol. 39: 1–18.

    Article  CAS  Google Scholar 

  • Flemming, H.C. and Wingender, J. (2001) Biofilme – die bevorzugte Lebensform der Bakterien. Biologie in unserer Zeit. 3: 169–180.

    Article  Google Scholar 

  • Galun, M. (1988) Lichenization, In: M. Galun (ed.) CRC Handbook of Lichenology. Vol. 2. CRC Press, Boca Raton, pp. 153–169.

    Google Scholar 

  • Grube, M. and Hawksworth, D.L. (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol. Res. 111: 1116–1132.

    Article  PubMed  Google Scholar 

  • Henssen, A., Jahns, H.M. (1974) Lichenes; Eine Einführung in die Flechtenkunde. Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Honegger, R. and Kutasi, V. (1990) Anthraquinone production in the aposymbiotically cultured telochistacean lichen mycobiont: the role of the carbon source, In: P. Nardon, V. Gianinazzi-Pearson, A.M. Grenier, L. Margulis, and D.C. Smith (eds.), Endocytobiology IV D.C. INRA, Paris pp. 175–178.

    Google Scholar 

  • Horneck, G. (1993) Responses of Bacillus subtilis spores to space environment: results of experiments in space. Orig. Life Evol. Biosphere 23: 37–52.

    Article  CAS  Google Scholar 

  • Horneck, G., Stöffler, D., Eschweiler, U. and Hornemann, U. (2001a) Bacterial spores survive simulated meteorite impact. Icarus 149: 285–290.

    Article  Google Scholar 

  • Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V. and Baumstark-Khan, C. (2001b) Protection of bacterial spores in space, a contribution to the discussion of Panspermia. Orig. Life Evol. Biosphere 31: 527–547.

    Article  CAS  Google Scholar 

  • Horneck, G. (2001c) Likelihood of transport of life between the planets of our solar system, In: J. Chela-Flores et-al. (eds.), First steps in the origin of life in the Universe, Kluwer Academic publishers, Netherlands.

    Google Scholar 

  • Horneck, G., Stöffler, D., Ott, S., Hornemann, U., Cockell, C.S., Moeller, R., Meyer, C., de Vera, J.P., Fritz, J., Schade, S. and Artemieva, N. (2008) Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase experimentally tested. Astrobiology 8: 17–44.

    Article  PubMed  CAS  Google Scholar 

  • Jahns, H.M. (1995) Farne, Moose, Flechten Mittel-, Nord- und Westeuropas. BLV Verlagsgesellschaft, München.

    Google Scholar 

  • Jennings, D.H. and Lysek, G. (1999) Fungal Biology. Understanding the Fungal Lifestyle. 2nd ed. Springer, New York.

    Google Scholar 

  • Kappen, L. (1973) Responses to extreme environments, In: V. Ahmadjian and M.E. Hale (eds.) The Lichens. Academic Press, New York, pp. 310–380.

    Google Scholar 

  • Kappen, L. (1993) Lichens in the Antarctic region, In: E.I. Friedmann (ed.) Antarctic Microbiology. Wiley-Liss, New York, pp. 433–490.

    Google Scholar 

  • Kappen, L., Schroeter, B., Green, T.G.A. and Seppelt, R.D. (1998) Microclimatic conditions, meltwater moistening, and the distributal pattern of Buellia frigida on rock in a southern continental Antarctic habitat. Polar Biol. 19: 101–106.

    Article  Google Scholar 

  • Kranz, A.R., Bork, U., Búcker, H. and Reitz, G. (1990) Biological damage induced by ionizing cosmic rays in dry Arabidopsis seeds. Nucl. Tracks Radiat. Meas. 17: 155–165.

    Article  CAS  Google Scholar 

  • Lange, O.L., Geiger, I.L. and Schulze, E.D. (1977) Ecophysiological investigations on lichens of the Negev desert. Oecologia 28: 247–259.

    Google Scholar 

  • Lange, O.L., Pfanz, H., Kilian, E. and Meyer, A. (1990) Effect of low water potential on photosynthesis in intact lichens and their liberated algal components. Planta 182: 467–472.

    Article  Google Scholar 

  • Lange, O.L., Büdel, B., Meyer, A., Zellner, H. and Zotz, G. (2000) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of three Leptogium species of a lower montane rain forest in Panama. Flora 195: 172–190.

    Google Scholar 

  • Lawrey, J.D. (1991) Biotic interactions in lichen community development: a review. Lichenologist 23: 205–214.

    Google Scholar 

  • Lee, Y.J. and Ducoff, H.S. (1984) Radiation-enhanced resistance to oxygen: a possible relationship to radiation-enhanced longevity. Mech. Ageing Dev. 27: 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Lud, D. (2001) Biotic responses to UV-B in Antarctica. Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Lutzoni, F., Pagel M. and Reeb, V. (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937–940.

    Article  PubMed  CAS  Google Scholar 

  • Lütz, C., Seidlitz, H.K. and Meindl, U. (1997) Physiological and structural changes in the chloroplast of the green alga Micrasterias denticulata induced by UV B simulation. Plant Ecol. 128: 55–64.

    Article  Google Scholar 

  • Mancinelli, R.L., White, M.R. and Rothschild, L.J. (1998) Biopan survival I: exposure of the ­osmophiles Synechoccocus sp. (Nageli) and Haloarcula sp. to the space environment. Adv. Space Res. 22: 327–334.

    Article  CAS  Google Scholar 

  • Margulis, L. (1993) Symbiosis in Cell Evolution. 2nd edn. Freeman, New York.

    Google Scholar 

  • Martin, W. and Russell, M.J. (2003) On the origin of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes to nucleated cells. Phil. Trans. R. Soc. Lond. B. 158: 59–85.

    Article  Google Scholar 

  • Meyer, C. (2005) Stoßwellenexperimente zur Simulation des Transfers von Mikroorganismen vom Mars zur Erde. Diplomarbeit im Fach Mineralogie, Museum für Naturkunde (Humboldt Universität), Freie Universität, Berlin.

    Google Scholar 

  • Meyer-Rochow, V.B., Kashivagi, T. and Eguchi, E. (2002) Selective photoreceptor damage in four species of insects induced by experimental exposures to UV-irradiation. Micron 33: 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Misra Parvathy Bhatia, H.P. (1998) Gamma radiation susceptibility of strains of Tribolium castaneum (Herbst) resistant and susceptible to fenvalerate. Int. J. Pest Management 44: 145–147.

    Article  Google Scholar 

  • Moeller, R., Horneck, G., Stackebrandt, E., Edwards, H.G.M. and Villar, S.E.J. (2003) Do endogenous pigments protect Bacillus spores against UV-radiation? Proc. of the III European Workshop on Exo-Astrobiology: Mars: The search for life, Madrid, Spain, pp. 241–242.

    Google Scholar 

  • Moeller, R., Horneck, G., Facius, R., Stackebrandt, E. (2005) Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol. Ecol. 51: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Nash III, T.H. (1996) Lichen Biology. Cambridge University Press.

    Google Scholar 

  • Neuberger, K., Lux-Endrich, A., Rattler, S., Panitz, C., Horneck, G., and Hock, B. (2004) Fungal and fern spores in space simulation experiments. Proceedings of the Third European Workshop on Exo-Astrobiology, 18–20 November 2003, Madrid, Spain. Ed.: R. A. Harris & L. Ouwehand. ESA SP-545, Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-856-5, pp. 251–252.

    Google Scholar 

  • Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J. and Setlow, P. (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548–572.

    Article  PubMed  CAS  Google Scholar 

  • Øvstedal, D.O. and Lewis-Smith, R.I. (2001) Lichens of Antarctica and South Georgia. A guide to their identification and Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Poelt, J. (1969) Bestimmungsschlüssel Europäischer Flechten. J. Cramer, Lehre.

    Google Scholar 

  • Quilhot, W., Fernandez, E., Rubio, C., Cavieres, M.F., Hidalgo, M.E., Goddard, M. and Galloway, D. (1996) Preliminary data on the accumulation of usnic acid related to ozone depletion in two Antarctic lichens. Seria Cientas INACH. 46: 105–111.

    Google Scholar 

  • Rettberg, P. and Rothschild, L.J. (2002) Ultraviolet radiation in planetary atmospheres and biological implications, In: G. Horneck and Ch. Baumstark-Khan (eds.) Astrobiology – The quest for the conditions of life. Springer, Berlin, pp. 233–243.

    Chapter  Google Scholar 

  • Ross, M.H. and Cochran, D.G. (1963) Some early effects of ionizing radiation on the German cochroach, Blattella germanica. Ann. Entomol. Soc. Am. 56: 256–261.

    Google Scholar 

  • Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Rios, A., Pintado, A., Wierzchos, J. and Schuster, M. (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 7: 443–454.

    Article  PubMed  Google Scholar 

  • Schidlowski, M. (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth ­history: evolution of a concept. Precambrian Res. 106: 117–134.

    Article  CAS  Google Scholar 

  • Solhaug, A.A. and Gauslaa, Y. (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Ocoelogia 108: 412–418.

    Article  Google Scholar 

  • Solhaug, A.A., Gauslaa, Y., Nybakken, L. and Bilger, W. (2003) UV-induction of sun-screening ­pigments in lichens. New Phytol. 158: 91–100.

    Article  CAS  Google Scholar 

  • Stetter, K.O. (1996) Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18: 149–158.

    Article  CAS  Google Scholar 

  • Stöffler, D., Horneck G., Ott, S., Hornemann, U., Cockell, C.S., Möller, R., Meyer, C., de Vera, J.P., Fritz, J. and Artemieva, N.A. (2007) Experimental evidence for the impact ejection of viable microorganisms from Mars-like planets. Icarus 186: 585–588.

    Article  Google Scholar 

  • Swanson, A. and Fahselt, D. (1997) Effects of ultraviolet on polyphenolics of Umbilicaria americana. Can. J. Bot. 75: 284–289.

    Article  CAS  Google Scholar 

  • Taylor, T.N., Hass, H. and Kerp, H. (1997) A cyanolichen from the Lower Devonian Rhynie chert. Am. J. Bot. 84: 992–1004.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, T.N., Hass, H., Kerp, H., Krings, M. and Hanlin, R.T. (2005 [‘2004’]) Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia 96: 1403–1419.

    Article  Google Scholar 

  • Tepfer, D. and Leach, S. (2006) Plant seeds as model vectors for transfer of life through space. ­Astophys. Space Sci. 306: 69–75.

    Article  CAS  Google Scholar 

  • Thoss, V. (1999) Chemical characterization of dissolved organic matter in natural matrices. Ph.D.-thesis, University of Wales, Bangor.

    Google Scholar 

  • Upton, A.C. (2001) Radiation hormesis: data and interpretations. Crit. Rev. Toxicol. 31: 681–695.

    Article  PubMed  CAS  Google Scholar 

  • van der Drift, K.M.G.M., Spaink, H.P., Bloemberg, G.V., van Brussel, A.A.N. and Lugtenberg, B.J.J., Haverkamp, J., Thomas-Oates, J.E. (1996) Rhizobium leguminosarum bv. Trifolii produces Lipochitin Oligosaccharides with node-dependent highly unsaturated fatty acyl moieties. J. Biol. Chem. 271: 22563–22569.

    Article  PubMed  CAS  Google Scholar 

  • Vernós, I., Carratalá, M., González-Jurado, J., Valverde, J.R., Calleja, M., Domingo, A., Vinós, J., Cervera, M. and Marco, R. (1989) Insects as test systems for assessing the potential role of microgravity in biological development and evolution. Adv. Space Res. 9: 137–146.

    Article  PubMed  Google Scholar 

  • Wang, D.Y.C., Kunar, S. and Hedges, S.B. (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc. R. Soc. Lond. B. 266: 163–171.

    Article  CAS  Google Scholar 

  • Wharton, D.R.A. and Wharton, M.L. (1957) The production of sex attractant substance and of oothecae by the normal and irradiated American cockroach, Periplaneta americana (L.). J. Insect Physiol. 1: 229–239.

    Article  Google Scholar 

  • Wharton, D.R.A. and Wharton, M.L. (1959) The effect of radiation on the longevity of the cockroach, Periplaneta americana, as affected by dose, age, sex and food intake. Radiat. Res. 11: 600–615.

    Article  PubMed  CAS  Google Scholar 

  • Wieners, P. (2005) Das evolutionäre Potential der Flechtensymbiose gegenüber Extrembedingungen. Diplomarbeit, Heinrich-Heine-Universität Düsseldorf.

    Google Scholar 

  • Wynn-Williams, D.D., Holder, J.M. and Edwards, H.G.M. (2000). Lichens at the limits of life: past perspectives and modern technology. Biblioth. Lichenol. 75: 275–288.

    Google Scholar 

  • Wynn-Williams, D.D. and Edwards, H.G.M. (2002) Environmental UV radiation: biological strategies for protection and avoidance, In: G. Horneck and C. Baumstark-Kahn (eds.) Astrobiology. The Quest for the conditions of Life. Springer, Berlin, pp. 245–258.

    Chapter  Google Scholar 

  • Yuan, X., Xiao, S., Taylor, T.N. (2005) Lichen-like symbiosis 600 million years ago. Science 308: 1017.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Paul De Vera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Vera, JP.P., Ott, S. (2010). Resistance of Symbiotic Eukaryotes. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_31

Download citation

Publish with us

Policies and ethics